1
|
Faist H, Ankenbrand MJ, Sickel W, Hentschel U, Keller A, Deeken R. Opportunistic Bacteria of Grapevine Crown Galls Are Equipped with the Genomic Repertoire for Opine Utilization. Genome Biol Evol 2023; 15:evad228. [PMID: 38085065 PMCID: PMC10745273 DOI: 10.1093/gbe/evad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall-specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.
Collapse
Affiliation(s)
- Hanna Faist
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln 3430, Austria
- Julius-von-Sachs Institute for Biological Sciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Markus J Ankenbrand
- Faculty of Biology, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg 97074, Germany
| | - Wiebke Sickel
- Institute of Biodiversity, Thuenen-Institute of Biodiversity, Braunschweig 38116, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany
- Sektion Biologie, Christian-Albrechts University of Kiel, Kiel 24105, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Rosalia Deeken
- Julius-von-Sachs Institute for Biological Sciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| |
Collapse
|
2
|
Yu H, Chang KF, Hwang SF, Strelkov SE. Characterization of the Virulence and Yield Impact of Fusarium Species on Canola ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3020. [PMID: 37687267 PMCID: PMC10490129 DOI: 10.3390/plants12173020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Multiple species of Fusarium can contribute to the development of root rot in canola (Brassica napus), making disease management difficult. We conducted field and greenhouse experiments to investigate the impacts of Fusarium avenaceum and Fusarium proliferatum, and the interaction between Fusarium oxysporum and F. proliferatum on root rot severity and canola yields. Inoculation with any of the three Fusarium spp. resulted in significant disease severity and reduced seedling emergence compared with non-inoculated controls, leading to yield reductions of up to 35%. Notably, there was a strong correlation (r = 0.93) between root rot severity at the seedling stage and at maturity. Regression analysis indicated a linear decline in seedling emergence with increasing disease severity. Furthermore, disease severity at maturity adversely affected the pod number per plant and the seed weight per plant, with both parameters ultimately approaching zero at a severity of 4.0 on a 0-4 scale. Co-inoculation with F. oxysporum and F. proliferatum induced more severe root rot than inoculation with each species on its own, suggesting synergistic interactions between these fungi. Knowledge of these interactions and the relative virulence of Fusarium spp. will contribute to the improved management of root rot in canola.
Collapse
Affiliation(s)
- Haitian Yu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.)
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China
| | - Kan-Fa Chang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.)
| |
Collapse
|
3
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Rovenolt FH, Tate AT. The Impact of Coinfection Dynamics on Host Competition and Coexistence. Am Nat 2022; 199:91-107. [DOI: 10.1086/717180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
6
|
Habbadi K, Duplay Q, Chapulliot D, Kerzaon I, Benkirane R, Benbouazza A, Wisniewski-Dyé F, Lavire C, Achbani EH, Vial L. Characterization and phylogenetic diversity of Allorhizobium vitis isolated from grapevine in Morocco. J Appl Microbiol 2019; 128:828-839. [PMID: 31755153 DOI: 10.1111/jam.14523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
AIMS Crown gall, a phytobacteriosis characterized by the formation of tumours on plant roots was observed in recently planted vineyards of the Meknes region (Morocco). The objective of this research was to analyse the diversity of pathogenic agrobacteria isolated from grapevine in Morocco. METHODS AND RESULTS Eighty-two isolates from 11 affected vineyards were characterized by recA sequencing and were found to belong to Agrobacterium tumefaciens genomospecies G1, G4 or G7, Rhizobium rhizogenes, and to Allorhizobium vitis. Only the All. vitis isolates appeared to be pathogenic on tomato and multilocus sequence analysis phylogenetic analyses revealed a weak genetic diversity, with the definition of only four genomic groups. Definition of the All. vitis genomic groups correlated with specific pathogenic traits: indeed, genomic groups differed with respect to the severity of hypersensitive response symptoms on tobacco leaves, the intensity of necrotic response on grapevine explants and opine profiles. Both vitopine and octopine were detected by UHPLC in tumours induced by isolates of three genomic groups, an opine signature scarcely ever reported. CONCLUSIONS Allorhizobium vitis is the only causative agent of crown gall on grape in Morocco, pathogenic isolates can be separated into four genomic groups. SIGNIFICANCE AND IMPACT OF THE STUDY This study of recently crown-gall-infested vineyards demonstrated that All. vitis is the only causative agent and revealed the presence of nonpathogenic Agrobacterium strain within tumours. Moreover, as the genetic diversity of the All. vitis isolates is relatively narrow, this study lays the basis for further analyses on the evolution of the disease, on the dissemination of the pTi and more globally on the fate of the different genomic groups in this newly colonized environment.
Collapse
Affiliation(s)
- K Habbadi
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc.,Laboratoire de Botanique, Faculté des Sciences, Biotechnologie, et Protection des Plantes, Kenitra, Maroc.,CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Q Duplay
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - D Chapulliot
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - I Kerzaon
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - R Benkirane
- Laboratoire de Botanique, Faculté des Sciences, Biotechnologie, et Protection des Plantes, Kenitra, Maroc
| | - A Benbouazza
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc
| | - F Wisniewski-Dyé
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - C Lavire
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - E H Achbani
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc
| | - L Vial
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
8
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
9
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota. Appl Environ Microbiol 2016; 82:5542-52. [PMID: 27371584 DOI: 10.1128/aem.01131-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Crown gall disease of grapevine is caused by virulent Agrobacterium strains and establishes a suitable habitat for agrobacteria and, potentially, other bacteria. The microbial community associated with grapevine plants has not been investigated with respect to this disease, which frequently results in monetary losses. This study compares the endophytic microbiota of organs from grapevine plants with or without crown gall disease and the surrounding vineyard soil over the growing seasons of 1 year. Amplicon-based community profiling revealed that the dominating factor causing differences between the grapevine microbiota is the sample site, not the crown gall disease. The soil showed the highest microbial diversity, which decreased with the distance from the soil over the root and the graft union of the trunk to the cane. Only the graft union microbiota was significantly affected by crown gall disease. The bacterial community of graft unions without a crown gall hosted transient microbiota, with the three most abundant bacterial species changing from season to season. In contrast, graft unions with a crown gall had a higher species richness, which in every season was dominated by the same three bacteria (Pseudomonas sp., Enterobacteriaceae sp., and Agrobacterium vitis). For in vitro-cultivated grapevine plantlets, A. vitis infection alone was sufficient to cause crown gall disease. Our data show that microbiota in crown galls is more stable over time than microbiota in healthy graft unions and that the microbial community is not essential for crown gall disease outbreak. IMPORTANCE The characterization of bacterial populations in animal and human diseases using high-throughput deep-sequencing technologies, such as 16S amplicon sequencing, will ideally result in the identification of disease-specific microbiota. We analyzed the microbiota of the crown gall disease of grapevine, which is caused by infection with the bacterial pathogen Agrobacterium vitis. All other Agrobacterium species were found to be avirulent, even though they lived together with A. vitis in the same crown gall tumor. As has been reported for human cancer, the crown gall tumor also hosted opportunistic bacteria that are adapted to the tumor microenvironment. Characterization of the microbiota in various diseases using amplicon sequencing may help in early diagnosis, to serve as a preventative measure of disease in the future.
Collapse
|
11
|
Rynkiewicz EC, Pedersen AB, Fenton A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 2015; 31:212-21. [PMID: 25814004 DOI: 10.1016/j.pt.2015.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Hosts are typically coinfected by multiple parasite species, resulting in potentially overwhelming levels of complexity. We argue that an individual host can be considered to be an ecosystem in that it is an environment containing a diversity of entities (e.g., parasitic organisms, commensal symbionts, host immune components) that interact with each other, potentially competing for space, energy, and resources, ultimately influencing the condition of the host. Tools and concepts from ecosystem ecology can be applied to better understand the dynamics and responses of within-individual host-parasite ecosystems. Examples from both wildlife and human systems demonstrate how this framework is useful in breaking down complex interactions into components that can be monitored, measured, and managed to inform the design of better disease-management strategies.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
12
|
Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. FRONTIERS IN PLANT SCIENCE 2014; 5:635. [PMID: 25452760 PMCID: PMC4231840 DOI: 10.3389/fpls.2014.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/27/2014] [Indexed: 05/15/2023]
Abstract
As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.
Collapse
Affiliation(s)
| | | | | | | | - Clay Fuqua
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
13
|
Poisot T, Bever JD, Thrall PH, Hochberg ME. Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecol Evol 2014; 4:3841-50. [PMID: 25614798 PMCID: PMC4301050 DOI: 10.1002/ece3.1151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.
Collapse
Affiliation(s)
- Timothée Poisot
- Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France
- Département de Biologie, Université du Québec à Rimouski300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada
- Québec Centre for Biodiversity SciencesMontréal (QC), Canada
- School of Biological Sciences, University of CanterburyPrivate Bag, 4800, Christchurch, 8140, New Zealand
| | - James D Bever
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| | - Peter H Thrall
- CSIRO Plant IndustryGPO Box 1600, Canberra, Australian Capital Territory, 2601, Australia
| | - Michael E Hochberg
- Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France
- Santa Fe InstituteSanta Fe, New Mexico, 87501
- Wissenschaftskolleg zu BerlinBerlin, 14193, Germany
| |
Collapse
|
14
|
Evidence of autoinducer-dependent and -independent heterogeneous gene expression in Sinorhizobium fredii NGR234. Appl Environ Microbiol 2014; 80:5572-82. [PMID: 25002427 DOI: 10.1128/aem.01689-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-ΔtraI or the NGR234-ΔngrI mutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum-quenching genes dlhR and qsdR1 and the type IV pilus gene cluster located on pNGR234b suggested that factors other than AI molecules affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developing Arabidopsis thaliana seedlings provide the first evidence that plant root exudates have strong effects on the heterogeneity of AI synthase and quorum-quenching genes in NGR234. Therefore, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression.
Collapse
|
15
|
Joint evolution of kin recognition and cooperation in spatially structured rhizobium populations. PLoS One 2014; 9:e95141. [PMID: 24762776 PMCID: PMC3999197 DOI: 10.1371/journal.pone.0095141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
Abstract
In the face of costs, cooperative interactions maintained over evolutionary time present a central question in biology. What forces maintain this cooperation? Two potential ways to explain this problem are spatially structured environments (kin selection) and kin-recognition (directed benefits). In a two-locus population genetic model, we investigated the relative roles of spatial structure and kin recognition in the maintenance of cooperation among rhizobia within the rhizobia-legume mutualism. In the case where the cooperative and kin recognition loci are independently inherited, spatial structure alone maintains cooperation, while kin recognition decreases the equilibrium frequency of cooperators. In the case of co-inheritance, spatial structure remains a stronger force, but kin recognition can transiently increase the frequency of cooperators. Our results suggest that spatial structure can be a dominant force in maintaining cooperation in rhizobium populations, providing a mechanism for maintaining the mutualistic nodulation trait. Further, our model generates unique and testable predictions that could be evaluated empirically within the legume-rhizobium mutualism.
Collapse
|
16
|
Lang J, Faure D. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2014; 5:14. [PMID: 24550924 PMCID: PMC3907764 DOI: 10.3389/fpls.2014.00014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/12/2014] [Indexed: 05/05/2023]
Abstract
In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last 20 years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review, we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids.
Collapse
Affiliation(s)
| | - Denis Faure
- *Correspondence: Denis Faure, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91 198 Gif-sur-Yvette, France e-mail:
| |
Collapse
|
17
|
Taylor TB, Rodrigues AMM, Gardner A, Buckling A. The social evolution of dispersal with public goods cooperation. J Evol Biol 2013; 26:2644-53. [DOI: 10.1111/jeb.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
Affiliation(s)
- T. B. Taylor
- Department of Zoology; University of Oxford; Oxford UK
- School of Biological Sciences; University of Reading; Reading UK
| | | | - A. Gardner
- Department of Zoology; University of Oxford; Oxford UK
- Balliol College, University of Oxford; Oxford UK
- School of Biology; University of St Andrews; St Andrews UK
| | - A. Buckling
- Department of Zoology; University of Oxford; Oxford UK
- Biosciences; University of Exeter; Penryn UK
| |
Collapse
|
18
|
Competitive environments sustain costly altruism with negligible assortment of interactions. Sci Rep 2013; 3:2836. [PMID: 24089101 PMCID: PMC3789156 DOI: 10.1038/srep02836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022] Open
Abstract
Competition hinders the evolution of altruism amongst kin when beneficiaries gain at the expense of competing relatives. Altruism is consequently deemed to require stronger kin selection, or trait-selected synergies, or elastic population regulation, to counter this effect. Here we contest the view that competition puts any such demands on altruism. In ecologically realistic scenarios, competition influences both altruism and defection. We show how environments that pit defectors against each other allow strong altruism to evolve even in populations with negligible kin structure and no synergies. Competition amongst defectors presents relative advantages to altruism in the simplest games between altruists and defectors, and the most generic models of altruistic phenotypes or genotypes invading non-altruistic populations under inelastic density regulation. Given the widespread inevitability of competition, selection will often favour altruism because its alternatives provide lower fitness. Strong competition amongst defectors nevertheless undermines altruism, by facilitating invasion of unrelated beneficiaries as parasites.
Collapse
|
19
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2013. [PMID: 22726216 DOI: 10.1146/annurev-micro-092611-150107.microbial] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D Bever
- Department of Biology, Indiana University, Bloomington, 47405, USA.
| | | | | |
Collapse
|
20
|
Venturi V, Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:17-37. [PMID: 23915131 DOI: 10.1146/annurev-phyto-082712-102239] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | |
Collapse
|
21
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2012; 66:265-83. [PMID: 22726216 PMCID: PMC3525954 DOI: 10.1146/annurev-micro-092611-150107] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D. Bever
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Thomas G. Platt
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Elise R. Morton
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
22
|
Platt TG, Bever JD, Fuqua C. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc Biol Sci 2012; 279:1691-9. [PMID: 22113028 PMCID: PMC3297450 DOI: 10.1098/rspb.2011.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022] Open
Abstract
Harbouring a plasmid often imposes a fitness cost on the bacterial host. Motivated by implications for public health, the majority of studies on plasmid cost are focused on elements that impart antibiotic resistance. Plasmids, however, can provide a wide range of ecologically important phenotypes to their bacterial hosts-such as virulence, specialized catabolism and metal resistance. The Agrobacterium tumefaciens tumour-inducing (Ti) plasmid confers both the ability to infect dicotyledonous plants and to catabolize the metabolites that plants produce as a result of being infected. We demonstrate that this virulence and catabolic plasmid imposes a measurable fitness cost on host cells under resource-limiting, but not resource replete, environmental conditions. Additionally, we show that the expression of Ti-plasmid-borne pathogenesis genes necessary to initiate cooperative pathogenesis is extremely costly to the host cell. The benefits of agrobacterial pathogenesis stem from the catabolism of public goods produced by infected host plants. Thus, the virulence-plasmid-dependent costs we demonstrate constitute costs of cooperation typically associated with the ability to garner the benefits of cooperation. Interestingly, genotypes that harbour derived opine catabolic plasmids minimize this trade-off, and are thus able to freeload upon the pathogenesis initiated by other individuals.
Collapse
Affiliation(s)
- Thomas G Platt
- Department of Biology, Indiana University, 1001 East Third Street, Jordan Hall 142, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|