1
|
Di Canito A, Foschino R, Vigentini I. Flocculation Mechanisms in Brettanomyces bruxellensis: Influence of ethanol and sulfur dioxide on FLO gene expression. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100372. [PMID: 40207139 PMCID: PMC11979396 DOI: 10.1016/j.crmicr.2025.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The mechanisms underlying flocculation in Brettanomyces bruxellensis, unlike the well-characterized FLO-family gene regulation in Saccharomyces cerevisiae, remain largely unexplored. This study investigates the flocculant phenotypes of 99 B. bruxellensis strains, revealing that only a minority exhibits this clumping behavior and confirms its strain-dependent attitude. Focusing on two strains, CBS2499 (flocculant) and UMY321 (non-flocculant), genetic analysis uncovered polymorphisms and distinct allelic heterozygosity in the FLO1 and FLO11 genes, potentially linked to the phenotypic differences. To further examine these traits, Response Surface Methodology (RSM) was used to simulate oenological conditions, testing the impact of pH, ethanol, and sulfur dioxide (SO₂) levels on flocculation and gene expression. The findings revealed that environmental stressors, especially ethanol and SO₂, significantly increase the expression of FLO1 and FLO11 in CBS2499, indicating a regulatory role in flocculation under stress. These insights broaden our understanding of stress adaptation in B. bruxellensis, especially its survival strategies in wine environments. By elucidating factors influencing flocculation, this study contributes valuable knowledge for managing B. bruxellensis spoilage, potentially aiding in the development of targeted approaches to reduce its impact on wine quality.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Biomedical, Surgical and Dental Sciences (DiSBIOC), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Roberto Foschino
- Department of Biomedical, Surgical and Dental Sciences (DiSBIOC), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Ileana Vigentini
- Department of Biomedical, Surgical and Dental Sciences (DiSBIOC), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| |
Collapse
|
2
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:foab059. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
- Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
3
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
4
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
5
|
Lipke PN, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens 2021; 10:pathogens10081013. [PMID: 34451476 PMCID: PMC8398270 DOI: 10.3390/pathogens10081013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid structures assemble through a repeating type of bonding called "cross-β", in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: ; Tel.: +1-(917)-696-4862
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| |
Collapse
|
6
|
High Foam Phenotypic Diversity and Variability in Flocculant Gene Observed for Various Yeast Cell Surfaces Present as Industrial Contaminants. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many contaminant yeast strains that survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes. These harmful effects may include filamentation, invasive growth, flocculation, biofilm formation, and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of Saccharomyces cerevisiae from Brazilian fuel ethanol distilleries showing vigorous foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation, and highly foaming phenotypes in these yeast strains. Our results also showed that deleting the primary activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids complex foam formation, flocculation, invasive growth, and biofilm production by the engineered (flo8∆::BleR/flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype open new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Collapse
|
7
|
Evolutionary Overview of Molecular Interactions and Enzymatic Activities in the Yeast Cell Walls. Int J Mol Sci 2020; 21:ijms21238996. [PMID: 33256216 PMCID: PMC7730094 DOI: 10.3390/ijms21238996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Collapse
|
8
|
Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, Drescher K, Müller DJ, Oliver Essen L, Mösch HU. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. eLife 2020; 9:55587. [PMID: 32286952 PMCID: PMC7156268 DOI: 10.7554/elife.55587] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Rajib Schubert
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timo Kraushaar
- Department of Biochemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Hoffmann
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Eric Jelli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lars Oliver Essen
- Department of Biochemistry, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
9
|
Reinmets K, Dehkharghani A, Guasto JS, Fuchs SM. Microfluidic quantification and separation of yeast based on surface adhesion. LAB ON A CHIP 2019; 19:3481-3489. [PMID: 31524206 DOI: 10.1039/c9lc00275h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fungal adhesion is fundamental to processes ranging from infections to food production to bioengineering. Yet, robust, population-scale quantification methods for yeast surface adhesion are lacking. We developed a microfluidic assay to discriminate and separate genetically-related yeast strains based on adhesion strength, and to quantify effects of ionic strength and substrate hydrophobicity on adhesion. This approach will enable the rapid screening and fractionation of yeast based on adhesive properties for genetic protein engineering, anti-fouling surfaces, and a host of other applications.
Collapse
|
10
|
Huang K, Lu B, Lai J, Chu HKH. Microchip System for Patterning Cells on Different Substrates via Negative Dielectrophoresis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1063-1074. [PMID: 31478871 DOI: 10.1109/tbcas.2019.2937744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Seeding cells on a planar substrate is the first step to construct artificial tissues in vitro. Cells should be organized into a pattern similar to native tissues and cultured on a favorable substrate to facilitate desirable tissue ingrowth. In this study, a microchip system is designed and fabricated to form cells into a specific pattern on different substrates. The system consists of a microchip with a dot-electrode array for cell trapping and patterning and two motorized platforms for providing relative motions between the microchip and the substrate. AC voltage is supplied to the selected electrodes by using a programmable micro control unit to control relays connected to the dot-electrodes. Nonuniform electric fields for cell manipulation are formed via negative dielectrophoresis (n-DEP). Experiments were conducted to create different patterns by using yeast cells. The effects of different experimental parameters and material properties on the patterning efficiency were evaluated and analyzed. Mechanisms to remove abundant cells surrounding the constructed patterns were also examined. Results show that the microchip system could successfully create cell patterns on different substrates. The use of calcium chloride (CaCl 2) enhanced the cell adhesiveness on the substrate. The proposed n-DEP patterning technique offers a new method for constructing artificial tissues with high flexibility on cell patterning and selecting substrate to suit application needs.
Collapse
|
11
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
12
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
13
|
Gravity-Driven Adaptive Evolution of an Industrial Brewer’s Yeast Strain towards a Snowflake Phenotype in a 3D-Printed Mini Tower Fermentor. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p. mSphere 2016; 1:mSphere00129-16. [PMID: 27547826 PMCID: PMC4989245 DOI: 10.1128/msphere.00129-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution.
Collapse
|
15
|
Extracellular expression and antiviral activity of a bovine interferon-alpha through codon optimization in Pichia pastoris. Microbiol Res 2016; 191:12-8. [PMID: 27524649 DOI: 10.1016/j.micres.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022]
Abstract
Interferons (IFNs) are the primary line of defense against infectious agents. In particular, IFN-α is an important antiviral cytokine and has a wide range of immune-modulating functions. Porcine and human IFN-α have been successfully prepared and play important roles in the prevention and therapy of viral diseases. To date, there has been limited applied research on bovine IFN-α. To achieve high-level expression of recombinant bovine IFN-α (bIFN-α) in Pichia pastoris for large-scale application, the bIFN-α gene was optimized and synthesized on the basis of codon bias of P. pastoris. Optimized bIFN-α (opti-bIFN-α) was successfully expressed in P. pastoris and directly secreted into the culture supernatant. The amount of extracellular soluble opti-bIFN-α was observed to be 200μg/mL in a shake flask. Expression efficiency of opti-bIFN-α was found to be about three times that of wild-type bIFN-α when the expression yield was compared at the same copies of the targeted gene. In addition, both the original cultural supernatant and purified opti-bIFN-α showed strong antiviral activity in MDBK cells (2×10(6)AU/mL and 1×10(7)AU/mg, respectively) and IBRS-2 cells (3×10(5)AU/mL and 1.5×10(6)AU/mg, respectively) against a recombinant vesicular stomatitis virus expressing the green fluorescence protein. In this study, we demonstrated high-level extracellular expression of opti-bIFN-α by P. pastoris. To the best of our knowledge, the opti-bIFN-α yield observed in this study is the highest to be reported to date. Our results demonstrated that the extracellular opti-bIFN-α with strong antiviral activity could be easily prepared and purified at a low cost and that it may be a potential biological therapeutic drug against bovine viral infections.
Collapse
|
16
|
Koyama S, Tsubouchi T, Usui K, Uematsu K, Tame A, Nogi Y, Ohta Y, Hatada Y, Kato C, Miwa T, Toyofuku T, Nagahama T, Konishi M, Nagano Y, Abe F. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells. FEMS Yeast Res 2015; 15:fov064. [PMID: 26187908 PMCID: PMC4629795 DOI: 10.1093/femsyr/fov064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. Yeast Saccharomyces cerevisiae were selectively attached on the negative potential-applied indium tin oxide/glass electrode. Mechanisms of the yeast cell attachment involve Flocculin Flo10 proteins.
Collapse
Affiliation(s)
- Sumihiro Koyama
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Taishi Tsubouchi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Keiko Usui
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsuyuki Uematsu
- Department of Marine Science, Marine Works Japan Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan
| | - Akihiro Tame
- Department of Marine Science, Marine Works Japan Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan
| | - Yuichi Nogi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yukari Ohta
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yuji Hatada
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tetsuya Miwa
- Marine Technology and Engineering Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takashi Toyofuku
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takehiko Nagahama
- Department of Foods and Human Nutrition, Notre Dame Seishin University, 2-16-9 Ifuku-cho, Kita-ku, Okayama 700-8516, Japan
| | - Masaaki Konishi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Yuriko Nagano
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
17
|
Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, Pagenstecher A, Mösch HU, Essen LO. Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 2015; 23:1005-17. [DOI: 10.1016/j.str.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
|
18
|
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio 2015; 6:mBio.00427-15. [PMID: 25873380 PMCID: PMC4453552 DOI: 10.1128/mbio.00427-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.
Collapse
|
19
|
Bou Zeidan M, Zara G, Viti C, Decorosi F, Mannazzu I, Budroni M, Giovannetti L, Zara S. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts. PLoS One 2014; 9:e112141. [PMID: 25369456 PMCID: PMC4219837 DOI: 10.1371/journal.pone.0112141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].
Collapse
Affiliation(s)
- Marc Bou Zeidan
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Francesca Decorosi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Ilaria Mannazzu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Luciana Giovannetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Severino Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
20
|
Alvarez F, Correa LFDM, Araújo TM, Mota BEF, da Conceição LEFR, Castro IDM, Brandão RL. Variable flocculation profiles of yeast strains isolated from cachaça distilleries. Int J Food Microbiol 2014; 190:97-104. [PMID: 25209588 DOI: 10.1016/j.ijfoodmicro.2014.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/04/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
In cachaça production, the use of yeast cells as starters with predictable flocculation behavior facilitates the cell recovery at the end of each fermentation cycle. Therefore, the aim of this work was to explain the behavior of cachaça yeast strains in fermentation vats containing sugarcane through the determination of biochemical and molecular parameters associated with flocculation phenotypes. By analyzing thirteen cachaça yeast strains isolated from different distilleries, our results demonstrated that neither classic biochemical measurements (e.g., percentage of flocculation, EDTA sensitivity, cell surface hydrophobicity, and sugar residues on the cell wall) nor modern molecular approaches, such as polymerase chain reaction (PCR) and real-time PCR (q-PCR), were sufficient to distinctly classify the cachaça yeast strains according to their flocculation behavior. It seems that flocculation is indeed a strain-specific phenomenon that is difficult to explain and/or categorize by the available methodologies.
Collapse
Affiliation(s)
- Florencia Alvarez
- Cerlev - Projetos e Inovação na Biotecnologia da Fermentação Ltda, Rua Amaro Lanari 59, Saramenha, 35.400-000 Ouro Preto, MG, Brazil
| | - Lygia Fátima da Mata Correa
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | - Thalita Macedo Araújo
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | - Bruno Eduardo Fernandes Mota
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | | | - Ieso de Miranda Castro
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | - Rogelio Lopes Brandão
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil.
| |
Collapse
|
21
|
Monniot C, Boisramé A, Da Costa G, Chauvel M, Sautour M, Bougnoux ME, Bellon-Fontaine MN, Dalle F, d’Enfert C, Richard ML. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation. PLoS One 2013; 8:e82395. [PMID: 24349274 PMCID: PMC3857780 DOI: 10.1371/journal.pone.0082395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Cell wall proteins are central to the virulence of Candida albicans. Hwp1, Hwp2 and Rbt1 form a family of hypha-associated cell surface proteins. Hwp1 and Hwp2 have been involved in adhesion and other virulence traits but Rbt1 is still poorly characterized. To assess the role of Rbt1 in the interaction of C. albicans with biotic and abiotic surfaces independently of its morphological state, heterologous expression and promoter swap strategies were applied. The N-terminal domain with features typical of the Flo11 superfamily was found to be essential for adhesiveness to polystyrene through an increase in cell surface hydrophobicity. A 42 amino acid-long domain localized in the central part of the protein was shown to enhance the aggregation function. We demonstrated that a VTTGVVVVT motif within the 42 amino acid domain displayed a high β-aggregation potential and was responsible for cell-to-cell interactions by promoting the aggregation of hyphae. Finally, we showed through constitutive expression that while Rbt1 was directly accessible to antibodies in hyphae, it was not so in yeast. Similar results were obtained for another cell wall protein, namely Iff8, and suggested that modification of the cell wall structure between yeast and hyphae can regulate the extracellular accessibility of cell wall proteins independently of gene regulation.
Collapse
Affiliation(s)
- Céline Monniot
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
| | - Anita Boisramé
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
| | - Grégory Da Costa
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
| | - Muriel Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Marc Sautour
- UMR Agroécologie 1347 Agrosup/INRA/Université de Bourgogne, Laboratoire Microbiologie Environnementale et Risque Sanitaire (M.E.R.S.), Dijon, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique – Hôpitaux de Paris Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Necker-Enfants-Malades, Paris, France
| | | | - Frédéric Dalle
- UMR Agroécologie 1347 Agrosup/INRA/Université de Bourgogne, Laboratoire Microbiologie Environnementale et Risque Sanitaire (M.E.R.S.), Dijon, France
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mathias L. Richard
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
- * E-mail:
| |
Collapse
|
22
|
Adaptation of the osmotolerant yeast Zygosaccharomyces rouxii to an osmotic environment through copy number amplification of FLO11D. Genetics 2013; 195:393-405. [PMID: 23893487 DOI: 10.1534/genetics.113.154690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copy number variations (CNVs) contribute to the adaptation process in two possible ways. First, they may have a direct role, in which a certain number of copies often provide a selective advantage. Second, CNVs can also indirectly contribute to adaptation because a higher copy number increases the so-called "mutational target size." In this study, we show that the copy number amplification of FLO11D in the osmotolerant yeast Zygosaccharomyces rouxii promotes its further adaptation to a flor-formative environment, such as osmostress static culture conditions. We demonstrate that a gene, which was identified as FLO11D, is responsible for flor formation and that its expression is induced by osmostress under glucose-free conditions, which confer unique characteristics to Z. rouxii, such as osmostress-dependent flor formation. This organism possesses zero to three copies of FLO11D, and it appears likely that the FLO11D copy number increased in a branch of the Z. rouxii tree. The cellular hydrophobicity correlates with the FLO11D copy number, and the strain with a higher copy number of FLO11D exhibits a fitness advantage compared to a reference strain under osmostress static culture conditions. Our data indicate that the FLO gene-related system in Z. rouxii has evolved remarkably to adapt to osmostress environments.
Collapse
|
23
|
FLO11 Gene Is Involved in the Interaction of Flor Strains of Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide. Appl Environ Microbiol 2013; 79:6023-32. [PMID: 23892742 DOI: 10.1128/aem.01647-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae "flor" yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides.
Collapse
|
24
|
Abstract
The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes.
Collapse
Affiliation(s)
- Stephen J Free
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
25
|
Goossens KVY, De Greve H, Willaert RG. Cloning, expression, and purification of the N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae in Pichia pastoris. Protein Expr Purif 2012; 88:114-9. [PMID: 23247087 DOI: 10.1016/j.pep.2012.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae flocculation is governed by FLO genes, encoding Flo proteins (flocculins). Flo proteins are cell wall proteins consisting of three domains, sticking out of the cell wall and interacting with other yeast cells using their N-terminal mannose-binding domain. Until recently, flocculation research was focused on the genetic and cellular level. To extend the knowledge about flocculation to the protein level, we isolated the N-terminal domain of the Flo1p (N-Flo1p) that contains the mannose-binding domain, which is responsible for the strong interaction (flocculation) of S. cerevisiae cells. To obtain a high production yield and a more uniform and lower glycosylation of N-Flo1p, it was cloned in Pichia pastoris. The expression and the purification of N-Flo1p were optimised towards a one-step purification protocol. The activity of the protein, i.e. the binding of the purified protein to mannose using fluorescence spectroscopy, was demonstrated.
Collapse
Affiliation(s)
- Katty V Y Goossens
- Lab. Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | |
Collapse
|