1
|
Li Z, You L, Du X, Yang H, Yang L, Zhu Y, Li L, Jiang Z, Li Q, He N, Lin R, Chen Z, Ni H. New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. Crit Rev Biotechnol 2025; 45:454-472. [PMID: 38797672 DOI: 10.1080/07388551.2024.2344578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Haoyi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| |
Collapse
|
2
|
Jia J, Chen Z, Li Q, Li F, Liu S, Bao G. The enhancement of astaxanthin production in Phaffia rhodozyma through a synergistic melatonin treatment and zinc finger transcription factor gene overexpression. Front Microbiol 2024; 15:1367084. [PMID: 38666259 PMCID: PMC11043562 DOI: 10.3389/fmicb.2024.1367084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.
Collapse
Affiliation(s)
- Jianping Jia
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qingqing Li
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guoliang Bao
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Li Q, Zhang J, Guan X, Lu Y, Liu Y, Liu J, Xu N, Cai C, Nan B, Li X, Liu J, Wang Y. Metabolite analysis of soybean oil on promoting astaxanthin production of Phaffia rhodozyma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2997-3005. [PMID: 36448538 DOI: 10.1002/jsfa.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Astaxanthin is a carotenoid with strong antioxidant property. In addition, it has anti-cancer, anti-tumor, anti-inflammatory and many other functions. The micro-organisms that mainly produce astaxanthin are Haematococcus pluvialis and Phaffia rhodozyma. Compared with H. pluvialis, P. rhodozyma has shorter fermentation cycle and easier to control culture conditions, but the yield of astaxanthin in P. rhodozyma is low. This article studied how to improve the astaxanthin production of P. rhodozyma. RESULTS The results showed that when 10 mL L-1 soybean oil was added to the culture medium, astaxanthin production increased significantly, reaching 7.35 mg L-1 , which was 1.4 times that of the control group, and lycopene and β-carotene contents also increased significantly. Through targeted metabolite analysis, the fatty acids in P. rhodozyma significantly increased under the soybean oil stimulation, especially the fatty acids closely related to the formation of astaxanthin esters, included palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9), linoleic acid (C18:2n6), α-linolenic acid (C18:3n3) and γ-linolenic acid (C18:3n6), thereby increasing the astaxanthin esters content. CONCLUSION It showed that the addition of soybean oil can promote the accumulation of astaxanthin by promoting the increase of astaxanthin ester content. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xiaoyu Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yanhong Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yankai Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiahuan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Na Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunyu Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| |
Collapse
|
4
|
Yang L, Yang HY, You L, Ni H, Jiang ZD, Du XP, Zhu YB, Zheng MJ, Li LJ, Lin R, Li ZP, Li QB. Transcriptomics analysis and fed-batch regulation of high astaxanthin-producing Phaffia rhodozyma/Xanthophyllomyces dendrorhous obtained through adaptive laboratory evolution. J Ind Microbiol Biotechnol 2023; 50:kuad015. [PMID: 37580133 PMCID: PMC10448994 DOI: 10.1093/jimb/kuad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.
Collapse
Affiliation(s)
- Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hao-Yi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ze-Dong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Xi-Ping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yan-Bing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ming-Jing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Li-Jun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen 361008, China
| | - Zhi-Peng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qing-Biao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|
5
|
Luna-Flores CH, Wang A, Cui Z, von Hellens J, Speight RE. An enhanced electron transport chain improved astaxanthin production in Phaffia rhodozyma. Biotechnol Bioeng 2023; 120:1382-1398. [PMID: 36639843 DOI: 10.1002/bit.28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Astaxanthin (AX) is a carotenoid pigment with antioxidant properties widely used as a feed supplement. Wild-type strains of Phaffia rhodozyma naturally produce low AX yields, but we increased AX yields 50-fold in previous research using random mutagenesis of P. rhodozyma CBS6938 and fermentation optimization. On that study, genome changes were linked with phenotype, but relevant metabolic changes were not resolved. In this study, the wild-type and the superior P. rhodozyma mutant strains were grown in chemically defined media and instrumented fermenters. Differential kinetic, metabolomics, and transcriptomics data were collected. Our results suggest that carotenoid production was mainly associated with cell growth and had a positive regulation of central carbon metabolism metabolites, amino acids, and fatty acids. In the stationary phase, amino acids associated with the TCA cycle increased, but most of the fatty acids and central carbon metabolism metabolites decreased. TCA cycle metabolites were in abundance and media supplementation of citrate, malate, α-ketoglutarate, succinate, or fumarate increased AX production in the mutant strain. Transcriptomic data correlated with the metabolic and genomic data and found a positive regulation of genes associated with the electron transport chain suggesting this to be the main driver for improved AX production in the mutant strain.
Collapse
Affiliation(s)
- Carlos H Luna-Flores
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Zhenling Cui
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | | | - Robert E Speight
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Mussagy CU, Remonatto D, Picheli FP, Paula AV, Herculano RD, Santos-Ebinuma VC, Farias RL, S D Onishi B, J L Ribeiro S, F B Pereira J, Pessoa A. A look into Phaffia rhodozyma biorefinery: From the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics. BIORESOURCE TECHNOLOGY 2022; 362:127785. [PMID: 35970502 DOI: 10.1016/j.biortech.2022.127785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids over-producing yeast has become a focus of interest of the biorefineries, in which the integration of the bioproduction with the following downstream processing units for the recovery and purification of carotenoids and other value-added byproducts is crucial to improve the sustainability and profitability of the overall bioprocess. Aiming the future implementation of Phaffia rhodozyma-based biorefineries, in this work, an integrative process for fractionation of intracellular compounds from P. rhodozyma biomass using non-hazardous bio-based solvents was developed. After one-extraction step, the total amount of astaxanthin, β-carotene, lipids and proteins recovered was 63.11 µg/gDCW, 42.81 µg/gDCW, 53.75 mg/gDCW and 10.93 mg/g, respectively. The implementation of sequential back-extraction processes and integration with saponification and precipitation operations allowed the efficient fractionation and recovery (% w/w) of astaxanthin (∼72.5 %), β-carotene ∼90.17 %), proteins (21.04 %) and lipids (23.72 %). After fractionation, the manufacture of carotenoids-based products was demonstrated, through the mixture of carotenoids-rich extracts with bacterial cellulose to obtain biologically active bioplastics.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Daniela Remonatto
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Flavio P Picheli
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Ariela V Paula
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Rondinelli D Herculano
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Valéria C Santos-Ebinuma
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Renan L Farias
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, RJ, 22451-900, Brazil
| | - Bruno S D Onishi
- Sao Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP 14800-060, Brazil
| | - Sidney J L Ribeiro
- Sao Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP 14800-060, Brazil
| | - Jorge F B Pereira
- São Paulo University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara 14800-903, SP, Brazil; Univ Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Adalberto Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Identification of the sesquiterpene synthase AcTPS1 and high production of (-)-germacrene D in metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:89. [PMID: 35585553 PMCID: PMC9115970 DOI: 10.1186/s12934-022-01814-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background The sesquiterpene germacrene D is a highly promising product due to its wide variety of insecticidal activities and ability to serve as a precursor for many other sesquiterpenes. Biosynthesis of high value compounds through genome mining for synthases and metabolic engineering of microbial factories, especially Saccharomyces cerevisiae, has been proven to be an effective strategy. However, there have been no studies on the de novo synthesis of germacrene D from carbon sources in microbes. Hence, the construction of the S. cerevisiae cell factory to achieve high production of germacrene D is highly desirable. Results We identified five putative sesquiterpene synthases (AcTPS1 to AcTPS5) from Acremonium chrysogenum and the major product of AcTPS1 characterized by in vivo, in vitro reaction and NMR detection was revealed to be (–)-germacrene D. After systematically comparing twenty-one germacrene D synthases, AcTPS1 was found to generate the highest amount of (–)-germacrene D and was integrated into the terpene precursor-enhancing yeast strain, achieving 376.2 mg/L of (–)-germacrene D. Iterative engineering was performed to improve the production of (–)-germacrene D, including increasing the copy numbers of AcTPS1, tHMG1 and ERG20, and downregulating or knocking out other inhibitory factors (such as erg9, rox1, dpp1). Finally, the optimal strain LSc81 achieved 1.94 g/L (–)-germacrene D in shake-flask fermentation and 7.9 g/L (–)-germacrene D in a 5-L bioreactor, which is the highest reported (–)-germacrene D titer achieved to date. Conclusion We successfully achieved high production of (–)-germacrene D in S. cerevisiae through terpene synthase mining and metabolic engineering, providing an impressive example of microbial overproduction of high-value compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01814-4.
Collapse
|
9
|
Luna-Flores CH, Wang A, von Hellens J, Speight RE. Towards commercial levels of astaxanthin production in Phaffia rhodozyma. J Biotechnol 2022; 350:42-54. [DOI: 10.1016/j.jbiotec.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
|
10
|
Shi Z, He X, Zhang H, Guo X, Cheng Y, Liu X, Wang Z, He X. Whole Genome Sequencing and RNA-seq-Driven Discovery of New Targets That Affect Carotenoid Synthesis in Phaffia rhodozyma. Front Microbiol 2022; 13:837894. [PMID: 35387079 PMCID: PMC8978057 DOI: 10.3389/fmicb.2022.837894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are unsaturated compounds with terpene groups. Among them, astaxanthin has strong antioxidant properties. It is widely used in aquaculture, food, medicine, and cosmetics with a broad market prospect. Phaffia rhodozyma is an important microorganism that synthesizes astaxanthin, but its wild strains have low pigment content, long growth cycle, and low fermentation temperature. Therefore, it is important to research the genetic improvement of the physiological and biochemical properties of P. rhodozyma. In this study, the atmospheric and room temperature plasma mutagenesis technology was adopted, through the functional evolution of the carotenoid production performance; then, through the comparative analysis of the genomics and transcriptomics of the wild strain and evolved strain, the key factor GST1 gene that affects carotenoid synthesis was discovered.
Collapse
Affiliation(s)
- Zhihui Shi
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hailiang Zhang
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
The role of key genes in astaxanthin biosynthesis in Phaffia rhodozyma by transcript level and gene knockout. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Li Z, Yang H, Zheng C, Du X, Ni H, He N, Yang L, You L, Zhu Y, Li L. Effectively Improve the Astaxanthin Production by Combined Additives Regulating Different Metabolic Nodes in Phaffia rhodozyma. Front Bioeng Biotechnol 2022; 9:812309. [PMID: 35111739 PMCID: PMC8801872 DOI: 10.3389/fbioe.2021.812309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Astaxanthin is an important natural resource that is widely found in marine environments. Metabolic regulation is an effective method for improving astaxanthin production in Phaffia rhodozyma. Most studies have focused on single regulators, which have limited effects. In this study, 16 metabolic regulators were screened to improve astaxanthin production in high-yield and wild-type strains. Fluconazol and glutamic acid increased astaxanthin volumetric yield in MVP14 by 25.8 and 30.9%, respectively, while ethanol increased astaxanthin volumetric yield in DSM626, 29.3%. Furthermore, six additives that inhibit the competing pathways and promote the main pathway for astaxanthin synthesis were selected for combination treatment. We found that the optimal combination was penicillin, ethanol, triclosan, and fluconazol, which increased astaxanthin cell yield by 51%. Therefore, we suggest that simultaneously promoting the master pathways (mevalonate) and inhibiting competing pathways (fatty acid synthesis and ergosterol) is the best strategy to improve astaxanthin cell yield. Moreover, regulators of the biomass pathway should be avoided to improve cell yield. This study provides a technical basis for the utilisation of astaxanthin in P. rhodozyma.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Haoyi Yang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Chenhua Zheng
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiping Du
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liang Yang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Li You
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Yanbing Zhu
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Lijun Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- *Correspondence: Lijun Li,
| |
Collapse
|
13
|
Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, Sánchez S, García-Flores OU. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. J Ind Microbiol Biotechnol 2021; 48:kuab048. [PMID: 34302341 PMCID: PMC8788774 DOI: 10.1093/jimb/kuab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast that synthesizes astaxanthin (ASX), which is a powerful and highly valuable antioxidant carotenoid pigment. P. rhodozyma cells accrue ASX and gain an intense red-pink coloration when faced with stressful conditions such as nutrient limitations (e.g., nitrogen or copper), the presence of toxic substances (e.g., antimycin A), or are affected by mutations in the genes that are involved in nitrogen metabolism or respiration. Since cellular accrual of ASX occurs under a wide variety of conditions, this yeast represents a valuable model for studying the growth conditions that entail oxidative stress for yeast cells. Recently, we proposed that ASX synthesis can be largely induced by conditions that lead to reduction-oxidation (redox) imbalances, particularly the state of the NADH/NAD+ couple together with an oxidative environment. In this work, we review the multiple known conditions that elicit ASX synthesis expanding on the data that we formerly examined. When considered alongside the Mitchell's chemiosmotic hypothesis, the study served to rationalize the induction of ASX synthesis and other adaptive cellular processes under a much broader set of conditions. Our aim was to propose an underlying mechanism that explains how a broad range of divergent conditions converge to induce ASX synthesis in P. rhodozyma. The mechanism that links the induction of ASX synthesis with the occurrence of NADH/NAD+ imbalances may help in understanding how other organisms detect any of a broad array of stimuli or gene mutations, and then adaptively respond to activate numerous compensatory cellular processes.
Collapse
Affiliation(s)
- Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Anahi Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Sergio Sánchez
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México city 04510, México
| | - Oscar Ulises García-Flores
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| |
Collapse
|
14
|
Kikukawa H, Shimizu C, Hirono-Hara Y, Hara KY. Effect of ethanol on astaxanthin and fatty acid production in the red yeast Xanthophyllomyces dendrorhous. J Appl Microbiol 2021; 132:2034-2041. [PMID: 34689386 DOI: 10.1111/jam.15335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023]
Abstract
AIM The effects of detergent, ethanol and ethanol with plant meadowfoam oil on the growth of the red heterobasidomycete Xanthophyllomyces dendrorhous and on the production of astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) and fatty acids in this red yeast were investigated. METHODS AND RESULTS Ethanol supplementation at a final concentration of 0.8% (v/v) caused an increase in the growth, astaxanthin production and fatty acid production of treated X. dendrorhous compared with untreated X. dendrorhous. Supplementation of meadowfoam oil with 0.8% ethanol further improved the growth and astaxanthin production of X. dendrorhous. Fatty acid compositions following supplementation with various concentrations of ethanol and oil were also analysed. With 0.8% ethanol supplementation, the ratio of linoleic acid (C18:2) and α-linolenic acid (C18:3ω3, ALA) decreased. Conversely, with 1.8% ethanol supplementation, the ALA ratio increased. CONCLUSIONS Ethanol can serve as a promoting factor for coproduction of astaxanthin and fatty acids in X. dendrorhous, whereas simultaneous supplementation of ethanol and meadowfoam oil can cause further astaxanthin production. SIGNIFICANCE AND IMPACT OF STUDY Astaxanthin is widely used in various functional products because of its antioxidant activity. This study shows that X. dendrorhous can coproduce astaxanthin and functional fatty acids at high levels following supplementation with ethanol.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Chisato Shimizu
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
15
|
Screening of plant oils promoting growth of the red yeast Xanthophyllomyces dendrorhous with astaxanthin and fatty acid production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Liu S, Yi H, Zhan H, Wang L, Wang J, Li Y, Liu B. Gibberellic acid-induced fatty acid metabolism and ABC transporters promote astaxanthin production in Phaffia rhodozyma. J Appl Microbiol 2021; 132:390-400. [PMID: 34161638 DOI: 10.1111/jam.15187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
AIMS Astaxanthin is an important natural antioxidant with various biological functions; however, the production of astaxanthin does not meet the requirements for industrialization. The aim of the present study was to identify an inducer that increases astaxanthin yield and to evaluate the regulatory mechanism of the induction of astaxanthin synthesis in Phaffia rhodozyma. METHODS AND RESULTS The effects of indole-3-acetic acid (IAA), jasmonic acid (JA) and gibberellic acid (GA) on astaxanthin synthesis were studied by fermentation kinetics analysis. Then, combined transcriptomics and metabolomics approaches were used to analyse differential metabolites and expressed genes involved in astaxanthin synthesis induced by GA. The results indicated that GA significantly increased astaxanthin production; however, IAA and JA had no significant effect on astaxanthin synthesis. The induction by GA significantly enhanced fatty acid metabolism and ABC transporters, increased the expression of fatty acid desaturase and ABC transporter genes, and elevated the contents of unsaturated fatty acids. CONCLUSIONS These results suggested that fatty acid saturation plays an important role in astaxanthin accumulation and that ABC transporters may be the efflux pumps for astaxanthin. SIGNIFICANCE AND IMPACT OF THE STUDY The present study reveals metabolic mechanism of GA-induced astaxanthin synthesis and proposes a new strategy of transporter engineering to improve astaxanthin production.
Collapse
Affiliation(s)
- Sijiao Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Hong Yi
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Ying Li
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Bingnan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
17
|
Yang Q, Lu T, Yan J, Li J, Zhou H, Pan X, Lu Y, He N, Ling X. Regulation of polyunsaturated fatty acids synthesis by enhancing carotenoid-mediated endogenous antioxidant capacity in Schizochytrium sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng 2021; 118:2043-2052. [PMID: 33605428 DOI: 10.1002/bit.27717] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.
Collapse
Affiliation(s)
- Yijin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
19
|
Miao LL, Chi S, Hou TT, Liu ZP, Li Y. The damage and tolerance mechanisms of Phaffia rhodozyma mutant strain MK19 grown at 28 °C. Microb Cell Fact 2021; 20:5. [PMID: 33413415 PMCID: PMC7791638 DOI: 10.1186/s12934-020-01479-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background Phaffia rhodozyma has many desirable properties for astaxanthin production, including rapid heterotrophic metabolism and high cell densities in fermenter culture. The low optimal temperature range (17–21 °C) for cell growth and astaxanthin synthesis in this species presents an obstacle to efficient industrial-scale astaxanthin production. The inhibition mechanism of cell growth at > 21 °C in P. rhodozyma have not been investigated. Results MK19, a mutant P. rhodozyma strain grows well at moderate temperatures, its cell growth was also inhibited at 28 °C, but such inhibition was mitigated, and low biomass 6 g/L was obtained after 100 h culture. Transcriptome analysis indicated that low biomass at 28 °C resulted from strong suppression of DNA and RNA synthesis in MK19. Growth inhibition at 28 °C was due to cell membrane damage with a characteristic of low mRNA content of fatty acid (f.a.) pathway transcripts (acc, fas1, fas2), and consequent low f.a. content. Thinning of cell wall and low mannose content (leading to loss of cell wall integrity) also contributed to reduced cell growth at 28 °C in MK19. Levels of astaxanthin and ergosterol, two end-products of isoprenoid biosynthesis (a shunt pathway of f.a. biosynthesis), reached 2000 µg/g and 7500 µg/g respectively; ~2-fold higher than levels at 21 or 25 °C. Abundance of ergosterol, an important cell membrane component, compensated for lack of f.a., making possible the biomass production of 6 g/L for MK19 at 28 °C. Conclusions Inhibition of growth of P. rhodozyma at 28 °C results from blocking of DNA, RNA, f.a., and cell wall biosynthesis. In MK19, abundant ergosterol made possible biomass production 6 g/L at 28 °C. Significant accumulation of astaxanthin and ergosterol indicated an active MVA pathway in MK19 at 28 °C. Strengthening of the MVA pathway can be a feasible metabolic engineering approach for enhancement of astaxanthin synthesis in P. rhodozyma. The present findings provide useful mechanistic insights regarding adaptation of P. rhodozyma to 28 °C, and improved understanding of feasible metabolic engineering techniques for industrial scale astaxanthin production by this economically important yeast species.
Collapse
Affiliation(s)
- Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Shuang Chi
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ting-Ting Hou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ying Li
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
20
|
Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, Li S, Mustafa K, Mohamed H, Yang W, Song Y. Redirecting Metabolic Flux towards the Mevalonate Pathway for Enhanced β-Carotene Production in M. circinelloides CBS 277.49. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8890269. [PMID: 33457420 PMCID: PMC7785371 DOI: 10.1155/2020/8890269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Hafiy Halim
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Abu Bakr Ahmad Fazili
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Kiren Mustafa
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
21
|
Venegas M, Barahona S, González AM, Sepúlveda D, Zúñiga GE, Baeza M, Cifuentes V, Alcaíno J. Phenotypic Analysis of Mutants of Ergosterol Biosynthesis Genes ( ERG3 and ERG4) in the Red Yeast Xanthophyllomyces dendrorhous. Front Microbiol 2020; 11:1312. [PMID: 32612595 PMCID: PMC7309136 DOI: 10.3389/fmicb.2020.01312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid used in aquaculture. Astaxanthin is synthesized from metabolites of the mevalonate pathway, which are also precursors for sterols biosynthesis. The interruption of the CYP61 gene, which is involved in the synthesis of ergosterol (mutant CBS.cyp61 -), resulted in a phenotype that overproduces carotenoids due to the activation of the SREBP pathway. In this work, we constructed other mutants of ergosterol biosynthesis in this yeast to evaluate whether they have the same phenotype as mutant CBS.cyp61 -. By bioinformatic analysis, the ERG3 and ERG4 genes of X. dendrorhous were identified, and each gene was deleted in the wild-type strain. Mutants CBS.Δerg3 and CBS.Δerg4 did not produce ergosterol; CBS.Δerg3 primarily accumulated episterol, and CBS.Δerg4 primarily accumulated ergosta-5,7,22,24(28)-tetraenol. The transcription levels of the HMGS gene of the mevalonate pathway were evaluated by RT-qPCR, which showed a slight increase in CBS.Δerg4, but the transcription levels were still 10-fold lower than in strain CBS.cyp61 -. Both CBS.Δerg3 and CBS.Δerg4 did not overproduce carotenoids, even though they do not produce ergosterol. Thus, the results of this study indicate that the absence of ergosterol does not activate the SREBP pathway in X. dendrorhous, but rather it depends on other alterations in sterol composition.
Collapse
Affiliation(s)
- Maximiliano Venegas
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ana María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gustavo E. Zúñiga
- Departamento de Biología, Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Czajka JJ, Kambhampati S, Tang YJ, Wang Y, Allen DK. Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics During Yarrowia lipolytica α-Ionone Fermentation. iScience 2020; 23:100854. [PMID: 32058965 PMCID: PMC7005465 DOI: 10.1016/j.isci.2020.100854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering. A HILIC method is demonstrated for efficient separation of 57 cellular metabolites Production of α-ionone was ∼400 mg/L in bench-top bioreactors Engineered Y. lipolytica secreted then consumed mevalonate during fermentation Oxidative phosphorylation may limit performance in high-cell-density fermentations
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | | | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA.
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Avenue, St Louis, MO, USA.
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, USA.
| |
Collapse
|
23
|
Li J, Zhou H, Pan X, Li Z, Lu Y, He N, Meng T, Yao C, Chen C, Ling X. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381. BMC Microbiol 2019; 19:256. [PMID: 31729956 PMCID: PMC6858700 DOI: 10.1186/s12866-019-1622-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/23/2019] [Indexed: 12/01/2022] Open
Abstract
Background Schizochytrium has been widely used in industry for synthesizing polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA). However, unclear biosynthesis pathway of PUFAs inhibits further production of the Schizochytrium. Unsaponifiable matter (UM) from mevalonate pathway is crucial to cell growth and intracellular metabolism in all higher eukaryotes and microalgae. Therefore, regulation of UM biosynthesis in Schizochytrium may have important effects on fatty acids synthesis. Moreover, it is well known that UMs, such as squalene and β-carotene, are of great commercial value. Thus, regulating UM biosynthesis may also allow for an increased valuation of Schizochytrium. Results To investigate the correlation of UM biosynthesis with fatty acids accumulation in Schizochytrium, fluconazole was used to block the sterols pathway. The addition of 60 mg/L fluconazole at 48 h increased the total lipids (TLs) at 96 h by 16% without affecting cell growth, which was accompanied by remarkable changes in UMs and NADPH. Cholesterol content was reduced by 8%, and the squalene content improved by 45% at 72 h, which demonstrated fluconazole’s role in inhibiting squalene flow to cholesterol. As another typical UM with antioxidant capacity, the β-carotene production was increased by 53% at 96 h. The increase of squalene and β-carotene could boost intracellular oxidation resistance to protect fatty acids from oxidation. The NADPH was found to be 33% higher than that of the control at 96 h, which meant that the cells had more reducing power for fatty acid synthesis. Metabolic analysis further confirmed that regulation of sterols was closely related to glucose absorption, pigment biosynthesis and fatty acid production in Schizochytrium. Conclusion This work first reported the effect of UM biosynthesis on fatty acid accumulation in Schizochytrium. The UM was found to affect fatty acid biosynthesis by changing cell membrane function, intracellular antioxidation and reducing power. We believe that this work provides valuable insights in improving PUFA and other valuable matters in microalgae.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hao Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
24
|
Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 289:121720. [PMID: 31271916 DOI: 10.1016/j.biortech.2019.121720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin Zhang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol 2019; 85:AEM.01243-19. [PMID: 31375482 DOI: 10.1128/aem.01243-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Schizochytrium is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in Schizochytrium limacinum B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene β-cyclase, and β-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer Schizochytrium when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in Schizochytrium IMPORTANCE Schizochytrium strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Schizochytrium Methanol induced Schizochytrium to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in Schizochytrium grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of Schizochytrium for astaxanthin biosynthesis.
Collapse
|
26
|
Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Miao L, Chi S, Wu M, Liu Z, Li Y. Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19. BMC Microbiol 2019; 19:133. [PMID: 31202260 PMCID: PMC6570914 DOI: 10.1186/s12866-019-1507-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Background A major obstacle to industrial-scale astaxanthin production by the yeast Phaffia rhodozyma is the strong inhibitory effect of high glucose concentration on astaxanthin synthesis. We investigated, for the first time, the mechanism of the regulatory effect of high glucose (> 100 g/L) at the metabolite and transcription levels. Results Total carotenoid, β-carotene, and astaxanthin contents were greatly reduced in wild-type JCM9042 at high (110 g/L) glucose; in particular, β-carotene content at 24–72 h was only 14–17% of that at low (40 g/L) glucose. The inhibitory effect of high glucose on astaxanthin synthesis appeared to be due mainly to repression of lycopene-to-β-carotene and β-carotene-to-astaxanthin steps in the pathway. Expression of carotenogenic genes crtE, pbs, and ast was also strongly inhibited by high glucose; such inhibition was mediated by creA, a global negative regulator of carotenogenic genes which is strongly induced by glucose. In contrast, astaxanthin-overproducing, glucose metabolic derepression mutant strain MK19 displayed de-inhibition of astaxanthin synthesis at 110 g/L glucose; this de-inhibition was due mainly to deregulation of pbs and ast expression, which in turn resulted from low creA expression. Failure of glucose to induce the genes reg1 and hxk2, which maintain CreA activity, also accounts for the fact that astaxanthin synthesis in MK19 was not repressed at high glucose. Conclusion We conclude that astaxanthin synthesis in MK19 at high glucose is enhanced primarily through derepression of carotenogenic genes (particularly pbs), and that this process is mediated by CreA, Reg1, and Hxk2 in the glucose signaling pathway.
Collapse
Affiliation(s)
- Lili Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Shuang Chi
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengru Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
28
|
Gutiérrez MS, Campusano S, González AM, Gómez M, Barahona S, Sepúlveda D, Espenshade PJ, Fernández-Lobato M, Baeza M, Cifuentes V, Alcaíno J. Sterol Regulatory Element-Binding Protein (Sre1) Promotes the Synthesis of Carotenoids and Sterols in Xanthophyllomyces dendrorhous. Front Microbiol 2019; 10:586. [PMID: 30984134 PMCID: PMC6449425 DOI: 10.3389/fmicb.2019.00586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a basidiomycete yeast that synthesizes carotenoids, mainly astaxanthin, which are of great commercial interest. Currently, there are many unknown aspects related to regulatory mechanisms on the synthesis of carotenoids in this yeast. Our recent studies showed that changes in sterol levels and composition resulted in upregulation of genes in the mevalonate pathway required for the synthesis of carotenoid precursors, leading to increased production of these pigments. Sterol Regulatory Element-Binding Proteins (SREBP), called Sre1 in yeast, are conserved transcriptional regulators of sterol homeostasis and other cellular processes. Given the results linking sterols and carotenoids, we investigated the role of SREBP in sterol and carotenoid synthesis in X. dendrorhous. In this study, we present the identification and functional characterization of the X. dendrorhous SRE1 gene, which encodes the transcription factor Sre1. The deduced protein has the characteristic features of SREBP/Sre1 and binds to consensus DNA sequences in vitro. RNA-seq analysis and chromatin-immunoprecipitation experiments showed that genes of the mevalonate pathway and ergosterol biosynthesis are directly regulated by Sre1. The sre1- mutation reduced sterol and carotenoid production in X. dendrorhous, and expression of the Sre1 N-terminal domain (Sre1N) increased carotenoid production more than twofold compared to wild-type. Overall, our results indicate that in X. dendrorhous transcriptional regulation of genes in the mevalonate pathway control production of the isoprenoid derivatives, carotenoids and sterol. Our results provide new insights into the conserved regulatory functions of SREBP/Sre1 and identify pointing to the SREBP pathway as a potential target to enhance carotenoid production in X. dendrorhous.
Collapse
Affiliation(s)
- María Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ana María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - María Fernández-Lobato
- Centro de Biologiìa Molecular Severo Ochoa, Departamento de Biologiìa Molecular (UAM-CSIC), Universidad Autoìnoma de Madrid, Madrid, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Liu S, Liu B, Wang H, Xiao S, Li Y, Wang J. Production of astaxanthin at moderate temperature in Xanthophyllomyces dendrorhous using a two-step process. Eng Life Sci 2018; 18:706-710. [PMID: 32624864 DOI: 10.1002/elsc.201800065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
In order to achieve continuous industrial production of astaxanthin in Xanthophyllomyces dendrorhous, a moderate temperature (25-37°C) fermentation process was needed. In this study, a two-step process with a 20°C pre-culture for 18 h and a 30°C culture for 30 h was performed to achieve the astaxanthin yields of 116.42 μg g-1 dry cell weight, which was lower than that in the normal process (20°C, 96 h). However, cell yield (YX/S) and product yield (YP/S) showed no significant differences between the two processes, suggesting that moderate temperature did not affect the productivity of astaxanthin. The transcriptional levels of genes involved in astaxanthin synthesis were compared in different culture times and a negative correlation between temperature and expression of carotenogenic genes was found. This work provided a potential method for continuous production of astaxanthin using X. dendrorhous at moderate temperature throughout the year.
Collapse
Affiliation(s)
- Shiwen Liu
- School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Bingnan Liu
- School of Biological Engineering Dalian Polytechnic University Dalian P. R. China
| | - Han Wang
- School of Biological Engineering Dalian Polytechnic University Dalian P. R. China
| | - Shan Xiao
- School of Biological Engineering Dalian Polytechnic University Dalian P. R. China
| | - Ying Li
- College of Food Science and Engineering Dalian Ocean University Dalian P. R. China
| | - Jihui Wang
- School of Biological Engineering Dalian Polytechnic University Dalian P. R. China.,School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan P. R. China
| |
Collapse
|
30
|
Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Appl Environ Microbiol 2018; 84:AEM.00036-18. [PMID: 29625976 DOI: 10.1128/aem.00036-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023] Open
Abstract
The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters.IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide access to this chemodiversity for the discovery and synthesis of molecules with new bioactivities. The identification and successful cloning of the previously elusive hirsutene synthase from the S. hirsutum provide important insights and strategies for biosynthetic gene discovery in Basidiomycota. The finding of a terpene synthase-HMGS fusion, the discovery of other sesquiterpenoid biosynthetic gene clusters with dedicated HMGS genes, and HMGS gene duplications in fungal genomes give new importance to the role of HMGS as a key regulatory enzyme in isoprenoid and sterol biosynthesis that should be exploited for metabolic engineering.
Collapse
|
31
|
Bu X, Sun L, Shang F, Yan G. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. PLoS One 2017; 12:e0188385. [PMID: 29161329 PMCID: PMC5697841 DOI: 10.1371/journal.pone.0188385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based approach. The results showed that most of the central intermediates associated with amino acids, carbohydrates, glycolysis and TCA cycle intermediates (acetic acid, glycerol, citric acid, pyruvic acid and succinic acid), fatty acids, ergosterol and energy metabolites were produced in a lower amount in recombinant strain, as compared to the parent strain. To increase β-carotene production in recombinant strain, a strategy that exogenous addition of acetate (10 g/l) in exponential phase was developed, which could enhance most intracellular metabolites levels and result in 39.3% and 14.2% improvement of β-carotene concentration and production, respectively, which was accompanied by the enhancement of acetyl-CoA, fatty acids, ergosterol and ATP contents in cells. These results indicated that the amounts of intracellular metabolites in engineered strain are largely consumed by carotenoid formation. Therefore, maintaining intracellular metabolites pool at normal levels is essential for carotenoid biosynthesis. To relieve this limitation, rational supplementation of acetate could be a potential way because it can partially restore the levels of intracellular metabolites and improve the production of carotenoid compounds in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Xiao Bu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Liang Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Fei Shang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, P.R., China
| | - Guoliang Yan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
- * E-mail:
| |
Collapse
|
32
|
Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 2017; 41:192-201. [PMID: 28414174 DOI: 10.1016/j.ymben.2017.04.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
β-Carotene is a terpenoid molecule with high hydrophobicity that is often used as an additive in foods and feed. Previous work has demonstrated the heterologous biosynthesis of β-carotene from an intrinsic high flux of acetyl-CoA in 12 steps through 11 genes in Yarrowia lipolytica. Here, an efficient biosynthetic pathway capable of producing 100-fold more β-carotene than the baseline construct was generated using strong promoters and multiple gene copies for each of the 12 steps. Using fed-batch fermentation with an optimized medium, the engineered pathway could produce 4g/L β-carotene, which was stored in lipid droplets within engineered Y. lipolytica cells. Expansion of these cells for squalene production also demonstrated that Y. lipolytica could be an industrially relevant platform for hydrophobic terpenoid production.
Collapse
|
33
|
Ye L, Lv X, Yu H. Engineering microbes for isoprene production. Metab Eng 2016; 38:125-138. [DOI: 10.1016/j.ymben.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023]
|
34
|
Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun 2016; 7:12851. [PMID: 27650330 PMCID: PMC5036000 DOI: 10.1038/ncomms12851] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.
Collapse
Affiliation(s)
- Xiaomei Lv
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Wenping Xie
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoming Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Liu P, Sun L, Sun Y, Shang F, Yan G. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids. J Ind Microbiol Biotechnol 2016; 43:525-35. [PMID: 26749524 DOI: 10.1007/s10295-015-1728-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/24/2015] [Indexed: 01/07/2023]
Abstract
The genome-wide transcriptional responses of S. cerevisiae to heterologous carotenoid biosynthesis were investigated using DNA microarray analysis. The results show that the genes involved in metal ion transport were specifically up-regulated in the recombinant strain, and metal ions, including Cu(2+), Fe(2+), Mn(2+), and Mg(2+), were deficient in the recombinant strain compared to the ion content of the parent strain. The decrease in metal ions was ascribed to a decrease in cell membrane (CM) fluidity caused by lower levels of unsaturated fatty acids and ergosterol. This was confirmed by the observation that metal ion levels were restored when CM fluidity was increased by supplying linoleic acid. In addition, a 24.3 % increase in the β-carotene concentration was observed. Collectively, our results suggest that heterologous production of carotenoids in S. cerevisiae can induce cellular stress by rigidifying the CM, which can lead to a deficiency in metal ions. Due to the importance of CM fluidity in cellular physiology, maintaining normal CM fluidity might be a potential approach to improving carotenoid production in genetically engineered S. cerevisiae.
Collapse
Affiliation(s)
- Peitong Liu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Liang Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yuxia Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Fei Shang
- College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guoliang Yan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
37
|
Castelblanco-Matiz LM, Barbachano-Torres A, Ponce-Noyola T, Ramos-Valdivia AC, Cerda García-Rojas CM, Flores-Ortiz CM, Barahona-Crisóstomo SK, Baeza-Cancino ME, Alcaíno-Gorman J, Cifuentes-Guzmán VH. Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain. Arch Microbiol 2015; 197:1129-39. [DOI: 10.1007/s00203-015-1153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022]
|
38
|
Chi S, He Y, Ren J, Su Q, Liu X, Chen Z, Wang M, Li Y, Li J. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma. Microb Cell Fact 2015; 14:90. [PMID: 26081576 PMCID: PMC4470029 DOI: 10.1186/s12934-015-0279-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Background A moderate-temperature, astaxanthin-overproducing mutant strain (termed MK19) of Phaffia rhodozyma was generated in our laboratory. The intracellular astaxanthin content of MK19 was 17-fold higher than that of wild-type. The TLC profile of MK19 showed a band for an unknown carotenoid pigment between those of β-carotene and astaxanthin. In the present study, we attempted to identify the unknown pigment and to enhance astaxanthin synthesis in MK19 by overexpression of the crtS gene that encodes astaxanthin synthase (CrtS). Results A crtS-overexpressing strain was constructed without antibiotic marker. A recombinant plasmid with lower copy numbers was shown to be stable in MK19. In the positive recombinant strain (termed CSR19), maximal astaxanthin yield was 33.5% higher than MK19, and the proportion of astaxanthin as a percentage of total carotenoids was 84%. The unknown carotenoid was identified as 3-hydroxy-3′,4′-didehydro-β,Ψ-carotene-4-one (HDCO) by HPLC, mass spectrometry, and NMR spectroscopy. CrtS was found to be a bifunctional enzyme that helped convert HDCO to astaxanthin. Enhancement of crtS transcriptional level increased transcription levels of related genes (crtE, crtYB, crtI) in the astaxanthin synthesis pathway. A scheme of carotenoid biosynthesis in P. rhodozyma involving alternative bicyclic and monocyclic pathways is proposed. Conclusions CrtS overexpression leads to up-regulation of synthesis-related genes and increased astaxanthin production. The transformant CSR19 is a stable, secure strain suitable for feed additive production. The present findings help clarify the regulatory mechanisms that underlie metabolic fluxes in P. rhodozyma carotenoid biosynthesis pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Chi
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yanfeng He
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Jie Ren
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Qian Su
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Xingchao Liu
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Zhi Chen
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Mingan Wang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Ying Li
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Jilun Li
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
39
|
Study on the relationship between intracellular metabolites and astaxanthin accumulation during Phaffia rhodozyma fermentation. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
40
|
Leiva K, Werner N, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis. BMC Microbiol 2015; 15:89. [PMID: 25906980 PMCID: PMC4415319 DOI: 10.1186/s12866-015-0428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. RESULTS In this study, the CYP51 gene from X. dendrorhous was isolated and its function was analyzed. The gene is composed of ten exons and encodes a predicted 550 amino acid polypeptide that exhibits conserved cytochrome P450 structural characteristics and shares significant identity with the sterol C14-demethylase from other fungi. The functionality of this gene was confirmed by heterologous complementation in S. cerevisiae. Furthermore, a CYP51 gene mutation in X. dendrorhous reduced sterol production by approximately 40% and enhanced total carotenoid production by approximately 90% compared to the wild-type strain after 48 and 120 h of culture, respectively. Additionally, the CYP51 gene mutation in X. dendrorhous increased HMGR (hydroxy-methylglutaryl-CoA reductase, involved in the mevalonate pathway) and crtR (cytochrome P450 reductase) transcript levels, which could be associated with reduced ergosterol production. CONCLUSIONS These results suggest that the CYP51 gene identified in X. dendrorhous encodes a functional sterol C14-demethylase that is involved in ergosterol biosynthesis.
Collapse
Affiliation(s)
- Kritsye Leiva
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| |
Collapse
|
41
|
Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 2015; 16:289. [PMID: 25887121 PMCID: PMC4404605 DOI: 10.1186/s12864-015-1484-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 11/27/2022] Open
Abstract
Background Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). Results A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. Conclusions The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pilar Martinez-Moya
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
42
|
Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 2015; 31:517-26. [PMID: 25643668 PMCID: PMC4333312 DOI: 10.1007/s11274-015-1808-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| |
Collapse
|
43
|
Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Sun L, Shang F, Duan CQ, Yan GL. Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 2015; 196-197:33-41. [DOI: 10.1016/j.jbiotec.2015.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/24/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022]
|
46
|
Hara KY, Morita T, Mochizuki M, Yamamoto K, Ogino C, Araki M, Kondo A. Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb Cell Fact 2014; 13:175. [PMID: 25471659 PMCID: PMC4264253 DOI: 10.1186/s12934-014-0175-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Red yeast, Xanthophyllomyces dendrorhous (Phaffia rhodozyma) is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) that is widely used in the aquaculture, food, pharmaceutical and cosmetic industries. Recently, the potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Addition of mevalonate, the common precursor for isoprenoid biosynthesis, has been shown to be critical to enhance the astaxanthin content in X. dendrorhous. However, addition of mevalonate is unrealistic during industrial isoprenoid production because it is an unstable and costly chemical. Therefore, up-regulating the intracellular mevalonate supply by enhancing the mevalonate synthetic pathway though genetic engineering is a promising strategy to improve isoprenoid production in X. dendrorhous. However, a system to strongly express multiple genes has been poorly developed for X. dendrorhous. RESULTS Here, we developed a multiple gene expression system using plasmids containing three strong promoters in X. dendrorhous (actin, alcohol dehydrogenase and triose-phosphate isomerase) and their terminators. Using this system, three mevalonate synthetic pathway genes encoding acetoacetyl-CoA thiolase, HMG-CoA synthase and HMG-CoA reductase were overexpressed at the same time. This triple overexpressing strain showed an increase in astaxanthin production compared with each single overexpressing strain. Additionally, this triple overexpression of mevalonate synthetic pathway genes together with genes involved in β-carotene and astaxanthin synthesis showed a synergetic effect on increasing astaxanthin production. Finally, astaxanthin production was enhanced by 2.1-fold compared with the parental strain without a reduction of cell growth. CONCLUSIONS We developed a system to strongly overexpress multiple genes in X. dendrorhous. Using this system, the synthetic pathway of mevalonate, a common substrate for isoprenoid biosynthesis, was enhanced, causing an increase in astaxanthin production. Combining this multiple gene overexpression system with a platform strain that overproduces mevalonate has the potential to improve industrial production of various isoprenoids in X. dendrorhous.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Toshihiko Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Masao Mochizuki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Keisuke Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Michihiro Araki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
47
|
Gwak Y, Hwang YS, Wang B, Kim M, Jeong J, Lee CG, Hu Q, Han D, Jin E. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4317-34. [PMID: 24821952 PMCID: PMC4112636 DOI: 10.1093/jxb/eru206] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Haematococcus pluvialis cells predominantly remain in the macrozooid stage under favourable environmental conditions but are rapidly differentiated into haematocysts upon exposure to various environmental stresses. Haematocysts are characterized by massive accumulations of astaxanthin sequestered in cytosolic oil globules. Lipidomic analyses revealed that synthesis of the storage lipid triacylglycerol (TAG) was substantially stimulated under high irradiance. Simultaneously, remodelling of membrane glycerolipids occurred as a result of dramatic reductions in chloroplast membrane glycolipids but remained unchanged or declined slightly in extraplastidic membrane glycerolipids. De novo assembly of transcriptomes revealed the genomic and metabolic features of this unsequenced microalga. Comparative transcriptomic analysis showed that so-called resting cells (haematocysts) may be more active than fast-growing vegetative cells (macrozooids) regarding metabolic pathways and functions. Comparative transcriptomic analyses of astaxanthin biosynthesis suggested that the non-mevalonate pathway mediated the synthesis of isopentenyl diphosphate, as the majority of genes involved in subsequent astaxanthin biosynthesis were substantially up-regulated under high irradiance, with the genes encoding phytoene synthase, phytoene desaturase, and β-carotene hydroxylase identified as the most prominent regulatory components. Accumulation of TAG under high irradiance was attributed to moderate up-regulation of de novo fatty acid biosynthesis at the gene level as well as to moderate elevation of the TAG assembly pathways. Additionally, inferred from transcriptomic differentiation, an increase in reactive oxygen species (ROS) scavenging activity, a decrease in ROS production, and the relaxation of over-reduction of the photosynthetic electron transport chain will work together to protect against photooxidative stress in H. pluvialis under high irradiance.
Collapse
Affiliation(s)
- Yunho Gwak
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Yong-sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | - Baobei Wang
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - Minju Kim
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Jooyeon Jeong
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Choul-Gyun Lee
- Department of Biotechnology, Institute of Industrial Biotechnology, Inha University, Incheon, 402-751, South Korea
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Danxiang Han
- College of Technology and Innovation, Arizona State University, Mesa, AZ 85212, USA
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, 133-791, South Korea
| |
Collapse
|
48
|
Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 2014; 186:128-36. [PMID: 25016205 DOI: 10.1016/j.jbiotec.2014.06.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways.
Collapse
Affiliation(s)
- Xiaomei Lv
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Wenping Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Wenqiang Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Fei Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiali Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
49
|
Hara KY, Morita T, Endo Y, Mochizuki M, Araki M, Kondo A. Evaluation and screening of efficient promoters to improve astaxanthin production in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2014; 98:6787-93. [PMID: 24737060 DOI: 10.1007/s00253-014-5727-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
Astaxanthin is a valuable carotenoid that is widely used in the aquaculture, food, pharmaceutical, and cosmetic industries. Xanthophyllomyces dendrorhous is a carotenoid-synthesizing yeast strain that produces astaxanthin as its main pigment. Although metabolic engineering using gene manipulation is a valuable way to improve astaxanthin production, a gene expression system for X. dendrorhous has been poorly developed. In this study, three known promoters of X. dendrorhous, glycerol-3-phosphate dehydrogenase (gpd) promoter (Pgpd), glucose dehydrogenase (gdh) promoter (Pgdh), and actin (act) promoter (Pact), were evaluated for use in the overexpression of target proteins using green fluorescence protein (GFP) as an expression level indicator protein. The actin promoter, Pact, showed the highest expression level of GFP when compared with Pgpd and Pgdh. Additionally, to obtain new promoters for higher expression of target protein in X. dendrorhous, intracellular GFP intensity was evaluated for 13 candidate promoters. An alcohol dehydrogenase promoter, Padh4, showed more efficient expression of GFP rather than Pact. Overexpression of crtE gene encoding rate-limiting enzyme of carotenoid synthesis under the adh4 promoter yielded an increase in intracellular astaxanthin content of about 1.7-fold compared with the control strain. The promoters identified in this study must be useful for improving carotenoids production in X. dendrorhous.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
50
|
|