1
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
2
|
Cardarelli S, Giorgi M, Naro F, Malatesta F, Biagioni S, Saliola M. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis. Microb Cell Fact 2017; 16:159. [PMID: 28938916 PMCID: PMC5610471 DOI: 10.1186/s12934-017-0779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. RESULTS Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying Km, Vmax and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. CONCLUSIONS To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Cardarelli S, D'Amici S, Tassone P, Tramonti A, Uccelletti D, Mancini P, Saliola M. Characterization of the transcription factor encoding gene, KlADR1: metabolic role in Kluyveromyces lactis and expression in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2016; 162:1933-1944. [PMID: 27655407 DOI: 10.1099/mic.0.000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Saccharomyces cerevisiae, Adr1 is a zinc-finger transcription factor involved in the transcriptional activation of ADH2. Deletion of KlADR1, its putative ortholog in Kluyveromyces lactis, led to reduced growth in glycerol, oleate and yeast extract-peptone medium suggesting, as in S. cerevisiae, its requirement for glycerol, fatty acid and nitrogen utilization. Moreover, growth comparison on yeast extract and peptone plates showed in K. lactis a KlAdr1-dependent growth trait not present in S. cerevisiae, indicating different metabolic roles of the two factors in their environmental niches. KlADR1 is required for growth under respiratory and fermentative conditions like KlADH, alcohol dehydrogenase genes necessary for metabolic adaptation during the growth transition. Using in-gel native alcohol dehydrogenase assay, we showed that this factor affected the Adh pattern by altering the balance between these activities. Since the activity most affected by KlAdr1 is KlAdh3, a deletion analysis of the KlADH3 promoter allowed the isolation of a DNA fragment through which KlAdr1 modulated its expression. The expression of the KlADR1-GFP gene allowed the intracellular localization of the factor in K. lactis and S. cerevisiae, suggesting in the two yeasts a common mechanism of KlAdr1 translocation under fermentative and respiratory conditions. Finally, the chimeric Kl/ScADR1 gene encoding the zinc-finger domains of KlAdr1 fused to the transactivating domains of the S. cerevisiae factor activated in Scadr1Δ the transcription of ADH2 in a ScAdr1-dependent fashion.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sirio D'Amici
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Tassone
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- CNR Department of Biochemical Sciences 'Rossi Fanelli', Istituto di Biologia e Patologia Molecolari, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
5
|
Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 2012; 96:697-709. [DOI: 10.1007/s00253-011-3866-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
6
|
Lin Y, He P, Wang Q, Lu D, Li Z, Wu C, Jiang N. The alcohol dehydrogenase system in the xylose-fermenting yeast Candida maltosa. PLoS One 2010; 5:e11752. [PMID: 20668703 PMCID: PMC2909261 DOI: 10.1371/journal.pone.0011752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The alcohol dehydrogenase (ADH) system plays a critical role in sugar metabolism involving in not only ethanol formation and consumption but also the general "cofactor balance" mechanism. Candida maltosa is able to ferment glucose as well as xylose to produce a significant amount of ethanol. Here we report the ADH system in C. maltosa composed of three microbial group I ADH genes (CmADH1, CmADH2A and CmADH2B), mainly focusing on its metabolic regulation and physiological function. METHODOLOGY/PRINCIPAL FINDINGS Genetic analysis indicated that CmADH2A and CmADH2B tandemly located on the chromosome could be derived from tandem gene duplication. In vitro characterization of enzymatic properties revealed that all the three CmADHs had broad substrate specificities. Homo- and heterotetramers of CmADH1 and CmADH2A were demonstrated by zymogram analysis, and their expression profiles and physiological functions were different with respect to carbon sources and growth phases. Fermentation studies of ADH2A-deficient mutant showed that CmADH2A was directly related to NAD regeneration during xylose metabolism since CmADH2A deficiency resulted in a significant accumulation of glycerol. CONCLUSIONS/SIGNIFICANCE Our results revealed that CmADH1 was responsible for ethanol formation during glucose metabolism, whereas CmADH2A was glucose-repressed and functioned to convert the accumulated ethanol to acetaldehyde. To our knowledge, this is the first demonstration of function separation and glucose repression of ADH genes in xylose-fermenting yeasts. On the other hand, CmADH1 and CmADH2A were both involved in ethanol formation with NAD regeneration to maintain NADH/NAD ratio in favor of producing xylitol from xylose. In contrast, CmADH2B was expressed at a much lower level than the other two CmADH genes, and its function is to be further confirmed.
Collapse
Affiliation(s)
- Yuping Lin
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Peng He
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- * E-mail: (NJ); (QW)
| | - Dajun Lu
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Changsheng Wu
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Ning Jiang
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (NJ); (QW)
| |
Collapse
|
7
|
Bucciarelli T, Saliola M, Brisdelli F, Bozzi A, Falcone C, Di Ilio C, Martini F. Oxidation of Cys278 of ADH I isozyme from Kluyveromyces lactis by naturally occurring disulfides causes its reversible inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:563-8. [DOI: 10.1016/j.bbapap.2008.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/28/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
8
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|