1
|
Plaistow SJ, Brunner FS, O’Connor M. Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity is normally quantified as a reaction norm which details how trait expression changes across an environmental gradient. Sometime reaction norms are linear, but often reaction norms are assumed to be linear because plasticity is typically quantified as the difference in trait expression measured in two environments. This simplification limits how plastic responses vary between genotypes and may also bias the predictions of models investigating how plasticity influences a population’s ability to adapt to a changing environment. Consequently, there is a pressing need to characterize the real shape of reaction norms and their genetic variability across ecologically relevant environmental gradients. To address this knowledge gap we measured the multi-trait plastic response of 7 Daphnia magna clones from the same population across a broad resource gradient. We used a Random Regression Mixed Model approach to characterize and quantify average and clone-specific responses to resource variation. Our results demonstrate that non-linear models outperformed a linear model for all 4 of the life-history traits we measured. The plastic reaction norms of all 4 traits were similar in shape and were often best described by a non-linear asymptotic model. Clonal variation in non-linear plastic responses was detectable for 3 out of the 4 traits that we measured although the nature and magnitude of variation across the resource gradient was trait-specific. We interpret our findings with respect to the impact that plasticity has on the evolutionary potential of a population in different resource environments.
Collapse
|
2
|
Macartney EL, Crean AJ, Bonduriansky R. Parental dietary protein effects on offspring viability in insects and other oviparous invertebrates: a meta-analysis. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100045. [PMID: 36683954 PMCID: PMC9846472 DOI: 10.1016/j.cris.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/17/2023]
Abstract
Dietary protein is a key regulator of reproductive effort in animals, but protein consumption also tends to accelerate senescence and reduce longevity. Given this protein-mediated trade-off between reproduction and survival, how does protein consumption by parents affect the viability of their offspring? In insects, protein consumption by females enhances fecundity, but trade-offs between offspring quantity and quality could result in negative effects of protein consumption on offspring viability. Likewise, protein consumption by males tends to enhance the expression of sexual traits but could have negative effects on offspring viability, mediated by epigenetic factors transmitted via the ejaculate. It remains unclear whether dietary protein has consistent effects on offspring viability across species, and whether these effects are sex-specific. To address this, we conducted a meta-analysis of experimental studies that examined the effects of protein content in the maternal and/or paternal diet in insects and other oviparous invertebrates. We did not find consistent effects of paternal or maternal protein consumption on offspring viability. Rather, effects of dietary protein on offspring vary in both magnitude and sign across taxonomic groups. Further studies are needed to determine how the effects of dietary protein on offspring relate to variation in reproductive biology across species. Our findings also highlight important gaps in the literature and limitations in experiment design.
Collapse
Affiliation(s)
- Erin L. Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Machida WS, Tidon R, Klaczko J. Wing plastic response to temperature variation in two distantly related Neotropical Drosophila species (Diptera, Drosophilidae). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic plasticity has been described for morphological and life-history traits in many organisms. In Drosophila, temperature drives phenotypic change in several traits, but few Neotropical species have been studied and whether the phenotypic variation associated with plasticity is adaptive remains unclear. Here, we studied the phenotypic response to temperature variation in the distantly related Neotropical species Drosophila mercatorum Patterson and Wheeler, 1942 and Drosophila willistoni Sturtevant, 1916. We evaluate if wing shape variation follows that observed in the Neotropical species Drosophila cardini Sturtevant, 1916: round wings at lower temperatures and narrower wings at higher temperatures. The variation in egg–adult development time and in wing size, shape, and allometry was described using reaction norms and geometric morphometrics. In both species, development time and wing size decreased with increasing temperature and wing allometry showed that size explained ≈10% of the shape variation. Wing shape, however, exhibited contrasting responses. At higher temperatures, D. mercatorum developed slightly slender wings, following the pattern previously found for D. cardini, whereas D. willistoni developed plumper and shorter wings, supporting previous studies on Drosophila melanogaster Meigen, 1830. We conclude that all traits studied here were influenced by temperature, and that wing shape seems also to be influenced by phylogeny.
Collapse
Affiliation(s)
- Waira S. Machida
- Graduate Program on Ecology, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| | - Rosana Tidon
- Departamento de Genética e Morfologia, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| | - Julia Klaczko
- Departamento de Ciências Fisiológicas, Universidade de Brasília, 70910-900, Brasília, Federal District, Brazil
| |
Collapse
|
4
|
Monroe JG, Cai H, Des Marais DL. Diversity in nonlinear responses to soil moisture shapes evolutionary constraints in Brachypodium. G3 (BETHESDA, MD.) 2021; 11:jkab334. [PMID: 34570202 PMCID: PMC8664479 DOI: 10.1093/g3journal/jkab334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Water availability is perhaps the greatest environmental determinant of plant yield and fitness. However, our understanding of plant-water relations is limited because-like many studies of organism-environment interaction-it is primarily informed by experiments considering performance at two discrete levels-wet and dry-rather than as a continuously varying environmental gradient. Here, we used experimental and statistical methods based on function-valued traits to explore genetic variation in responses to a continuous soil moisture gradient in physiological and morphological traits among 10 genotypes across two species of the model grass genus Brachypodium. We find that most traits exhibit significant genetic variation and nonlinear responses to soil moisture variability. We also observe differences in the shape of these nonlinear responses between traits and genotypes. Emergent phenomena arise from this variation including changes in trait correlations and evolutionary constraints as a function of soil moisture. Our results point to the importance of considering diversity in nonlinear organism-environment relationships to understand plastic and evolutionary responses to changing climates.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Haoran Cai
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Arnold Arboretum of Harvard University, Boston, MA 02130, USA
| |
Collapse
|
5
|
Hoffman AM, Smith MD. Nonlinear drought plasticity reveals intraspecific diversity in a dominant grass species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ava M. Hoffman
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD USA
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
6
|
Shipley AA, Cruz J, Zuckerberg B. Personality differences in the selection of dynamic refugia have demographic consequences for a winter-adapted bird. Proc Biol Sci 2020; 287:20200609. [PMID: 32900309 PMCID: PMC7542783 DOI: 10.1098/rspb.2020.0609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023] Open
Abstract
For overwintering species, individuals' ability to find refugia from inclement weather and predators probably confers strong fitness benefits. How animals use their environment can be mediated by their personality (e.g. risk-taking), but does personality mediate how overwintering species select refugia? Snow cover is a dynamic winter characteristic that can influence crypsis or provide below-the-snow refugia. We explored how wintering ruffed grouse (Bonasa umbellus) selected snow roosting sites, a behaviour that reduces stress and cold exposure. We linked selection for approximately 700 roosts with survival of 42 grouse, and showed that grouse generally selected deeper snow and warmer areas. Grouse found in shallow snow were less likely to survive winter. However, individuals that selected deep snow improved their survival, suggesting that demographic consequences of selecting winter refugia are mediated by differences in personality. Our study provides a crucial, and seldom addressed, link between personality in resource selection and resulting demographic consequences.
Collapse
Affiliation(s)
- Amy A. Shipley
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
7
|
Gomulkiewicz R, Kingsolver JG, Carter PA, Heckman N. Variation and Evolution of Function-Valued Traits. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110316-022830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Function-valued traits—phenotypes whose expression depends on a continuous index (such as age, temperature, or space)—occur throughout biology and, like any trait, it is important to understand how they vary and evolve. Although methods for analyzing variation and evolution of function-valued traits are well developed, they have been underutilized by evolutionists, especially those who study natural populations. We seek to summarize advances in the study of function-valued traits and to make their analyses more approachable and accessible to biologists who could benefit greatly from their use. To that end, we explain how curve thinking benefits conceptual understanding and statistical analysis of functional data. We provide a detailed guide to the most flexible and statistically powerful methods and include worked examples (with R code) as supplemental material. We review ways to characterize variation in function-valued traits and analyze consequences for evolution, including constraint. We also discuss how selection on function-valued traits can be estimated and combined with estimates of heritable variation to project evolutionary dynamics.
Collapse
Affiliation(s)
- Richard Gomulkiewicz
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Patrick A. Carter
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Nancy Heckman
- Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
Thor P, Bailey A, Dupont S, Calosi P, Søreide JE, De Wit P, Guscelli E, Loubet-Sartrou L, Deichmann IM, Candee MM, Svensen C, King AL, Bellerby RGJ. Contrasting physiological responses to future ocean acidification among Arctic copepod populations. GLOBAL CHANGE BIOLOGY 2018; 24:e365-e377. [PMID: 28816385 DOI: 10.1111/gcb.13870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/31/2017] [Indexed: 05/06/2023]
Abstract
Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognized as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid-base regulation rendering them particularly vulnerable to OA. In the present study, we found physiological differences in OA response across geographically separated populations of the keystone Arctic copepod Calanus glacialis. In copepodites stage CIV, measured reaction norms of ingestion rate and metabolic rate showed severe reductions in ingestion and increased metabolic expenses in two populations from Svalbard (Kongsfjord and Billefjord) whereas no effects were observed in a population from the Disko Bay, West Greenland. At pHT 7.87, which has been predicted for the Svalbard west coast by year 2100, these changes resulted in reductions in scope for growth of 19% in the Kongsfjord and a staggering 50% in the Billefjord. Interestingly, these effects were not observed in stage CV copepodites from any of the three locations. It seems that CVs may be more tolerant to OA perhaps due to a general physiological reorganization to meet low intracellular pH during hibernation. Needless to say, the observed changes in the CIV stage will have serious implications for the C. glacialis population health status and growth around Svalbard. However, OA tolerant populations such as the one in the Disko Bay could help to alleviate severe effects in C. glacialis as a species.
Collapse
Affiliation(s)
- Peter Thor
- Norwegian Polar Institute, Tromsø, Norway
| | | | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | | | - Pierre De Wit
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | | | - Lea Loubet-Sartrou
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Ida M Deichmann
- Department of Bioscience, University of Aarhus, Aarhus, Denmark
| | - Martin M Candee
- Danish Technical University, DTU-AQUA, Charlottenlund, Denmark
| | - Camilla Svensen
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew L King
- Norwegian Institute for Water Research, Bergen, Norway
| | - Richard G J Bellerby
- Norwegian Institute for Water Research, Bergen, Norway
- State Key Laboratory for Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Bonduriansky R, Crean AJ. What are parental condition‐transfer effects and how can they be detected? Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences University of New South Wales Australia Sydney NSW Australia
| | - Angela J. Crean
- Animal Reproduction Group School of Life and Environmental Sciences Faculty of Veterinary Science University of Sydney Sydney NSW Australia
| |
Collapse
|
10
|
Ecological insights from assessments of phenotypic plasticity in a Neotropical species of Drosophila. J Therm Biol 2016; 62:7-14. [DOI: 10.1016/j.jtherbio.2016.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
|
11
|
Morrissey MB, Liefting M. Variation in reaction norms: Statistical considerations and biological interpretation. Evolution 2016; 70:1944-59. [DOI: 10.1111/evo.13003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Maartje Liefting
- Department of Animal Ecology; VU University Amsterdam; Amsterdam Netherlands
| |
Collapse
|
12
|
Bonduriansky R, Runagall‐McNaull A, Crean AJ. The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| | - Aidan Runagall‐McNaull
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| | - Angela J. Crean
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Goolsby EW. Phylogenetic Comparative Methods for Evaluating the Evolutionary History of Function-Valued Traits. Syst Biol 2015; 64:568-78. [DOI: 10.1093/sysbio/syv012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/02/2015] [Indexed: 01/03/2023] Open
Affiliation(s)
- Eric W. Goolsby
- Interdisciplinary Toxicology Program, Department of Plant Biology, University of Georgia, Athens GA, 30602, USA
| |
Collapse
|
14
|
Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes. Genetica 2014; 142:495-505. [DOI: 10.1007/s10709-014-9795-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022]
|
15
|
Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N. Dispersal propensity in Tetrahymena thermophila ciliates - a reaction norm perspective. Evolution 2014; 68:2319-30. [PMID: 24749831 DOI: 10.1111/evo.12428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
Dispersal and phenotypic plasticity are two main ways for species to deal with rapid changes of their environments. Understanding how genotypes (G), environments (E), and their interaction (genotype and environment; G × E) each affects dispersal propensity is therefore instrumental for predicting the ecological and evolutionary responses of species under global change. Here we used an actively dispersing ciliate to quantify the contributions of G, E, and G × E on dispersal propensity, exposing 44 different genotypes to three different environmental contexts (densities in isogenotype populations). Moreover, we assessed the condition dependence of dispersal, that is, whether dispersal is related to morphological, physiological, or behavioral traits. We found that genotypes showed marked differences in dispersal propensity and that dispersal is plastically adjusted to density, with the overall trend for genotypes to exhibit negative density-dependent dispersal. A small, but significant G × E interaction indicates genetic variability in plasticity and therefore some potential for dispersal plasticity to evolve. We also show evidence consistent with condition-dependent dispersal suggesting that genotypes also vary in how individual condition is linked to dispersal under different environmental contexts thereby generating complex dispersal behavior due to only three variables (genes, environment, and individual condition).
Collapse
Affiliation(s)
- Frank Pennekamp
- Earth and Life Institute & Biodiversity Research Centre, Université Catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
16
|
Rocha FB, Klaczko LB. UNDESIRABLE CONSEQUENCES OF NEGLECTING NONLINEARITY: RESPONSE TO COMMENTS BY LIEFTING ET AL. (2013) ON ROCHA & KLACZKO (2012). Evolution 2014; 68:1548-51. [DOI: 10.1111/evo.12386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/12/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Felipe Bastos Rocha
- Departamento de Genética; Evolução e Bioagentes; Instituto de Biologia; Universidade Estadual de Campinas, Unicamp; Cx. Postal 6109 Campinas 13083-970 SP Brasil
| | - Louis Bernard Klaczko
- Departamento de Genética; Evolução e Bioagentes; Instituto de Biologia; Universidade Estadual de Campinas, Unicamp; Cx. Postal 6109 Campinas 13083-970 SP Brasil
| |
Collapse
|
17
|
Liefting M, Hoffmann AA, Ellers J. Measuring the plasticity of developmental rate across insect populations: comment on Rocha and Klaczko (2012). Evolution 2013; 68:1544-7. [PMID: 24099170 DOI: 10.1111/evo.12267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Abstract
Rocha and Klaczko emphasize the general complexity of reaction norm shape and caution that ignoring such complexity can be misleading when forcing nonlinear reaction norms into linear shapes. They refer to our article on differences in plasticity of Drosophila serrata populations along a latitudinal gradient as an example of a misleading simplifying approach. However, their claim that an artifact is introduced into our analyses by calculating developmental rate as the reciprocal of development time (rate = time(-1)) is based on a misunderstanding of the mathematical properties of the thermal developmental rate reaction norm. Here we discuss why developmental rate is a suitable measure for our study and under which circumstances it is appropriate to describe developmental rate by a linear model.
Collapse
Affiliation(s)
- Maartje Liefting
- Department of Ecological Sciences, Section of Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
|