1
|
Cong H, Sun Y, Li C, Zhang Y, Wang Y, Ma D, Jiang J, Li L, Li L. The APSES transcription factor CfSwi6 is required for growth, cell wall integrity, and pathogenicity of Ceratocystis fimbriata. Microbiol Res 2024; 281:127624. [PMID: 38295680 DOI: 10.1016/j.micres.2024.127624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Cell wall integrity (CWI) is crucial for the growth, development, and host invasion of pathogenic fungi. The APSES transcription factor Swi6 in fungi plays a role in mediating cell wall integrity through the mitogen-activated protein kinase (MAPK) signaling pathway. Ceratocystis fimbriata is a notorious pathogenic fungus responsible for causing black rot in sweet potatoes. In this study, an orthologous APSES transcription factor Swi6 (CfSwi6) downstream of the CWI regulatory pathway in C. fimbriata was characterized. Deletion of CfSWI6 leads to impaired hyphal development, conidiation, and compromised cell wall integrity, resulting in a significant reduction in virulence. Transcriptome analysis revealed the involvement of CfSWI6 in various pathways, including the MAPK pathway, DNA synthesis and stress response. ChIP-seq data provided predictions of potential target genes regulated by CfSwi6. Through yeast one-hybrid, we confirmed the direct binding of CfSwi6 to the promoter of the chitin synthetase gene. In summary, these findings indicated that CfSwi6 plays an important role in the growth, development, and pathogenicity of C. fimbriata. This study provides new insights into the pathogenic mechanism of C. fimbriata in sweet potato and inspires potential strategies to control sweet potato black rot.
Collapse
Affiliation(s)
- Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yong Sun
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Daifu Ma
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou, Jiangsu 221131, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
2
|
Cong H, Li C, Wang Y, Zhang Y, Ma D, Li L, Jiang J. The Mechanism of Transcription Factor Swi6 in Regulating Growth and Pathogenicity of Ceratocystis fimbriata: Insights from Non-Targeted Metabolomics. Microorganisms 2023; 11:2666. [PMID: 38004677 PMCID: PMC10673406 DOI: 10.3390/microorganisms11112666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.
Collapse
Affiliation(s)
- Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Daifu Ma
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou 221131, China;
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| |
Collapse
|
3
|
Lian LD, Shi LY, Zhu J, Liu R, Shi L, Ren A, Yu HS, Zhao MW. GlSwi6 Positively Regulates Cellulase and Xylanase Activities through Intracellular Ca2+ Signaling in Ganoderma lucidum. J Fungi (Basel) 2022; 8:jof8020187. [PMID: 35205940 PMCID: PMC8877461 DOI: 10.3390/jof8020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Ganoderma lucidum is a white-rot fungus that produces a range of lignocellulolytic enzymes to decompose lignin and cellulose. The mitogen-activated protein kinase (MAPK) pathway has been implicated in xylanases and cellulases production. As the downstream transcription factor of Slt2-MAPK, the function of Swi6 in G. lucidum has not been fully studied. In this study, the transcription factor GlSwi6 in G. lucidum was characterized and shown to significantly positively regulate cellulases and xylanases production. Knockdown of the GlSwi6 gene decreased the activities of cellulases and xylanases by approximately 31%~38% and 54%~60% compared with those of the wild-type (WT) strain, respectively. Besides, GlSwi6 can be alternatively spliced into two isoforms, GlSwi6A and GlSwi6B, and overexpression of GlSwi6B increased the activities of cellulase and xylanase by approximately 50% and 60%, respectively. Further study indicates that the existence of GlSwi6B significantly increased the concentration of cytosolic Ca2+. Our study indicated that GlSwi6 promotes the activities of cellulase and xylanase by regulating the Ca2+ signaling. These results connected the GlSwi6 and Ca2+ signaling in the regulation of cellulose degradation, and provide an insight for further improvement of cellulase or xylanase activities in G. lucidum as well as other fungi.
Collapse
|
4
|
Lian L, Zhang G, Zhu J, Wang Y, Wang L, Liu R, Shi L, Ren A, Zhao M. Swi6B, an alternative splicing isoform of Swi6, mediates the cell wall integrity of Ganoderma lucidum. Environ Microbiol 2021; 23:4405-4417. [PMID: 34097348 DOI: 10.1111/1462-2920.15627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022]
Abstract
The cell wall integrity (CWI) signaling activates the transcription factor Swi6 through a MAPK signaling cascade in response to cell wall stresses. In this study, we observed two different mRNA variants of swi6 (GlSwi6A and GlSwi6B) existed, due to alternative splicing. Besides, the expression level of GlSwi6B was higher than that of the GlSwi6A mRNA variant. The co-silencing of GlSwi6A and GlSwi6B was more sensitive to cell wall stress compared with WT, resulting in a decrease of 78% and 76% in chitin and β-1,3-d-glucan content respectively. However, only the overexpression of GlSwi6B decreased the sensitivity to cell wall stress and increased the content of chitin and β-1,3-d-glucan compared with the WT strain. Furthermore, Y1H, EMSA and BLI assays revealed that the GlSwi6B could bind to the promoters of chitin and glucan synthesis genes (GL24454 and GL18134). However, the binding phenome has not been observed in the isoform GlSwi6A. Taken together, our results found two different transcripts generated from Swi6, in which the alternative splice isoform of GlSwi6B participates in regulating the CWI of G. lucidum. This study provides the first insight into the alternative splicing isoform of GlSwi6B in the regulation of CWI signaling in fungi.
Collapse
Affiliation(s)
- Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yunxiao Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingshuai Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
5
|
Rath M, Crenshaw NJ, Lofton LW, Glenn AE, Gold SE. FvSTUA is a Key Regulator of Sporulation, Toxin Synthesis, and Virulence in Fusarium verticillioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:958-971. [PMID: 32293993 DOI: 10.1094/mpmi-09-19-0271-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium verticillioides is one of the most important pathogens of maize, causing rot and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children, and some cancers. StuA, an APSES-class transcription factor, is a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence, and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited reduced vegetative growth, stunted aerial hyphae, and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA supported its likely function as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production, and virulence.
Collapse
Affiliation(s)
- M Rath
- Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A
| | - N J Crenshaw
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - L W Lofton
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - A E Glenn
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - S E Gold
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| |
Collapse
|
6
|
Analogous and Diverse Functions of APSES-Type Transcription Factors in the Morphogenesis of the Entomopathogenic Fungus Metarhizium rileyi. Appl Environ Microbiol 2020; 86:AEM.02928-19. [PMID: 32005738 DOI: 10.1128/aem.02928-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/26/2020] [Indexed: 11/20/2022] Open
Abstract
APSES-type transcription factors (TFs) have analogous and diverse functions in the regulation of fungal morphogenesis processes. However, little is known about these functions in microsclerotium formation. In this study, we characterized two orthologous APSES genes (MrStuA and MrXbp) in the entomopathogenic fungus Metarhizium rileyi Deletion of either MrStuA or MrXbp impaired dimorphic transition, conidiation, fungal virulence, and microsclerotium formation. Compared with the wild-type strain, ΔMrStuA and ΔMrXbp mutants were hypersensitive to thermal and oxidative stress. Furthermore, transcriptome sequencing analysis revealed that MrStuA and MrXbp independently regulate their own distinctive subsets of signaling pathways during dimorphic transition and microsclerotium formation, but they also show an overlapping regulation of genes during these two distinct morphogenesis processes. These results provide a global insight into vital roles of MrStuA and MrXbp in M. rileyi and aid in dissection of the interacting regulatory mechanisms of dimorphism transition and microsclerotium development.IMPORTANCE Transcription factors (TFs) are core components of the signaling pathway and play an important role in transcriptional regulation of gene expression during fungal morphogenesis processes. A prevailing theory suggests an interplay between different TFs regulating microsclerotial differentiation; however, the persisting issue remains that these interplay mechanisms are not clear. Here, we analyzed two members of the APSES-type TFs in Metarhizium rileyi using a gene deletion strategy and transcriptome analysis. Mutants were significantly impaired in microsclerotium formation and dimorphic transition. Transcriptome analysis provided evidence for interacting regulatory mechanisms by the two TFs in microsclerotium formation and dimorphic transition. Furthermore, we investigated their overlapping roles in mediating the expression of genes required for different fungal morphogenesis processes. Characterization of TFs in this study will aid in dissecting the interplay between regulatory mechanisms in fungal morphogenesis processes.
Collapse
|
7
|
Gao S, Gold SE, Glenn AE. Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges. MOLECULAR PLANT PATHOLOGY 2018; 19:1127-1139. [PMID: 28802018 PMCID: PMC6638182 DOI: 10.1111/mpp.12591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 05/04/2023]
Abstract
Catalase-peroxidases (KatGs) are a superfamily of reactive oxygen species (ROS)-degrading enzymes believed to have been horizontally acquired by ancient Ascomycota from bacteria. Subsequent gene duplication resulted in two KatG paralogues in ascomycetes: the widely distributed intracellular KatG1 group and the phytopathogen-dominated extracellular KatG2 group. To functionally characterize FvCP01 (KatG1) and FvCP02 (KatG2) in the maize pathogen Fusarium verticillioides, single and double gene deletion mutants were examined in response to hydrogen peroxide (H2 O2 ). Both ΔFvCP01 and ΔFvCP02 were more sensitive to H2 O2 than the wild-type in vitro, although their sensitivity differed depending on the type of inoculum. Inoculations using mycelial agar plugs demonstrated an additive effect of the mutants, with the ΔFvCP01/ΔFvCP02 double deletion being the most sensitive to H2 O2 . In general, conidia were much more sensitive than agar plugs to H2 O2 , and conidial inoculations indicated that FvCP01 conferred more H2 O2 tolerance than FvCP02. Transcriptional analysis showed the induction of FvCP01, but decreased expression of FvCP02, in both mycelia and spores in the wild-type after H2 O2 exposure, but this trend was reversed when the fungus was grown on germinating maize seeds. This interaction with the plant increased the expression of FvCP02, but not FvCP01, indicating that FvCP02 may be responsive to plant-derived H2 O2 . Yet, FvCP01 was induced more than three-fold in the ΔFvCP02 mutant grown on germlings, suggesting that FvCP01 can compensate for the loss of FvCP02. Given the differential responses of these two F. verticillioides genes to in vitro versus in planta challenges, a model is proposed to illustrate the differing roles of FvCP01 and FvCP02 in protective responses against H2 O2 -derived oxidative stress.
Collapse
Affiliation(s)
- Shan Gao
- Department of Plant PathologyUniversity of GeorgiaAthensGA 30602USA
| | - Scott E. Gold
- Toxicology & Mycotoxin Research UnitUSDA, ARS, US National Poultry Research CenterAthensGA 30605USA
| | - Anthony E. Glenn
- Toxicology & Mycotoxin Research UnitUSDA, ARS, US National Poultry Research CenterAthensGA 30605USA
| |
Collapse
|
8
|
Zhang G, Ren A, Shi L, Zhu J, Jiang A, Shi D, Zhao M. Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum. Microbiol Res 2018; 207:280-288. [PMID: 29458864 DOI: 10.1016/j.micres.2017.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
Abstract
The APSES transcription factors have been identified as key regulators of fungal development and other biological processes in fungi. In the present study, the function of Ganoderma lucidum GlSwi6, a homolog of Saccharomyces cerevisiae Swi6, was characterized. RNAi was used to examine the function of GlSwi6 in G. lucidum. Silencing GlSwi6 resulted in multiple developmental defects, including reduced fungal growth and increased hyphal branching, and the GlSwi6-silenced strains did not exhibit primordium or fruiting body formation. In addition, the H2O2 and ganoderic-acid (GA) levels of the GlSwi6-silenced strains decreased approximately 50% and 25%, respectively, compared with those of the WT strain. Furthermore, the addition of H2O2 led to the recovery of the GA levels of GlSwi6-silenced strains, implying that GlSwi6 might regulate GA biosynthesis by regulating the intracellular ROS levels. Taken together, these results indicate that GlSwi6 is involved in fungal growth, development and GA biosynthesis in G. lucidum.
Collapse
Affiliation(s)
- Guang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ailiang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Dengke Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China.
| |
Collapse
|
9
|
Sarmiento‐Villamil JL, García‐Pedrajas NE, Baeza‐Montañez L, García‐Pedrajas MD. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium- and resting mycelium-producing Verticillium species. MOLECULAR PLANT PATHOLOGY 2018; 19:59-76. [PMID: 27696683 PMCID: PMC6638171 DOI: 10.1111/mpp.12496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
Plant pathogens of the genus Verticillium pose a threat to many important crops worldwide. They are soil-borne fungi which invade the plant systemically, causing wilt symptoms. We functionally characterized the APSES family transcription factor Vst1 in two Verticillium species, V. dahliae and V. nonalfalfae, which produce microsclerotia and melanized hyphae as resistant structures, respectively. We found that, in V. dahliae Δvst1 strains, microsclerotium biogenesis stalled after an initial swelling of hyphal cells and cultures were never pigmented. In V. nonalfalfae Δvst1, melanized hyphae were also absent. These results suggest that Vst1 controls melanin biosynthesis independent of its role in morphogenesis. The absence of vst1 also had a great impact on sporulation in both species, affecting the generation of the characteristic verticillate conidiophore structure and sporulation rates in liquid medium. In contrast with these key roles in development, Vst1 activity was dispensable for virulence. We performed a microarray analysis comparing global transcription patterns of wild-type and Δvst1 in V. dahliae. G-protein/cyclic adenosine monophosphate (G-protein/cAMP) signalling and mitogen-activated protein kinase (MAPK) cascades are known to regulate fungal morphogenesis and virulence. The microarray analysis revealed a negative interaction of Vst1 with G-protein/cAMP signalling and a positive interaction with MAPK signalling. This analysis also identified Rho signalling as a potential regulator of morphogenesis in V. dahliae, positively interacting with Vst1. Furthermore, it exposed the association of secondary metabolism and development in this species, identifying Vst1 as a potential co-regulator of both processes. Characterization of the putative Vst1 targets identified in this study will aid in the dissection of specific aspects of development.
Collapse
Affiliation(s)
- Jorge L. Sarmiento‐Villamil
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| | - Nicolás E. García‐Pedrajas
- Department of Computing and Numerical Analysis, C2 Building 3rd FloorCampus Universitario de RabanalesCórdoba14071Spain
| | - Lourdes Baeza‐Montañez
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| | - María D. García‐Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| |
Collapse
|
10
|
Wang W, Wang M, Wang J, Zhu C, Chung KR, Li H. Adenylyl cyclase is required for cAMP production, growth, conidial germination, and virulence in the citrus green mold pathogen Penicillium digitatum. Microbiol Res 2016; 192:11-20. [PMID: 27664719 DOI: 10.1016/j.micres.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Penicillium digitatum is the causative agent of green mold decay on citrus fruit. The cAMP-mediated signaling pathway plays an important role in the transduction of extracellular signals and has been shown to regulate a wide range of developmental processes and pathogenicity in fungal pathogens. We cloned and characterized a Pdac1 gene of P. digitatum, which encodes a polypeptide similar to fungal adenylyl cyclases. Using a loss-of-function mutation in the Pdac1 gene we demonstrated a critical requirement for hyphal growth and conidial germination. Deletion of Pdac1 resulted in decreased accumulation of cAMP and down-regulation of genes encoding a G protein α subunit, both catalytic and regulatory subunits of PKA, and two transcriptional regulators StuA and Som1. Fungal mutants lacking Pdac1 produced abundant conidia, which failed to germinate effectively and displayed an elevated sensitivity to heat treatment. Pdac1 mutant failed to utilize carbohydrates effectively and thus displayed severe growth retardation on rich and synthetic media. Slow growth seen in the Pdac1 mutants could be due to a defect in nutrient sensing and acquisition. Quantitative RT-PCR analysis revealed that Pdac1 was primarily expressed at the early stage of infection. Fungal pathogenicity assayed on citrus fruit revealed that P. digitatum strains impaired for Pdac1 delayed lesion formation. Our results highlight important regulatory roles of adenylyl cyclase-mediated cAMP production in P. digitatum and provide insights into the critical role of cAMP in fungal growth, development and virulence.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingshuang Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiye Wang
- Zhejiang Police College, Hangzhou, Zhejiang 310058, China
| | - Congyi Zhu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, National Chung-Hsing University, Taichung, 40227 Taiwan.
| | - Hongye Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Soyer JL, Hamiot A, Ollivier B, Balesdent MH, Rouxel T, Fudal I. The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. MOLECULAR PLANT PATHOLOGY 2015; 16:1000-5. [PMID: 25727237 PMCID: PMC6638475 DOI: 10.1111/mpp.12249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leptosphaeria maculans causes stem canker of oilseed rape (Brassica napus). The APSES transcription factor StuA is a key developmental regulator of fungi, involved in morphogenesis, conidia production and also more recently described as required for secondary metabolite production and for effector gene expression in phytopathogenic fungi. We investigated the involvement of the orthologue of StuA in L. maculans, LmStuA, in morphogenesis, pathogenicity and effector gene expression. LmStuA is induced during mycelial growth and at 14 days after infection, corresponding to the development of pycnidia on oilseed rape leaves, consistent with the function of StuA described so far. We set up the functional characterization of LmStuA using an RNA interference approach. Silenced LmStuA transformants showed typical phenotypic defects of StuA mutants with altered growth in axenic culture and impaired conidia production and perithecia formation. Silencing of LmStuA abolished the pathogenicity of L. maculans on oilseed rape leaves and also resulted in a drastic decrease in expression of at least three effector genes during in planta infection, suggesting either that LmStuA regulates, directly or indirectly, the expression of several effector genes in L. maculans or that the infection stage in which effectors are expressed is not reached when LmStuA expression is silenced.
Collapse
Affiliation(s)
- Jessica L Soyer
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Audrey Hamiot
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| |
Collapse
|
12
|
Zhao Y, Su H, Zhou J, Feng H, Zhang KQ, Yang J. The APSES family proteins in fungi: Characterizations, evolution and functions. Fungal Genet Biol 2014; 81:271-80. [PMID: 25534868 DOI: 10.1016/j.fgb.2014.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
13
|
FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS One 2013; 8:e57429. [PMID: 23451228 PMCID: PMC3579838 DOI: 10.1371/journal.pone.0057429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Fusarium culmorum is one of the most harmful pathogens of durum wheat and is the causal agent of foot and root rot (FRR) disease. F. culmorum produces the mycotoxin deoxynivalenol (DON) that is involved in the pathogenic process. The role of the gene FcStuA, a StuA ortholog protein with an APSES domain sharing 98.5% homology to the FgStuA protein (FGSG10129), was determined by functional characterisation of deletion mutants obtained from two F. culmorum wild-type strains, FcUk99 (a highly pathogenic DON producer) and Fc233B (unable to produce toxin and with a mild pathogenic behavior). The ΔFcStuA mutants originating from both strains showed common phenotypic characters including stunted vegetative growth, loss of hydrophobicity of the mycelium, altered pigmentation, decreased activity of polygalacturonic enzymes and catalases, altered and reduced conidiation, delayed conidial germination patterns and complete loss of pathogenicity towards wheat stem base/root tissue. Glycolytic process efficiency [measured as growth on glucose as sole carbon (C) source] was strongly impaired and growth was partially restored on glutamic acid. Growth on pectin-like sources ranked in between glucose and glutamic acid with the following order (the lowest to the highest growth): beechwood xylan, sugarbeet arabinan, polygalacturonic acid, citrus pectin, apple pectin, potato azogalactan. DON production in the mutants originating from FcUK99 strain was significantly decreased (−95%) in vitro. Moreover, both sets of mutants were unable to colonise non-cereal plant tissues, i.e. apple and tomato fruits and potato tubers. No differences between mutants, ectopic and wild-type strains were observed concerning the level of resistance towards four fungicides belonging to three classes, the demethylase inhibitors epoxiconazole and tebuconzole, the succinate dehydrogenase inhibitor isopyrazam and the cytochrome bc1 inhibitor trifloxystrobin. StuA, given its multiple functions in cell regulation and pathogenicity control, is proposed as a potential target for novel disease management strategies.
Collapse
|
14
|
A flucytosine-responsive Mbp1/Swi4-like protein, Mbs1, plays pleiotropic roles in antifungal drug resistance, stress response, and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2011; 11:53-67. [PMID: 22080454 DOI: 10.1128/ec.05236-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcosis, caused by the basidiomycetous fungus Cryptococcus neoformans, is responsible for more than 600,000 deaths annually in AIDS patients. Flucytosine is one of the most commonly used antifungal drugs for its treatment, but its resistance and regulatory mechanisms have never been investigated at the genome scale in C. neoformans. In the present study, we performed comparative transcriptome analysis by employing two-component system mutants (tco1Δ and tco2Δ) exhibiting opposing flucytosine susceptibility. As a result, a total of 177 flucytosine-responsive genes were identified, and many of them were found to be regulated by Tco1 or Tco2. Among these, we discovered an APSES-like transcription factor, Mbs1 (Mbp1- and Swi4-like protein 1). Expression analysis revealed that MBS1 was regulated in response to flucytosine in a Tco2/Hog1-dependent manner. Supporting this, C. neoformans with the deletion of MBS1 exhibited increased susceptibility to flucytosine. Intriguingly, Mbs1 played pleiotropic roles in diverse cellular processes of C. neoformans. Mbs1 positively regulated ergosterol biosynthesis and thereby affected polyene and azole drug susceptibility. Mbs1 was also involved in genotoxic and oxidative stress responses. Furthermore, Mbs1 promoted production of melanin and capsule and thereby was required for full virulence of C. neoformans. In conclusion, Mbs1 is considered to be a novel antifungal therapeutic target for treatment of cryptococcosis.
Collapse
|
15
|
Lysøe E, Pasquali M, Breakspear A, Kistler HC. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:54-67. [PMID: 20879840 DOI: 10.1094/mpmi-03-10-0075] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fusarium graminearum is an important plant-pathogenic fungus and the major cause of cereal head blight. Here, we report the functional analysis of FgStuA, the gene for a transcription factor with homology to key developmental regulators in fungi. The deletion mutant was greatly reduced in pathogenicity on wheat heads and in production of secondary metabolites. Spore production was significantly impaired in ΔFgStuA, which did not develop perithecia and sexual ascospores, and lacked conidiophores and phialides, leading to delayed production of aberrant macroconidia. FgStuAp appears to act as a global regulator that may affect many diverse aspects of the life cycle of F. graminearum. Transcriptome analysis shows that thousands of genes are differentially expressed in the mutant during asexual sporulation and infection of wheat heads and under conditions that induce secondary metabolites, including many that could account for the mutant phenotypes observed. The primary regulatory targets of FgStuAp are likely genes involved in cell-cycle control, and the predicted FgStuAp sequence has an APSES domain, with homology to helix-loop-helix proteins involved in cell-cycle regulation. The Aspergillus StuAp response element (A/TCGCGT/ANA/C) was found highly enriched in the promoter sequences of cell-cycle genes, which was upregulated in the ΔFgStuA deletion mutant.
Collapse
Affiliation(s)
- Erik Lysøe
- Department of Plant Health and Plant Protection, Bioforsk–Norwegian Institute of Agricultural and Environmental Research, 1432 Ås, Norway.
| | | | | | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|