1
|
Constitutive High Expression Level of a Synthetic Deleted Encoding Gene of Talaromyces minioluteus Endodextranase Variant (r–TmDEX49A–ΔSP–ΔN30) in Komagataella phaffii (Pichia pastoris). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the sugar industry, dextran generates difficulties in the manufacturing process. Using crude dextranase (EC 3.2.1.11) to eliminate dextran in sugar is an effective practice. In this study, a synthetic dextranase-encoding gene of the filamentous fungus Talaromyces minioluteus, lacking its putative native signal peptide (1–20 amino acids) and the next 30 amino acids (r–TmDEX49A–ΔSP–ΔN30), was fused to the Saccharomyces cerevisiae prepro α–factor (MFα–2) signal sequence and expressed in Komagataella phaffii under the constitutive GAP promoter. K. phaffii DEX49A–ΔSP–ΔN30, constitutively producing and secreting the truncated dextranase, was obtained. The specific activity of the truncated variant resulted in being nearly the same in relation to the full-length mature enzyme (900–1000 U·mg−1 of protein). At shaker scale (100 mL) in a YPG medium, the enzymatic activity was 273 U·mL−1. The highest production level was achieved in a fed-batch culture (30 h) at 5 L fermenter scale using the FM21–PTM1 culture medium. The enzymatic activity in the culture supernatant reached 1614 U·mL−1, and the productivity was 53,800 U·L−1·h−1 (53.8 mg·L−1·h−1), the highest reported thus far for a DEX49A variant. Dextran decreased r–TmDEX49A–ΔSP–ΔN30 mobility in affinity gel electrophoresis, providing evidence of carbohydrate–protein interactions. K. phaffii DEX49A–ΔSP–ΔN30 shows great potential as a methanol-free, commercial dextranase production system.
Collapse
|
2
|
Martínez D, Menéndez C, Chacón O, Fuentes AD, Borges D, Sobrino A, Ramírez R, Pérez ER, Hernández L. Removal of bacterial dextran in sugarcane juice by Talaromyces minioluteus dextranase expressed constitutively in Pichia pastoris. J Biotechnol 2021; 333:10-20. [PMID: 33901619 DOI: 10.1016/j.jbiotec.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
A gene construct encoding the mature region of Talaromyces minioluteus dextranase (EC 3.2.1.11) fused to the Saccharomyces cerevisiae SUC2 signal sequence was expressed in Pichia pastoris under the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter (pGAP). The increase of the transgene dosage from one to two and four copies enhanced proportionally the extracellular yield of the recombinant enzyme (r-TmDEX) without inhibiting cell growth. The volumetric productivity of the four-copy clone in fed batch fermentation (51 h) using molasses as carbon source was 1706 U/L/h. The secreted N-glycosylated r-TmDEX was optimally active at pH 4.5-5.5 and temperature 50-60 °C. The addition of sucrose (600 g/L) as a stabilizer retained intact the r-TmDEX activity after 1-h incubation at 50-60 °C and pH 5.5. Bacterial dextran in deteriorated sugarcane juice was completely removed by applying a crude preparation of secreted r-TmDEX. The high yield of r-TmDEX in methanol-free cultures and the low cost of the fed batch fermentation make the P. pastoris pGAP-based expression system appropriate for the large scale production of dextranase and its use for dextran removal at sugar mills.
Collapse
Affiliation(s)
- Duniesky Martínez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Carmen Menéndez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Osmani Chacón
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Alejandro D Fuentes
- Grupo Virología de Plantas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Dalia Borges
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Alina Sobrino
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Ricardo Ramírez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Enrique R Pérez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Lázaro Hernández
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba.
| |
Collapse
|
3
|
Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide. Mar Drugs 2019; 17:md17080479. [PMID: 31430863 PMCID: PMC6723167 DOI: 10.3390/md17080479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
A GH49 dextranase gene DexKQ was cloned from marine bacteria Arthrobacter oxydans KQ11. It was recombinantly expressed using an Escherichia coli system. Recombinant DexKQ dextranase of 66 kDa exhibited the highest catalytic activity at pH 9.0 and 55 °C. kcat/Km of recombinant DexKQ at the optimum condition reached 3.03 s−1 μM−1, which was six times that of commercial dextranase (0.5 s−1 μM−1). DexKQ possessed a Km value of 67.99 µM against dextran T70 substrate with 70 kDa molecular weight. Thin-layer chromatography (TLC) analysis showed that main hydrolysis end products were isomalto-oligosaccharide (IMO) including isomaltotetraose, isomaltopantose, and isomaltohexaose. When compared with glucose, IMO could significantly improve growth of Bifidobacterium longum and Lactobacillus rhamnosus and inhibit growth of Escherichia coli and Staphylococcus aureus. This is the first report of dextranase from marine bacteria concerning recombinant expression and application in isomalto-oligosaccharide preparation.
Collapse
Affiliation(s)
- Hongfei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Modern Bio-Manufacture, Anhui University, Hefei 230039, China
| | - Mingsheng Ly
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haifeng Li
- Medical College, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Hykollari A, Eckmair B, Voglmeir J, Jin C, Yan S, Vanbeselaere J, Razzazi-Fazeli E, Wilson IBH, Paschinger K. More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species. Mol Cell Proteomics 2015; 15:73-92. [PMID: 26515459 DOI: 10.1074/mcp.m115.055061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex(5-11)HexNAc(2) as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus.
Collapse
Affiliation(s)
- Alba Hykollari
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Josef Voglmeir
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Shi Yan
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Jorick Vanbeselaere
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | | | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria;
| |
Collapse
|
5
|
Zohra RR, Aman A, Ansari A, Haider MS, Qader SAU. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25. Int J Biol Macromol 2015; 78:243-8. [PMID: 25881960 DOI: 10.1016/j.ijbiomac.2015.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022]
Abstract
Degradation of high molecular weight dextran for obtaining low molecular weight dextran is based on the hydrolysis using chemical and enzymatic methods. Current research study focused on production, purification and characterization of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 36 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. It was found that enzyme performs optimum cleavage of dextran (5000 Da, 0.5%) at 35 °C in 15 min at pH 4.5 with a Km and Vmax of 0.374 mg/ml and 182 μmol/min, respectively. Relative amino acid composition analysis of purified enzyme suggested the presence of higher number of hydrophobic, acidic and glycosylation promoting amino acids. The N-terminal sequence of dextranase KIBGE-IB25 was AYTVTLYLQG. It exhibited distinct amino acid sequence yet shared some inherent characteristics with glycosyl hydrolases (GH) family 49 and also testified the presence of O-glycosylation at N-terminal end.
Collapse
Affiliation(s)
- Rashida Rahmat Zohra
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Samee Haider
- Food & Marine Resource Research Centre, Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Karachi 75280, Pakistan
| | - Shah Ali Ul Qader
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
6
|
Gusakov AV, Sinitsyna OA, Rozhkova AM, Sinitsyn AP. N-Glycosylation patterns in two α-l-arabinofuranosidases from Penicillium canescens belonging to the glycoside hydrolase families 51 and 54. Carbohydr Res 2013; 382:71-6. [DOI: 10.1016/j.carres.2013.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001-2002. MASS SPECTROMETRY REVIEWS 2008; 27:125-201. [PMID: 18247413 DOI: 10.1002/mas.20157] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Expression of Recombinant Proteins in Pichia Pastoris. Appl Biochem Biotechnol 2007; 142:105-24. [PMID: 18025573 DOI: 10.1007/s12010-007-0003-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 10/23/2022]
|
9
|
González LJ, Cremata JA, Guanche Y, Ramos Y, Triguero A, Cabrera G, Montesino R, Huerta V, Pons T, Boué O, Farnós O, Rodríguez M. The cattle tick antigen, Bm95, expressed in Pichia pastoris contains short chains of N- and O-glycans. Arch Biochem Biophys 2005; 432:205-11. [PMID: 15542059 DOI: 10.1016/j.abb.2004.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein, which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95) protein expressed in Pichia pastoris was completely verified by LC/MS. The four potential glycosylation sites (Asn 122, 163, 329, and 363) are glycosylated partially with short N-glycans, from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) of which, Man(8-9)GlcNAc(2) were the most abundant. O-Glycopeptides are distributed mostly towards the protein N-terminus. While the first N-glycosylated site (Asn(122)) is located between EGF-like domains 2 and 3, where the O-glycopeptides were found, two other N-glycosylated sites (Asn(329) and Asn(363)) are located between EGF-like domains 5 and 6, a region devoid of O-glycosylated Ser or Thr.
Collapse
Affiliation(s)
- Luis J González
- Division of Physical-Chemistry, Department of Proteomics, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bibliography. Yeast 2003; 20:185-92. [PMID: 12568102 DOI: 10.1002/yea.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|