1
|
Lyu XH, Yang YS, Pan ZQ, Ning SK, Suo F, Du LL. An improved tetracycline-inducible expression system for fission yeast. J Cell Sci 2024; 137:jcs263404. [PMID: 39318285 DOI: 10.1242/jcs.263404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to that of the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shao-Kai Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Srivastava S, Kaur S, Verma HK, Rani S, Thakur M, Haldar S, Singh J. Reciprocal relation between reporter gene transcription and translation efficiency in fission yeast. Plasmid 2021; 115:102557. [PMID: 33539828 DOI: 10.1016/j.plasmid.2021.102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The fission yeast, Schizosaccharomyces pombe, is an excellent model for basic research but is not useful for commercial scale protein expression due to lack of strong expression vectors. Earlier, we showed that the lsd90 promoter elicited significantly greater GFP expression level than the adh1 and nmt1 promoters, albeit in different vector backbones. Here, we have systematically investigated the contribution of selectable markers, LEU2 and URA3m to GFP expression: while LEU2 elicited very low expression, the URA3m gene, with truncated promoter, elicited much greater GFP expression level with all promoters. Paradoxically, an inverse correlation was observed between the GFP transcription and translation efficiency. This system can be useful for understanding the factors governing recombinant gene expression and optimization of protein production.
Collapse
Affiliation(s)
- Suchita Srivastava
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Satinderdeep Kaur
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingha, NG11 8NS, UK
| | - Hemant K Verma
- Biotech Department, Mankind Research Center, 191-E, Sector 4-11, IMT, Manesar, Haryana 122050, India
| | - Suman Rani
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Manisha Thakur
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Swati Haldar
- Microbiology Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector- 39 A, Chandigarh 160036, India.
| |
Collapse
|
3
|
Garg A. A lncRNA-regulated gene expression system with rapid induction kinetics in the fission yeast Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2020; 26:1743-1752. [PMID: 32788323 PMCID: PMC7566572 DOI: 10.1261/rna.076000.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism for the study of eukaryotic cellular physiology. The organism is genetically tractable and several tools to study the functions of individual genes are available. One such tool is regulatable gene expression and overproduction of proteins. Limitations of currently available overexpression systems include delay in expression after induction, narrow dynamic range, and system-wide changes due to induction conditions. Here I describe a new long noncoding RNA (lncRNA)-regulated, thiamine-inducible expression system that integrates lncRNA-based transcriptional interference at the fission yeast tgp1 promoter with the fast repression kinetics of the thiamine-repressible nmt1 promoter. This hybrid system has rapid induction kinetics, broad dynamic range, and tunable expression via thiamine concentration. The lncRNA-regulated thiamine-inducible system will be advantageous for the study of individual genes and for potential applications in the production of heterologous proteins in fission yeast.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
4
|
Pheromone-inducible expression vectors for fission yeast Schizosaccharomyces pombe. Plasmid 2017; 95:1-6. [PMID: 29183750 DOI: 10.1016/j.plasmid.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is an attractive host for heterologous gene expression. However, expression systems for industrially viable large-scale fermentations are scarce. Several inducible expression vectors for S. pombe have been reported, with the strong thiamine-repressible nmt1+ promoter or derivatives thereof most commonly employed. Previously, the promoter regions of the genes sxa2+ and rep1+ were utilized to couple pheromone signaling to the expression of reporter genes for quantitative assessment of the cellular response to mating pheromones. Here, we exploit these promoters to serve as highly effective, plasmid-based inducible expression systems for S. pombe. Simply by adding synthetic P-factor pheromone, both promoters conferred 50-60% higher peak expression levels than the nmt1+ promoter. Full induction was significantly faster than observed for nmt1+-based expression platforms. Furthermore, the sxa2+ promoter showed very low basal activity and an overall 584-fold induction by synthetic P-factor pheromone. The dose-response curves of both promoters were assessed, providing the opportunity for facile tuning of the expression level by modulating P-factor concentration. Since the expression plasmids relying on the sxa2+ and rep1+ promoters require neither medium exchange nor glucose/thiamine starvation, they proved to be very convenient in handling. Hence, these expression vectors will improve the palette of valuable genetic tools for S. pombe, applicable to both basic research and biotechnology.
Collapse
|
5
|
Ohira MJ, Hendrickson DG, Scott McIsaac R, Rhind N. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast. Yeast 2017; 34:323-334. [PMID: 28423198 DOI: 10.1002/yea.3235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose-response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β-estradiol-regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3 EV, turns on quickly, can reach a maximal induction of 20-fold, and exhibits a linear dose response over its entire induction range, with few off-target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β-estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Makoto J Ohira
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - David G Hendrickson
- Calico Life Sciences, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - R Scott McIsaac
- Calico Life Sciences, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Nicholas Rhind
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| |
Collapse
|
6
|
Verma HK, Shukla P, Alfatah M, Khare AK, Upadhyay U, Ganesan K, Singh J. High level constitutive expression of luciferase reporter by lsd90 promoter in fission yeast. PLoS One 2014; 9:e101201. [PMID: 24999979 PMCID: PMC4085059 DOI: 10.1371/journal.pone.0101201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Because of a large number of molecular similarities with higher eukaryotes, the fission yeast Schizosaccharomyces pombe has been considered a potentially ideal host for expressing human proteins having therapeutic and pharmaceutical applications. However, efforts in this direction are hampered by lack of a strong promoter. Here, we report the isolation and characterization of a strong, constitutive promoter from S. pombe. A new expression vector was constructed by cloning the putative promoter region of the lsd90 gene (earlier reported to be strongly induced by heat stress) into a previously reported high copy number vector pJH5, which contained an ARS element corresponding to the mat2P flanking region and a truncated URA3m selectable marker. The resulting vector was used to study and compare the level of expression of the luciferase reporter with that achieved with the known vectors containing regulatable promoter nmt1 and the strong constitutive promoter adh1 in S. pombe and the methanol-inducible AOX1 promoter in Pichia pastoris. Following growth in standard media the new vector containing the putative lsd90 promoter provided constitutive expression of luciferase, at a level, which was 19-, 39- and 10-fold higher than that achieved with nmt1, adh1 and AOX1 promoters, respectively. These results indicate a great potential of the new lsd90 promoter-based vector for commercial scale expression of therapeutic proteins in S. pombe.
Collapse
Affiliation(s)
| | - Poonam Shukla
- Institute of Microbial Technology, Chandigarh, India
| | - Md. Alfatah
- Institute of Microbial Technology, Chandigarh, India
| | | | | | | | - Jagmohan Singh
- Institute of Microbial Technology, Chandigarh, India
- * E-mail:
| |
Collapse
|
7
|
Yu T, Barchetta S, Pucciarelli S, La Terza A, Miceli C. A Novel Robust Heat-inducible Promoter for Heterologous Gene Expression in Tetrahymena thermophila. Protist 2012; 163:284-95. [DOI: 10.1016/j.protis.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
|
8
|
Abstract
Schizosaccharomyces pombe, the fission yeast, has been a popular and useful model system for investigating the mechanisms of biological processes for a long time. To facilitate purification, localization, and functional analysis of gene products, a wide range of expression vectors have been developed. Several of these vectors utilize the inducible/repressible promoter systems and enable the episomal expression of proteins as fusion proteins with epitope tags attached to their N terminus or C terminus.This chapter provides a detailed protocol for expression of the epitope-tagged proteins from thiamine-regulatable nmt promoter in fission yeast. The yeast culture conditions and procedures for yeast transformation, expression induction, preparation of whole-cell extracts, and analysis of epitope-tagged protein expression by Western blotting are described.
Collapse
Affiliation(s)
- Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
9
|
A chemical compound for controlled expression of nmt1-driven gene in the fission yeast Schizosaccharomyces pombe. Anal Biochem 2011; 412:159-64. [PMID: 21295003 DOI: 10.1016/j.ab.2011.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/22/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a useful model organism for studying a variety of eukaryotic cellular events such as the cell cycle control mechanisms. For inducible expression of exogenous genes in S. pombe, vectors carrying the nmt1 (no message in thiamine 1) promoter are most commonly used. Although nmt1 is a potent promoter, its transcription activity is drastically repressed in the presence of a low concentration of thiamine. Therefore, a combination of thiamine and nmt1 promoter is convenient for regulating gene expression in an all-or-none fashion. However, it has been difficult to adjust the nmt1 promoter activity in a controlled manner. Here we describe a chemical compound, designated as YAM2, whose repressive activity on the nmt1 promoter has a wider linear range than thiamine. Expression of exogenous proteins, such as human immunodeficiency virus type 1 Vpr and jellyfish green fluorescent protein, driven by the nmt1 promoter is gradually repressed by YAM2 in a dose-dependent manner. YAM2 does not exhibit a detectable level of cytotoxicity at a concentration required to fully repress the nmt1 promoter. The compound may serve as a useful tool for controlled expression of the nmt1-driven gene in S. pombe.
Collapse
|
10
|
Watt S, Mata J, López-Maury L, Marguerat S, Burns G, Bähler J. urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 2008; 3:e1428. [PMID: 18197241 PMCID: PMC2174524 DOI: 10.1371/journal.pone.0001428] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 12/17/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The fission yeast Schizosaccharomyces pombe is a popular genetic model organism with powerful experimental tools. The thiamine-regulatable nmt1 promoter and derivatives, which take >15 hours for full induction, are most commonly used for controlled expression of ectopic genes. Given the short cell cycle of fission yeast, however, a promoter system that can be rapidly regulated, similar to the GAL system for budding yeast, would provide a key advantage for many experiments. METHODOLOGY/PRINCIPAL FINDINGS We used S. pombe microarrays to identify three neighbouring genes (urg1, urg2, and urg3) whose transcript levels rapidly and strongly increased in response to uracil, a condition which otherwise had little effect on global gene expression. We cloned the promoter of urg1 (uracil-regulatable gene) to create several PCR-based gene targeting modules for replacing native promoters with the urg1 promoter (Purg1) in the normal chromosomal locations of genes of interest. The kanMX6 and natMX6 markers allow selection under urg1 induced and repressed conditions, respectively. Some modules also allow N-terminal tagging of gene products placed under urg1 control. Using pom1 as a proof-of-principle, we observed a maximal increase of Purg1-pom1 transcripts after uracil addition within less than 30 minutes, and a similarly rapid decrease after uracil removal. The induced and repressed transcriptional states remained stable over 24-hour periods. RT-PCR comparisons showed that both induced and repressed Purg1-pom1 transcript levels were lower than corresponding P3nmt1-pom1 levels (wild-type nmt1 promoter) but higher than P81nmt1-pom1 levels (weak nmt1 derivative). CONCLUSIONS/SIGNIFICANCE We exploited the urg1 promoter system to rapidly induce pom1 expression at defined cell-cycle stages, showing that ectopic pom1 expression leads to cell branching in G2-phase but much less so in G1-phase. The high temporal resolution provided by the urg1 promoter should facilitate experimental design and improve the genetic toolbox for the fission yeast community.
Collapse
Affiliation(s)
- Stephen Watt
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Juan Mata
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Luis López-Maury
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Samuel Marguerat
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin Burns
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jürg Bähler
- Cancer Research United Kingdom Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
11
|
Matsuyama A, Shirai A, Yoshida M. A series of promoters for constitutive expression of heterologous genes in fission yeast. Yeast 2008; 25:371-6. [DOI: 10.1002/yea.1593] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|