1
|
Tang S, Gao W, Guo Q, Wei D, Wang FQ. Orchestrating multiple subcellular organelles of Saccharomyces cerevisiae for efficient production of squalene. BIORESOURCE TECHNOLOGY 2025; 424:132294. [PMID: 39999895 DOI: 10.1016/j.biortech.2025.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Squalene widely used in medicines, food, and cosmetics. Subcellular organelle engineering is an effective way to develop squalene-hyperproducing yeasts. Here, we demonstrated that synergistically modifying multiple organelles in Saccharomyces cerevisiae, including mitochondria, endoplasmic reticulum (ER), lipid droplets (LDs), and cell wall (CW), effectively increased squalene production. Based on the previously developed dual cytoplasmic-mitochondrial engineering strain SquMC13, squalene production capacity was further enhanced by improving the ER function for protein expression, expanding the LDs size for squalene storage, and increasing CW integrity to maintain high cell viability. Combinatorial modification of these organelles enhanced squalene productivity to 3.4-times that of SquMC13. NADPH generation was optimized, resulting in a further 3.9 % increase in squalene production. An efficient strain for squalene production was developed, the squalene production titer of which reached 55.8 g/L with 0.5 g/L/h productivity and specific cell production of 0.5 g/g dry cell weight, paving the way for industrial squalene production.
Collapse
Affiliation(s)
- Shuyan Tang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Wenzhuo Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Qidi Guo
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
3
|
García-García JC, García-Martínez T, Román-Camacho JJ, Moreno J, Mauricio JC. Comparative Proteomics of Two Flor Yeasts in Sparkling Wine Fermentation: First Approach. Foods 2025; 14:282. [PMID: 39856948 PMCID: PMC11764631 DOI: 10.3390/foods14020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The traditional method is considered the highest-quality sparkling wine making technique. Its main characteristic is that the entire sparkling transformation takes place in the bottle, producing complex, refined wines with fine, persistent bubbles. Currently, the second fermentation in the bottle is initiated by a few commercially available strains of Saccharomyces cerevisiae. This lack of yeast diversity leads to a predominant uniformity in the sensory profiles of the final products and a lack of distinctive wines. The aim of the present study is to compare the proteomic profiles of the first flor yeast strain (G1) on the market for the production of high-quality sparkling wines with a new flor strain (N62) selected for its specific characteristics for potential use in sparkling wine production, such as flocculation, tolerance to high ethanol concentrations, and β-Glucosidase-positivity, which is valuable for improving wine aroma complexity. The results showed that these strains behaved differently in the middle fermentation tested: the strain that reached 3 atmospheres faster was strain N62, which achieved higher growth, viability, glycerol content, and volatile acidity. In G1, a higher ethanol content was reached, and lower growth and viability were observed. Key protein data support the relationship between these differences, and the proteomic analysis could show that strain N62 had a higher abundance of proteins related to protein synthesis, such as PAB1, TEF2, and RPL25; DAK1, GPP1, and GPP2 are involved in glycerol synthesis and PDC6 and ALD4 in acetate synthesis. In the case of G1, the abundance of ADHI is associated with ethanol production and cell wall proteins with YGP1, EXG1, SCW11, PST1, CIS3, and PIR3, while the onset of autophagy is associated with PRC1, PRB1, ATG42/YBR139W, PRE8, PRE9, and PUP2.
Collapse
Affiliation(s)
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.C.G.-G.); (J.J.R.-C.); (J.M.); (J.C.M.)
| | | | | | | |
Collapse
|
4
|
Kundu D, Martoliya Y, Sharma A, Partap Sasan S, Wasi M, Prasad R, Mondal AK. Overexpression of CBK1 or deletion of SSD1 confers fludioxonil resistance in yeast by suppressing Hog1 activation. Gene 2025; 933:148905. [PMID: 39218413 DOI: 10.1016/j.gene.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Group III hybrid histidine kinases (HHK3) are known molecular targets of the widely used fungicidal agent fludioxonil which indirectly converts these kinases to a phosphatase form that causes constitutive activation of Hog1 MAPK. To better understand the fungicidal effect of fludioxonil we have screened S. cerevisiae haploid deletion collection for fludioxonil resistant mutant and identified Ssd1 as a critical factor for this. Deletion of SSD1 not only promoted resistance to fludioxonil but also abrogated Hog1 activation and other cellular damages caused by fludioxonil. Our results showed that fludioxonil perturbed the localization of Cbk1 kinase, an essential protein in yeast, at the bud neck triggering the accumulation of Ssd1 in P-bodies. As a result, localized synthesis of Ssd1 bound mRNA encoding cell wall proteins at the polarized growth site was impaired which created a sustained cell wall stress causing constitutive activation of Hog1. Our data, for the first time, clearly indicated the role of Cbk1 upstream of Hog1 and provided a novel paradigm in the mechanism of action of fludioxonil.
Collapse
Affiliation(s)
- Debasree Kundu
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Tavafoghi B, Ren L, Gould KL, Willet AH. Generation and characterization of temperature-sensitive alleles encoding GPI anchored proteins Psu1 and Dfg502 in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001179. [PMID: 38633868 PMCID: PMC11022074 DOI: 10.17912/micropub.biology.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Glycosyl-phosphatidylinositol (GPI) anchored proteins are implicated in remodeling of the yeast cell wall during growth and division. Schizosaccharomyces pombe proteins, Psu1 , Dfg501 , and Dfg502 are predicted GPI anchored proteins with likely cell wall modifying activity. Here, we isolated and characterized null and temperature-sensitive alleles that will allow further analysis of the function of these proteins and S. pombe cell wall formation. Our data confirm that Psu1 is necessary for cell separation, maintaining proper cell shape, and viability. Additionally, we found that Dfg501 and Dfg502 share a redundant and essential function necessary for cell separation and viability.
Collapse
Affiliation(s)
- Bita Tavafoghi
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Liping Ren
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Kathleen L. Gould
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Alaina H. Willet
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
6
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
7
|
Strížová A, Šmátralová P, Chovančíková P, Machala Z, Polčic P. Defects in Mitochondrial Functions Affect the Survival of Yeast Cells Treated with Non-Thermal Plasma. Int J Mol Sci 2023; 24:ijms24119391. [PMID: 37298346 DOI: 10.3390/ijms24119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure of living cells to non-thermal plasma produced in various electrical discharges affects cell physiology and often results in cell death. Even though plasma-based techniques have started finding practical applications in biotechnology and medicine, the molecular mechanisms of interaction of cells with plasma remain poorly understood. In this study, the involvement of selected cellular components or pathways in plasma-induced cell killing was studied employing yeast deletion mutants. The changes in yeast sensitivity to plasma-activated water were observed in mutants with the defect in mitochondrial functions, including transport across the outer mitochondrial membrane (∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0) and assumed signaling to the nucleus (∆mdl1, ∆yme1). Together these results indicate that mitochondria play an important role in plasma-activated water cell killing, both as the target of the damage and the participant in the damage signaling, which may lead to the induction of cell protection. On the other hand, our results show that neither mitochondria-ER contact sites, UPR, autophagy, nor proteasome play a major role in the protection of yeast cells from plasma-induced damage.
Collapse
Affiliation(s)
- Anna Strížová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Paulína Šmátralová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Petra Chovančíková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
8
|
Li J, Zeng Y, Wang WB, Wan QQ, Liu CG, den Haan R, van Zyl WH, Zhao XQ. Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 365:128132. [PMID: 36252752 DOI: 10.1016/j.biortech.2022.128132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Qing Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Lu AX, Lu AX, Pritišanac I, Zarin T, Forman-Kay JD, Moses AM. Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. PLoS Comput Biol 2022; 18:e1010238. [PMID: 35767567 PMCID: PMC9275697 DOI: 10.1371/journal.pcbi.1010238] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 07/12/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
A major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution. We use this as a contrastive learning signal for deep learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out homolog from another set of IDRs sampled randomly from the proteome. We pair reverse homology with a simple architecture and standard interpretation techniques, and show that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or bulk features like charge or amino acid propensities. We also show that our model can be used to produce visualizations of what residues and regions are most important to IDR function, generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using unsupervised neural networks is a promising avenue to gain systematic insight into poorly understood protein sequences.
Collapse
Affiliation(s)
- Alex X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Amy X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
11
|
Guo Q, Meng N, Fan G, Sun D, Meng Y, Luo G, Liu Y. The role of the exocytic pathway in cell wall assembly in yeast. Yeast 2021; 38:566-578. [PMID: 34250641 DOI: 10.1002/yea.3659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cell wall is a dynamic organelle which is tightly controlled for cell morphology, viability, and pathogenesis. It was previously shown that exocytosis is involved in the secretion of some components and enzymes of the cell wall. However, how the secretory pathway affects the cell wall integrity and assembly remains unclear. Here we show that the secretory pathway mutant (sec) cells were sensitive to cell wall antagonists in Saccharomyces cerevisiae, and they were lysed at restrictive conditions but can be rescued by osmotic stabilizers, indicating their cell walls were disrupted. Although glucans were reduced at the cell surface in sec mutants as speculated, the other two main cell wall components, chitins, and mannoproteins, were accumulated at the cell surface. We also found that both the protein level and the phosphorylation level of Slt2 increased in sec mutants. These results suggest that the exocytic pathway has a critical role in cell wall assembly. Our study will help to understand the mechanism of cell wall formation.
Collapse
Affiliation(s)
- Qingguo Guo
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Na Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Guanzhi Fan
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
13
|
Guo Q, Duan Y, Meng N, Liu Y, Luo G. The N-terminus of Sec3 is required for cell wall integrity in yeast. Biochimie 2020; 177:30-39. [PMID: 32800898 DOI: 10.1016/j.biochi.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The cell wall is essential for cell viability and pathogenesis of fungi. It was previously shown that the exocytosis landmark Sec3 is an effector of the cell wall integrity (CWI) master regulator Rho1 GTPase. However, disruption of the interaction between Sec3 and Rho1 did not inhibit exocytic secretion and cell growth. The physiological role of Sec3 in fungi is unclear. We have examined the growth, cell wall sensitivity, exocyst localization, and exocytic secretion of Sec3-binding deficient rho1 mutants and Rho1-binding deficient sec3 mutants. We found that the Sec3 N-terminal deletion mutant was defective in cell wall integrity. The cells harboring binding mutation between Rho1 and Sec3 N-terminus were sensitive to cell wall antagonists. We also found that the polarized localization of exocyst subunits was disrupted in these mutants. Our study demonstrates that the N-terminus of Sec3 mediates cell wall integrity in yeast. Pathogenic fungi may use similar regulatory mechanisms because components of the exocytic signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China; Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Na Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
14
|
Evolutionary Engineering of an Iron-Resistant Saccharomyces cerevisiae Mutant and Its Physiological and Molecular Characterization. Microorganisms 2019; 8:microorganisms8010043. [PMID: 31878309 PMCID: PMC7023378 DOI: 10.3390/microorganisms8010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Iron plays an essential role in all organisms and is involved in the structure of many biomolecules. It also regulates the Fenton reaction where highly reactive hydroxyl radicals occur. Iron is also important for microbial biodiversity, health and nutrition. Excessive iron levels can cause oxidative damage in cells. Saccharomyces cerevisiae evolved mechanisms to regulate its iron levels. To study the iron stress resistance in S. cerevisiae, evolutionary engineering was employed. The evolved iron stress-resistant mutant “M8FE” was analysed physiologically, transcriptomically and by whole genome re-sequencing. M8FE showed cross-resistance to other transition metals: cobalt, chromium and nickel and seemed to cope with the iron stress by both avoidance and sequestration strategies. PHO84, encoding the high-affinity phosphate transporter, was the most down-regulated gene in the mutant, and may be crucial in iron-resistance. M8FE had upregulated many oxidative stress response, reserve carbohydrate metabolism and mitophagy genes, while ribosome biogenesis genes were downregulated. As a possible result of the induced oxidative stress response genes, lower intracellular oxidation levels were observed. M8FE also had high trehalose and glycerol production levels. Genome re-sequencing analyses revealed several mutations associated with diverse cellular and metabolic processes, like cell division, phosphate-mediated signalling, cell wall integrity and multidrug transporters.
Collapse
|
15
|
Ko H, Bae JH, Sung BH, Kim MJ, Park HJ, Sohn JH. Microbial production of medium chain fructooligosaccharides by recombinant yeast secreting bacterial inulosucrase. Enzyme Microb Technol 2019; 130:109364. [DOI: 10.1016/j.enzmictec.2019.109364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
|
16
|
Queiroz MG, Elsztein C, de Morais MA. The effects of the Ncw2 protein of Saccharomyces cerevisiae on the positioning of chitin in response to cell wall damage. Antonie van Leeuwenhoek 2019; 113:265-277. [PMID: 31598818 DOI: 10.1007/s10482-019-01335-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The recently described NCW2 gene encodes a protein that is assumed to be located in the cell wall (CW). This protein was proposed to participate in the repair of CW damages induced by polyhexamethylene biguanide (PHMB). However, much of the information on the biological function(s) of Ncw2p still remains unclear. In view of this, this study seeks to extend the analysis of this gene in light of the way its protein functions in the Cell Wall Integrity (CWI) mechanism. Deletion of the NCW2 gene led to constitutive overexpression of some key CWI genes and increased chitin deposition in the walls of cells exposed to PHMB. This means the lack of Ncw2p might activate a compensatory mechanism that upregulates glucan CWI genes for cell protection by stiffening the CW. This condition seems to alleviate the response through the HOG pathway and makes cells sensitive to osmotic stress. However, Ncw2p may not have been directly involved in tolerance to osmotic stress itself. The results obtained definitely place the NCW2 gene in the list of CWI genes of S. cerevisiae and indicate that its protein has an auxiliary function in the maintenance of the glucan/chitin balance and ensuring the correct structure of the yeast cell wall.
Collapse
Affiliation(s)
- Maíse Gomes Queiroz
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Marcos Antonio de Morais
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil.
| |
Collapse
|
17
|
Kessi-Pérez EI, Salinas F, González A, Su Y, Guillamón JM, Hall MN, Larrondo LF, Martínez C. KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 2019; 10:1686. [PMID: 31417508 PMCID: PMC6685402 DOI: 10.3389/fmicb.2019.01686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic domain-conserved TORC1 signalling pathway connects growth with nutrient sufficiency, promoting anabolic processes such as ribosomal biogenesis and protein synthesis. In Saccharomyces cerevisiae, TORC1 is activated mainly by the nitrogen sources. Recently, this pathway has gotten renewed attention but now in the context of the alcoholic fermentation, due to its key role in nitrogen metabolism regulation. Although the distal and proximal effectors downstream TORC1 are well characterised in yeast, the mechanism by which TORC1 is activated by nitrogen sources is not fully understood. In this work, we took advantage of a previously developed microculture-based methodology, which indirectly evaluates TORC1 activation in a nitrogen upshift experiment, to identify genetic variants affecting the activation of this pathway. We used this method to phenotype a recombinant population derived from two strains (SA and WE) with different geographic origins, which show opposite phenotypes for TORC1 activation by glutamine. Using this phenotypic information, we performed a QTL mapping that allowed us to identify several QTLs for TORC1 activation. Using a reciprocal hemizygous analysis, we validated GUS1, KAE1, PIB2, and UTH1 as genes responsible for the natural variation in the TORC1 activation. We observed that reciprocal hemizygous strains for KAE1 (ATPase required for t6A tRNA modification) gene showed the greatest phenotypic differences for TORC1 activation, with the hemizygous strain carrying the SA allele (KAE1SA) showing the higher TORC1 activation. In addition, we evaluated the fermentative capacities of the hemizygous strains under low nitrogen conditions, observing an antagonistic effect for KAE1SA allele, where the hemizygous strain containing this allele presented the lower fermentation rate. Altogether, these results highlight the importance of the tRNA processing in TORC1 activation and connects this pathway with the yeasts fermentation kinetics under nitrogen-limited conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | | | - Ying Su
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
18
|
Cucurbitacin B Exerts Antiaging Effects in Yeast by Regulating Autophagy and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4517091. [PMID: 31281576 PMCID: PMC6589324 DOI: 10.1155/2019/4517091] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the basic mechanism of aging, which provides useful assay systems for measuring both replicative and chronological lifespans. In the course of our screening program for substances that extend replicative lifespan, cucurbitacin B (CuB) was found as a hit compound from a compound library, which contains cerebrosides, phenols, sesquiterpenoid, triterpenoids, and sterols isolated from natural products by our research group. Importantly, it prolonged not only the replicative lifespan but also the chronological lifespan in yeast. CuB increased ATG32 gene expression, suggesting that CuB induces autophagy. Indeed, the GFP signal generated from the cleavage of GFP-Atg8, which is a signature of autophagy, was increased upon CuB treatment. On the other hand, CuB failed to increase the chronological lifespans when either ATG2 or ATG32, essential autophagy genes, was deleted, indicating that the lifespan extension by CuB depends on autophagy induction. Furthermore, CuB significantly increased superoxide dismutase (Sod) activity and the survival rate of yeast under oxidative stress, while it decreased the amount of reactive oxygen species (ROS) and malondialdehyde (MDA) production, indicating that CuB has activity to antagonize oxidative stress. Additionally, CuB did not affect replicative lifespans of sod1, sod2, uth1, and skn7 mutants with the K6001 background, indicating that aging-related genes including SOD1, SOD2, UTH1, and SKN7 participate in the antiaging effect of CuB. These results suggest that CuB exerts antiaging activity by regulating autophagy, ROS, antioxidative ability, and aging-related genes. Finally, we discuss the possible intracellular targets of CuB based on the phenotypic comparison between the CuB and global gene deletion databases.
Collapse
|
19
|
Abstract
In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.
Collapse
Affiliation(s)
- César Roncero
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
20
|
Pérez-Hernández A, González M, González C, van Kan JAL, Brito N. BcSUN1, a B. cinerea SUN-Family Protein, Is Involved in Virulence. Front Microbiol 2017; 8:35. [PMID: 28163701 PMCID: PMC5247446 DOI: 10.3389/fmicb.2017.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
BcSUN1 is a glycoprotein secreted by Botrytis cinerea, an important plant pathogen that causes severe losses in agriculture worldwide. In this work, the role of BcSUN1 in different aspects of the B. cinerea biology was studied by phenotypic analysis of Bcsun1 knockout strains. We identified BcSUN1 as the only member of the Group-I SUN family of proteins encoded in the B. cinerea genome, which is expressed both in axenic culture and during infection. BcSUN1 is also weakly attached to the cellular surface and is involved in maintaining the structure of the cell wall and/or the extracellular matrix. Disruption of the Bcsun1 gene produces different cell surface alterations affecting the production of reproductive structures and adhesion to plant surface, therefore reducing B. cinerea virulence. BcSUN1 is the first member of the SUN family reported to be involved in the pathogenesis of a filamentous fungus.
Collapse
Affiliation(s)
- Alicia Pérez-Hernández
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Mario González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Celedonio González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research Centre (WUR)Wageningen, Netherlands
| | - Nélida Brito
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| |
Collapse
|
21
|
Yu M, Yu J, Hu J, Huang L, Wang Y, Yin X, Nie Y, Meng X, Wang W, Liu Y. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genet Biol 2015; 76:10-9. [DOI: 10.1016/j.fgb.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
22
|
Berner TS, Jacobsen S, Arneborg N. The impact of different ale brewer's yeast strains on the proteome of immature beer. BMC Microbiol 2013; 13:215. [PMID: 24079909 PMCID: PMC3849757 DOI: 10.1186/1471-2180-13-215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
Background It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. Results Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.
Collapse
Affiliation(s)
- Torben Sune Berner
- Food Microbiology, Department of Food Science, University of Copenhagen, DK-1958, Frederiksberg, Denmark.
| | | | | |
Collapse
|
23
|
Kuznetsov E, Kučerová H, Váchová L, Palková Z. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level. PLoS One 2013; 8:e73882. [PMID: 24040106 PMCID: PMC3770667 DOI: 10.1371/journal.pone.0073882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.
Collapse
Affiliation(s)
- Evgeny Kuznetsov
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Helena Kučerová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Libuše Váchová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Welter E, Montino M, Reinhold R, Schlotterhose P, Krick R, Dudek J, Rehling P, Thumm M. Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS J 2013; 280:4970-82. [PMID: 23910823 DOI: 10.1111/febs.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 01/01/2023]
Abstract
Mitochondria are turned over by an autophagic process termed mitophagy. This process is considered to remove damaged, superfluous and aged organelles. However, little is known about how defective organelles are recognized, what types of damage induce turnover, and whether an identical set of factors contributes to degradation under different conditions. Here we systematically compared the mitophagy rate and requirement for mitophagy-specific proteins during post-log-phase and rapamycin-induced mitophagy. To specifically assess mitophagy of damaged mitochondria, we analyzed cells accumulating proteins prone to degradation due to lack of the mitochondrial AAA-protease Yme1. While autophagy 32 (Atg32) was required under all tested conditions, the function of Atg33 could be partially bypassed in post-log-phase and rapamycin-induced mitophagy. Unexpectedly, we found that Uth1 was dispensable for mitophagy. A re-evaluation of its mitochondrial localization revealed that Uth1 is a protein of the inner mitochondrial membrane that is targeted by a cleavable N-terminal pre-sequence. In agreement with our functional analyses, this finding excludes a role of Uth1 as a mitochondrial surface receptor.
Collapse
Affiliation(s)
- Evelyn Welter
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob Agents Chemother 2013; 57:5026-36. [PMID: 23896475 DOI: 10.1128/aac.00516-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a prevailing fungal pathogen with a diploid genome that can adapt to environmental stresses by losing or gaining an entire chromosome or a large portion of a chromosome. We have previously found that the loss of one copy of chromosome 5 (Ch5) allows for adaptation to the toxic sugar l-sorbose. l-Sorbose is similar to caspofungin and other antifungals from the echinocandins class, in that it represses synthesis of cell wall glucan in fungi. Here, we extended the study of the phenotypes controlled by Ch5 copy number. We examined 57 strains, either disomic or monosomic for Ch5 and representing five different genetic backgrounds, and found that the monosomy of Ch5 causes elevated levels of chitin and repressed levels of 1,3-β-glucan components of the cell wall, as well as diminished cellular ergosterol. Increased deposition of chitin in the cell wall could be explained, at least partially, by a 2-fold downregulation of CHT2 on the monosomic Ch5 that encodes chitinase and a 1.5-fold upregulation of CHS7 on Ch1 that encodes the protein required for wild-type chitin synthase III activity. Other important outcomes of Ch5 monosomy consist of susceptibility changes to agents representing four major classes of antifungals. Susceptibility to caspofungin increased or decreased and susceptibility to 5-fluorocytosine decreased, whereas susceptibility to fluconazole and amphotericin B increased. Our results suggest that Ch5 monosomy represents an unrecognized C. albicans regulatory strategy that impinges on multiple stress response pathways.
Collapse
|
26
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
27
|
Gastebois A, Aimanianda V, Bachellier-Bassi S, Nesseir A, Firon A, Beauvais A, Schmitt C, England P, Beau R, Prévost MC, d'Enfert C, Latgé JP, Mouyna I. SUN proteins belong to a novel family of β-(1,3)-glucan-modifying enzymes involved in fungal morphogenesis. J Biol Chem 2013; 288:13387-96. [PMID: 23508952 DOI: 10.1074/jbc.m112.440172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SUN proteins are involved in yeast morphogenesis, but their function is unknown. RESULTS SUN protein plays a role in the Aspergillus fumigatus morphogenesis. Biochemical properties of recombinant SUN proteins were elucidated. CONCLUSION Both Candida albicans and Aspergillus fumigatus sun proteins show a β-(1,3)-glucanase activity. SIGNIFICANCE The mode of action of SUN proteins on β-(1,3)-glucan is unique, new, and original. In yeasts, the family of SUN proteins has been involved in cell wall biogenesis. Here, we report the characterization of SUN proteins in a filamentous fungus, Aspergillus fumigatus. The function of the two A. fumigatus SUN genes was investigated by combining reverse genetics and biochemistry. During conidial swelling and mycelial growth, the expression of AfSUN1 was strongly induced, whereas the expression of AfSUN2 was not detectable. Deletion of AfSUN1 negatively affected hyphal growth and conidiation. A closer examination of the morphological defects revealed swollen hyphae, leaky tips, intrahyphal growth, and double cell wall, suggesting that, like in yeast, AfSun1p is associated with cell wall biogenesis. In contrast to AfSUN1, deletion of AfSUN2 either in the parental strain or in the AfSUN1 single mutant strain did not affect colony and hyphal morphology. Biochemical characterization of the recombinant AfSun1p and Candida albicans Sun41p showed that both proteins had a unique hydrolysis pattern: acting on β-(1,3)-oligomers from dimer up to insoluble β-(1,3)-glucan. Referring to the CAZy database, it is clear that fungal SUN proteins represent a new family of glucan hydrolases (GH132) and play an important morphogenetic role in fungal cell wall biogenesis and septation.
Collapse
Affiliation(s)
- Amandine Gastebois
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, 25 rue du Docteur Roux, F-75015 Paris
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ. Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 2012; 8:e1002699. [PMID: 22685415 PMCID: PMC3369956 DOI: 10.1371/journal.pgen.1002699] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/23/2012] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency. Zinc is needed for the growth of all organisms because it acts as a required cofactor for many different proteins. Zinc deficiency is a common problem faced by free-living microbes, as well as plants and animals including humans. Among bacterial and fungal pathogens, zinc deficiency is also a key problem they can encounter during pathogenesis. To identify genes and processes that are important for growth when zinc is scarce, we used genome-wide functional profiling. In this approach, a collection of ∼4,600 mutant yeast strains, each lacking the function of a different gene, was tested to determine which genes are needed for optimal growth in low zinc. More than 400 genes were identified as being important. The identity of these genes implicates a large number of different processes as critical for low zinc growth. These included genes that are targets of the zinc-regulated Zap1 transcription factor as well as genes involved in secretory pathway function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. As a result, we now know of many processes that might be good targets for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Matthew North
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alex V. Loguinov
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - Ginelle R. Zimmerman
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris D. Vulpe
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - David J. Eide
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
30
|
Avrahami-Moyal L, Engelberg D, Wenger JW, Sherlock G, Braun S. Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 2012; 12:521-33. [PMID: 22443114 DOI: 10.1111/j.1567-1364.2012.00803.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/28/2022] Open
Abstract
We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in a medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 to 0.32 h(-1) . Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within 6 days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within 2 days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of six clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 of 19 tolerant clones, the stop codon in ssd1-d was replaced with an amino acid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol.
Collapse
Affiliation(s)
- Liat Avrahami-Moyal
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
31
|
The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int J Cell Biol 2012; 2012:431684. [PMID: 22550491 PMCID: PMC3328949 DOI: 10.1155/2012/431684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022] Open
Abstract
Research into the selective autophagic degradation of mitochondria—mitophagy—has intensified in recent years, yielding significant insights into the function, mechanism, and regulation of this process in the eukaryotic cell. However, while some molecular players in budding yeast, such as Atg32p, Uth1p, and Aup1p, have been identified, studies further interrogating the mechanistic and regulatory features of mitophagy have yielded inconsistent and sometimes conflicting results. In this review, we focus on the current understanding of mitophagy mechanism, induction, and regulation in yeast, and suggest that differences in experimental conditions used in the various studies of mitophagy may contribute to the observed discrepancies. Consideration and understanding of these differences may help place the mechanism and regulation of mitophagy in context, and further indicate the intricate role that this essential process plays in the life and death of eukaryotic cells.
Collapse
|
32
|
Abstract
A concerted balance between proliferation and apoptosis is essential to the survival of multicellular organisms. Thus, apoptosis per se, although it is a destructive process leading to the death of single cells, also serves as a pro-survival mechanism pro-survival mechanism that ensures healthy organismal development and acts as a life-prolonging or anti-aging anti-aging program. The discovery that yeast also possess a functional and, in many cases, highly conserved apoptotic machinery has made it possible to study the relationships between aging and apoptosis in depth using a well-established genetic system and the powerful tools available to yeast researchers for investigating complex physiological and cytological interactions. The aging process of yeast, be it replicative replicative or chronological chronological aging, is closely related to apoptosis, although it remains unclear whether apoptosis is a causal feature of the aging process or vice versa. Nevertheless, experimental results obtained during the past several years clearly demonstrate that yeast serve as a powerful and versatile experimental system for understanding the interconnections between these two fundamentally important cellular and physiological pathways.
Collapse
Affiliation(s)
- Peter Laun
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria,
| | | | | | | | | |
Collapse
|
33
|
Purification and characterization of a β-1,3-glucomannanase expressed in Pichia pastoris. Enzyme Microb Technol 2011; 49:223-8. [DOI: 10.1016/j.enzmictec.2011.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/22/2011] [Accepted: 04/04/2011] [Indexed: 11/21/2022]
|