1
|
Sun X, Wang Y, Yang X, Xiang X, Zou L, Liu X, Luo G, Han Q. Profilin Pfy1 is critical for cell wall integrity and virulence in Candida albicans. Microbiol Spectr 2025; 13:e0259324. [PMID: 39992147 PMCID: PMC11960436 DOI: 10.1128/spectrum.02593-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Profilin is a small actin-binding protein that plays an important role in actin polymerization. However, its functions in Candida albicans, the most prevalent fungal pathogen, remain unclear. Here, we report that profilin plays a crucial role in C. albicans morphogenesis and virulence. Deletion of profilin results in abnormal morphogenesis and impaired hyphal development. Furthermore, pfy1Δ/Δ is hypersensitive to cell wall stress and displays thicker cell wall than wild-type cells, indicative of a critical function of Pfy1 in cell wall integrity. In addition, our findings demonstrate that profilin is required for the virulence of C. albicans in a murine model of systemic infection. In conclusion, our work provides a promising target for developing antifungal drugs.IMPORTANCEOur research revealed Pfy1 is not only involved in hyphal development but also essential for pseudohyphal formation in response to DNA damage agents methyl methanesulfonate (MMS) and H2O2. The disruption of PFY1 resulted in striking morphological defects in both yeast and hyphal forms. Further investigation suggested that profilin plays a role in polarized growth of Candida albicans via binding with Act1, and contributes to cell wall remodeling. Both hyphal growth and cell wall integrity are the important virulence factors of C. albicans. Thus, pfy1Δ/Δ strains significantly reduced mortality rates in mice. These findings suggested that profilin could serve as a target for developing new antifungal drugs possibly for use in combination therapies with caspofungin, for treating invasive candidiasis.
Collapse
Affiliation(s)
- Xun Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- The Third Clinical Medical College of the Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Yueqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaomin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Gang Luo
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Actin depolymerizing factor ADF7 inhibits actin bundling protein VILLIN1 to regulate root hair formation in response to osmotic stress in Arabidopsis. PLoS Genet 2022; 18:e1010338. [PMID: 36095000 PMCID: PMC9499291 DOI: 10.1371/journal.pgen.1010338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/22/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress. Root hairs are required for plants to absorb nutrients and water. The dynamics of cytoskeleton such as actin filaments (F-actin) are necessary for the formation of root hairs, which is regulated by different kinds of cytoskeleton-binding proteins. At the same time, the dynamics of cytoskeleton are also involved in plant abiotic stress tolerance. However, there are few studies on the underlying molecular mechanisms of F-actin dynamics in root hair formation in response to abiotic stress. Actin depolymerization factor 7 (ADF7) and actin bunding protein Villin 1 (VLN1) are important actin-binding proteins in Arabidopsis. Here, we describe a pathway that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing a new evidence for the studies on the molecular mechanisms of F-actin dynamics in root hair formation and in plant abiotic stress tolerance.
Collapse
|
3
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
4
|
Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. SCIENCE CHINA-LIFE SCIENCES 2017; 60:861-867. [PMID: 28741129 DOI: 10.1007/s11427-017-9067-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin bundling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence showing that actin cytoskeleton reorganization involving GhPFN2 is important for defense against V. dahliae infection.
Collapse
|
5
|
Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues. PLoS Genet 2016; 12:e1006405. [PMID: 27788136 PMCID: PMC5082861 DOI: 10.1371/journal.pgen.1006405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened a collection of 1,248 C. albicans homozygous transposon insertion mutants to identify those that were filamentous in the absence of inducing cues. We identified the Rho1 GAP Lrg1, which represses filamentous growth by stimulating Rho1 GTPase activity and converting Rho1 to its inactive, GDP-bound form. Deletion of LRG1 or introduction of a RHO1 mutation that locks Rho1 in constitutively active, GTP-bound state, leads to filamentation in the absence of inducing cues. Deletion of the Rho1 downstream effector PKC1 results in defective filamentation in response to diverse host-relevant inducing cues, including serum. We further established that Pkc1 is not required to sense filament-inducing cues, but its kinase activity is critical for the initiation of filamentous growth. Our genetic analyses revealed that Pkc1 regulates filamentation independent of the canonical MAP kinase cascade. Further, although Ras1 activation is not impaired in a pkc1Δ/pkc1Δ mutant, adenylyl cyclase activity is reduced, consistent with a model in which Pkc1 functions in parallel with Ras1 in regulating Cyr1 activation. Thus, our findings delineate a signaling pathway comprised of Lrg1, Rho1 and Pkc1 with a core role in C. albicans morphogenesis, and illuminate functional relationships that govern activation of a central transducer of signals that control environmental response and virulence programs.
Collapse
|
6
|
Wong SW, Sun S, Cho M, Lee KKH, Mak AFT. H2O2 Exposure Affects Myotube Stiffness and Actin Filament Polymerization. Ann Biomed Eng 2014; 43:1178-88. [PMID: 25371376 DOI: 10.1007/s10439-014-1178-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 01/24/2023]
Abstract
Skeletal muscles often experience oxidative stress in anaerobic metabolism and ischemia-reperfusion. This paper reports how oxidative stress affects the stiffness of cultured murine myotubes and their actin filaments polymerization dynamics. H2O2 was applied as an extrinsic oxidant to C2C12 myotubes. Atomic force microscopy results showed that short exposures to H2O2 apparently increased the stiffness of myotubes, but that long exposures made the cells softer. The turning point seemed to take place somewhere between 1 and 2 h of H2O2 exposure. We found that the stiffness change was probably due to actin filaments being favored for depolymerization after prolong H2O2 treatments, especially when the exposure duration exceeded 1 h and the exposure concentration reached 1.0 mM. Such depolymerization effect was associated with the down-regulation of thymosin beta 4, as well as the up-regulation of both cofilin2 and profilin1 after prolong H2O2 treatments.
Collapse
Affiliation(s)
- Sing Wan Wong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
7
|
Rodríguez-Lombardero S, Rodríguez-Belmonte ME, González-Siso MI, Vizoso-Vázquez Á, Valdiglesias V, Laffón B, Cerdán ME. Proteomic analyses reveal that Sky1 modulates apoptosis and mitophagy in Saccharomyces cerevisiae cells exposed to cisplatin. Int J Mol Sci 2014; 15:12573-90. [PMID: 25029545 PMCID: PMC4139861 DOI: 10.3390/ijms150712573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022] Open
Abstract
Sky1 is the only member of the SR (Serine–Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin. Results reveal differential expression of proteins previously related to the oxidative stress response, DNA damage, apoptosis and mitophagy. With these precedents, the role of Sky1 in apoptosis, necrosis and mitophagy has been evaluated by flow-cytometry, fluorescence microscopy, biosensors and fluorescence techniques. After cisplatin treatment, an apoptotic-like process diminishes in the ∆sky1 strain in comparison to the wild-type. The treatment does not affect mitophagy in the wild-type strain, while an increase is observed in the ∆sky1 strain. The increased resistance to cisplatin observed in the ∆sky1 strain may be attributable to a decrease of apoptosis and an increase of mitophagy.
Collapse
Affiliation(s)
- Silvia Rodríguez-Lombardero
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Esther Rodríguez-Belmonte
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Isabel González-Siso
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Blanca Laffón
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Esperanza Cerdán
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| |
Collapse
|
8
|
The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in Saccharomyces cerevisiae mutants affected by endogenous oxidative stress. Appl Environ Microbiol 2013; 79:6459-71. [PMID: 23956390 DOI: 10.1128/aem.01692-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress causes transient actin cytoskeleton depolarization and also provokes vacuole fragmentation in wild-type cells. Under conditions of oxidative stress induced by hydrogen peroxide, the Slt2 protein is required to repolarize the actin cytoskeleton and to promote vacuole fusion. In this study, we show that grx3 grx4 and grx5 mutants are cellular models of endogenous oxidative stress. This stress is the result of alterations in iron homeostasis that lead to impairment of vacuolar function and also to disorganization of the actin cytoskeleton. Slt2 overexpression suppresses defects in vacuolar function and actin cytoskeleton organization in the grx3 grx4 mutant. Slt2 exerts this effect independently of the intracellular levels of reactive oxygen species (ROS) and of iron homeostasis. The deletion of SLT2 in the grx3 grx4 mutant results in synthetic lethality related to vacuolar function with substantial vacuole fragmentation. The observation that both Vps4 and Vps73 (two proteins related to vacuole sorting) suppress vacuole fragmentation and actin depolarization in the grx3 grx4 slt2 triple mutant strengthens the hypothesis that Slt2 plays a role in vacuole homeostasis related to actin dynamics. Here we show that in sod1, grx5, and grx3 grx4 slt2 mutants, all of which are affected by chronic oxidative stress, the overexpression of Slt2 favors vacuole fusion through a mechanism dependent on an active actin cytoskeleton.
Collapse
|
9
|
Novel checkpoint pathway organization promotes genome stability in stationary-phase yeast cells. Mol Cell Biol 2012; 33:457-72. [PMID: 23149941 DOI: 10.1128/mcb.05831-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most DNA alterations occur during DNA replication in the S phase of the cell cycle. However, the majority of eukaryotic cells exist in a nondividing, quiescent state. Little is known about the factors involved in preventing DNA instability within this stationary-phase cell population. Previously, we utilized a unique assay system to identify mutations that increased minisatellite alterations specifically in quiescent cells in Saccharomyces cerevisiae. Here we conducted a modified version of synthetic genetic array analysis to determine if checkpoint signaling components play a role in stabilizing minisatellites in stationary-phase yeast cells. Our results revealed that a subset of checkpoint components, specifically MRC1, CSM3, TOF1, DDC1, RAD17, MEC3, TEL1, MEC1, and RAD53, prevent stationary-phase minisatellite alterations within the quiescent cell subpopulation of stationary-phase cells. Pathway analysis revealed at least three pathways, with MRC1, CSM3, and TOF1 acting in a pathway independent of MEC1 and RAD53. Overall, our data indicate that some well-characterized checkpoint components maintain minisatellite stability in stationary-phase cells but are regulated differently in those cells than in actively growing cells. For the MRC1-dependent pathway, the checkpoint itself may not be the important element; rather, it may be loss of the checkpoint proteins' other functions that contributes to DNA instability.
Collapse
|
10
|
Pei W, Du F, Zhang Y, He T, Ren H. Control of the actin cytoskeleton in root hair development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:10-8. [PMID: 22404828 DOI: 10.1016/j.plantsci.2012.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/09/2023]
Abstract
The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development.
Collapse
Affiliation(s)
- Weike Pei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
11
|
Mitjana FV, Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA. Pkc1 and actin polymerisation activities play a role in ribosomal gene repression associated with secretion impairment caused by oxidative stress. FEMS Yeast Res 2011; 11:656-9. [PMID: 22093750 DOI: 10.1111/j.1567-1364.2011.00754.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/20/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022] Open
Abstract
In Saccharomyces cerevisiae, the cell integrity pathway plays a role in the oxidative stress response. In this study, we show that the Pkc1 protein mediates oxidative signalling by helping to downregulate ribosomal gene expression when cells are exposed to hydrogen peroxide. An active actin cytoskeleton is required for this function, because the cells blocked in actin polymerisation were unable to repress ribosomal gene transcription. Following the invertase secretion pattern, we hypothesize that oxidative stress induced by hydrogen peroxide could have affected the latter steps of secretion. This would explain why the Pkc1 function was required to repress ribosomal biogenesis.
Collapse
|
12
|
Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance. Appl Environ Microbiol 2010; 76:7826-35. [PMID: 20889785 DOI: 10.1128/aem.01755-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.
Collapse
|
13
|
Takagi H, Hsu CP, Kajimoto K, Shao D, Yang Y, Maejima Y, Zhai P, Yehia G, Yamada C, Zablocki D, Sadoshima J. Activation of PKN mediates survival of cardiac myocytes in the heart during ischemia/reperfusion. Circ Res 2010; 107:642-9. [PMID: 20595653 PMCID: PMC3081566 DOI: 10.1161/circresaha.110.217554] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/17/2010] [Indexed: 01/28/2023]
Abstract
RATIONALE The function of PKN, a stress-activated protein kinase, in the heart is poorly understood. OBJECTIVE We investigated the functional role of PKN during myocardial ischemia/reperfusion (I/R). METHODS AND RESULTS PKN is phosphorylated at Thr774 in hearts subjected to ischemia and reperfusion. Myocardial infarction/area at risk (MI/AAR) produced by 45 minutes of ischemia and 24 hours of reperfusion was significantly smaller in transgenic mice with cardiac-specific overexpression of constitutively active (CA) PKN (Tg-CAPKN) than in nontransgenic (NTg) mice (15+/-5 versus 38+/-5%, P<0.01). The number of TUNEL-positive nuclei was significantly lower in Tg-CAPKN (0.3+/-0.2 versus 1.0+/-0.2%, P<0.05). Both MI/AAR (63+/-9 versus 45+/-8%, P<0.05) and the number of TUNEL-positive cells (7.9+/-1.0 versus 1.3+/-0.9%, P<0.05) were greater in transgenic mice with cardiac-specific overexpression of dominant negative PKN (Tg-DNPKN) than in NTg mice. Thr774 phosphorylation of PKN was also observed in response to H(2)O(2) in cultured cardiac myocytes. Stimulation of PKN prevented, whereas inhibition of PKN aggravated, cell death induced by H(2)O(2), suggesting that the cell-protective effect of PKN is cell-autonomous in cardiac myocytes. PKN induced phosphorylation of alpha B crystallin and increased cardiac proteasome activity. The infarct reducing effect in Tg-CAPKN mice was partially inhibited by epoxomicin, a proteasome inhibitor. CONCLUSIONS PKN is activated by I/R and inhibits apoptosis of cardiac myocytes, thereby protecting the heart from I/R injury. PKN mediates phosphorylation of alpha B crystallin and stimulation of proteasome activity, which, in part, mediates the protective effect of PKN in the heart.
Collapse
Affiliation(s)
- Hiromitsu Takagi
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Biomedical Research Laboratories Asubio Pharma Co. Ltd., Osaka Japan
| | - Chiao-Po Hsu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Katsuya Kajimoto
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Dan Shao
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Yanfei Yang
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Yasuhiro Maejima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Peiyong Zhai
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Ghassan Yehia
- Comparative Medicine Resources Department, Transgenic Core Facility, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Chikaomi Yamada
- Biomedical Research Laboratories Asubio Pharma Co. Ltd., Osaka Japan
| | - Daniela Zablocki
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
14
|
Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. PLANT & CELL PHYSIOLOGY 2010; 51:1276-90. [PMID: 20558432 DOI: 10.1093/pcp/pcq086] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Abstract
Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.
Collapse
|