1
|
Drożdżyński P, Rutkowska N, Rodziewicz M, Marchut-Mikołajczyk O. Bioactive Compounds Produced by Endophytic Bacteria and Their Plant Hosts-An Insight into the World of Chosen Herbaceous Ruderal Plants in Central Europe. Molecules 2024; 29:4456. [PMID: 39339451 PMCID: PMC11433698 DOI: 10.3390/molecules29184456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The natural environment has been significantly impacted by human activity, urbanization, and industrialization, leading to changes in living organisms and their adaptation to harsh conditions. Species, including plants, adapt to these changes by creating mechanisms and modifications that allow them to survive in harsh environments. Also, endophytes, microorganisms that live inside plants, can support plant growth and defense mechanisms in these conditions by synthesizing antimicrobial secondary metabolites. What is more, endophytes produce bioactive metabolites, including alkaloids, amines, and peptides, which play a crucial role in the relationship between endophytes and their host organisms. Endophytes themselves benefit from this by creating a stable environment for their survival and development. The aim of this review is to gain insight into endophytic bioactive metabolites from chosen synanthropic ruderal plants. Industrial activities release pollutants like heavy metals, by-products, and waste, which challenge living organisms and require adaptation. Synanthropic plants, where endophytes are abundant, are particularly valuable for their bioactive compounds, which are used in agriculture and medicine. This review presents, among others, endophytes of herbaceous ruderal plants from central Europe-Chelidonium majus L., Urtica dioica L., Plantago lanceolata L., Matricaria chamomilla L., Equisetum arvense L., Oenothera biennis L., Silybum marianum L., and Mentha piperita L.
Collapse
Affiliation(s)
- Piotr Drożdżyński
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (N.R.); (M.R.); (O.M.-M.)
| | | | | | | |
Collapse
|
2
|
Zhao Y, Ding WJ, Xu L, Sun JQ. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Front Microbiol 2024; 15:1395477. [PMID: 38817968 PMCID: PMC11138164 DOI: 10.3389/fmicb.2024.1395477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wen-Jing Ding
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Velichko NS, Kokoulin MS, Dmitrenok PS, Grinev VS, Kuchur PD, Komissarov AS, Fedonenko YP. Lipopolysaccharides of Herbaspirillum species and their relevance for bacterium-host interactions. Int J Biol Macromol 2024; 261:129516. [PMID: 38278393 DOI: 10.1016/j.ijbiomac.2024.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.
Collapse
Affiliation(s)
- Natalya S Velichko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Polina D Kuchur
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Aleksey S Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Yulia P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
4
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
6
|
da Cunha ET, Pedrolo AM, Bueno JCF, Pereira TP, Soares CRFS, Arisi ACM. Inoculation of Herbaspirillum seropedicae strain SmR1 increases biomass in maize roots DKB 390 variety in the early stages of plant development. Arch Microbiol 2022; 204:373. [PMID: 35672591 DOI: 10.1007/s00203-022-02986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Herbaspirillum seropedicae is a plant growth-promoting bacteria isolated from diverse plant species. In this work, the main objective was to investigate the efficiency of H. seropedicae strain SmR1 in colonizing and increasing maize growth (DKB 390 variety) in the early stages of development under greenhouse conditions. Inoculation with H. seropedicae resulted in 19.43 % (regarding High and Low N controls) and 10.51% (regarding Low N control) in mean of increase of root biomass, for 1st and 2nd greenhouse experiments, respectively, mainly in the initial stages of plant development, at 21 days after emergence (DAE). Quantification of H. seropedicae in roots and leaves was performed by quantitative PCR. H. seropedicae was detected only in maize inoculated roots by qPCR, and a slight decrease in DNA copy number g-1 of fresh root weight was observed from 7 to 21 DAE, suggesting that there was initial effective colonization on maize plants. H. seropedicae strain SmR1 efficiently increased maize root biomass exhibiting its potential to be used as inoculant in agricultures systems.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- Food Science and Technology Department, CAL CCA UFSC, Federal University of Santa Catarina, Rod Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Marina Pedrolo
- Food Science and Technology Department, CAL CCA UFSC, Federal University of Santa Catarina, Rod Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Jessica Cavalheiro Ferreira Bueno
- Food Science and Technology Department, CAL CCA UFSC, Federal University of Santa Catarina, Rod Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Tomás Pelizzaro Pereira
- Food Science and Technology Department, CAL CCA UFSC, Federal University of Santa Catarina, Rod Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
- Public Policy Coordination Department, EPAGRI, Santa Catarina Agricultural Research and Rural Extension Company, Rio do Sul, SC, Brazil
| | - Cláudio Roberto Fônseca Sousa Soares
- Microbiology, Immunology and Parasitology Department, MIP CCB UFSC, Federal University of Santa Catarina, Av Prof Henrique da Silva Fontes, 2754, Florianópolis, SC, 88040-900, Brazil
| | - Ana Carolina Maisonnave Arisi
- Food Science and Technology Department, CAL CCA UFSC, Federal University of Santa Catarina, Rod Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
7
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
8
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
9
|
High Genomic Identity between Clinical and Environmental Strains of Herbaspirillum frisingense Suggests Pre-Adaptation to Different Hosts and Intrinsic Resistance to Multiple Drugs. Antibiotics (Basel) 2021; 10:antibiotics10111409. [PMID: 34827347 PMCID: PMC8614823 DOI: 10.3390/antibiotics10111409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Herbaspirillum is widely studied for its ability to associate with grasses and to perform biological nitrogen fixation. However, the bacteria of the Herbaspirillum genus have frequently been isolated from clinical samples. Understanding the genomic characteristics that allow these bacteria to switch environments and become able to colonize human hosts is essential for monitoring emerging pathogens and predicting outbreaks. In this work, we describe the sequencing, assembly, and annotation of the genome of H. frisingense AU14559 isolated from the sputum of patients with cystic fibrosis, and its comparison with the genomes of the uropathogenic strain VT-16-41 and the environmental strains GSF30, BH-1, IAC152, and SG826. The genes responsible for biological nitrogen fixation were absent from all strains except for GSF30. On the other hand, genes encoding virulence and host interaction factors were mostly shared with environmental strains. We also identified a large set of intrinsic antibiotic resistance genes that were shared across all strains. Unlike other strains, in addition to unique genomic islands, AU14559 has a mutation that renders the biosynthesis of rhamnose and its incorporation into the exopolysaccharide unfeasible. These data suggest that H. frisingense has characteristics that provide it with the metabolic diversity needed to infect and colonize human hosts.
Collapse
|
10
|
Knights HE, Jorrin B, Haskett TL, Poole PS. Deciphering bacterial mechanisms of root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:428-444. [PMID: 33538402 PMCID: PMC8651005 DOI: 10.1111/1758-2229.12934] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Bacterial colonization of the rhizosphere is critical for the establishment of plant-bacteria interactions that represent a key determinant of plant health and productivity. Plants influence bacterial colonization primarily through modulating the composition of their root exudates and mounting an innate immune response. The outcome is a horizontal filtering of bacteria from the surrounding soil, resulting in a gradient of reduced bacterial diversity coupled with a higher degree of bacterial specialization towards the root. Bacteria-bacteria interactions (BBIs) are also prevalent in the rhizosphere, influencing bacterial persistence and root colonization through metabolic exchanges, secretion of antimicrobial compounds and other processes. Traditionally, bacterial colonization has been examined under sterile laboratory conditions that mitigate the influence of BBIs. Using simplified synthetic bacterial communities combined with microfluidic imaging platforms and transposon mutagenesis screening approaches, we are now able to begin unravelling the molecular mechanisms at play during the early stages of root colonization. This review explores the current state of knowledge regarding bacterial root colonization and identifies key tools for future exploration.
Collapse
Affiliation(s)
| | - Beatriz Jorrin
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | | | - Philip S. Poole
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
11
|
Heijo G, Taulé C, Mareque C, Stefanello A, Souza EM, Battistoni F. Interaction among endophytic bacteria, sweet sorghum (Sorghum bicolor) cultivars and chemical nitrogen fertilization. FEMS Microbiol Ecol 2021; 97:6007735. [PMID: 33245748 DOI: 10.1093/femsec/fiaa245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 11/14/2022] Open
Abstract
The application of new agricultural technologies to attain sustainable production systems is necessary. The use of plant growth-promoting bacteria to improve plant growth and health has been studied for decades. This work aimed to isolate diazotrophic endophytic bacteria associated with sweet sorghum plants and study the interaction of their inoculation in combination with chemical N-fertilization on different sorghum cultivars. A bacterial collection of 181 isolates was constructed and characterized in vitro and in vivo. From that, the strains Enterobacter sp. UYSB89 and Kosakonia sp. UYSB139 were nifH+, produce IAA, defined as true endophytes and able to promote growth of two sweet sorghum under greenhouse conditions. The evaluated cultivars responded differentially to bacterial inoculation, the nitrogen fertilization doses and their interaction. Thus, plant growth is a multifactorial consequence of the interrelation between crop practices and the plant genotypes. This knowledge is a valuable factor in terms of understanding plant-bacteria endophyte interactions to preserve environmental sustainability during the implementation of agronomic practices.
Collapse
Affiliation(s)
- Gabriela Heijo
- Microbial Biochemistry and Genomics Department, Clemente Estable Biological Research Institute, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | - Cecilia Taulé
- Microbial Biochemistry and Genomics Department, Clemente Estable Biological Research Institute, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | - Cintia Mareque
- Microbial Biochemistry and Genomics Department, Clemente Estable Biological Research Institute, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | - Adriano Stefanello
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos Street, Curitiba, Paraná 81531-980, Brazil
| | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos Street, Curitiba, Paraná 81531-980, Brazil
| | - Federico Battistoni
- Microbial Biochemistry and Genomics Department, Clemente Estable Biological Research Institute, Avenida Italia 3318, Montevideo, 11600, Uruguay
| |
Collapse
|
12
|
Akinwole P, Kaplan L, Findlay R. Elucidating stream bacteria utilizing terrestrial dissolved organic matter. World J Microbiol Biotechnol 2021; 37:32. [DOI: 10.1007/s11274-021-02997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
|
13
|
Structural and genetic characterization of the colitose-containing O-specific polysaccharide from the lipopolysaccharide of Herbaspirillum frisingense GSF30T. Int J Biol Macromol 2020; 161:891-897. [DOI: 10.1016/j.ijbiomac.2020.06.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
14
|
Tuleski TR, Kimball J, do Amaral FP, Pereira TP, Tadra-Sfeir MZ, de Oliveira Pedrosa F, Maltempi de Souza E, Balint-Kurti P, Monteiro RA, Stacey G. Herbaspirillum rubrisubalbicans as a Phytopathogenic Model to Study the Immune System of Sorghum bicolor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:235-246. [PMID: 31721651 DOI: 10.1094/mpmi-06-19-0154-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herbaspirillum rubrisubalbicans is the causal agent of red stripe disease (RSD) and mottle stripe disease of sorghum and sugarcane, respectively. In all, 63 genotypes of Sorghum bicolor were inoculated with H. rubrisubalbicans, with 59 showing RSD symptoms. Quantitative trait loci (QTL) analysis in a recombinant inbred line (RIL) population identified several QTL associated with variation in resistance to RSD. RNA sequencing analysis identified a number of genes whose transcript levels were differentially regulated during H. rubrisubalbicans infection. Among those genes that responded to H. rubrisubalbicans inoculation were many involved in plant-pathogen interactions such as leucine-rich repeat receptors, mitogen-activated protein kinase 1, calcium-binding proteins, transcriptional factors (ethylene-responsive element binding factor), and callose synthase. Pretreatment of sorghum leaves with the pathogen-associated molecular pattern (PAMP) molecules flg22 and chitooctaose provided protection against subsequent challenge with the pathogen, suggesting that PAMP-triggered immunity plays an important role in the sorghum immunity response. These data present baseline information for the use of the genetically tractable H. rubrisubalbicans-sorghum pathosystem for the study of innate immunity and disease resistance in this important grain and bioenergy crop. Information gained from the use of this system is likely to be informative for other monocots, including those more intractable for experimental study (e.g., sugarcane).
Collapse
Affiliation(s)
- Thalita Regina Tuleski
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 19046, Brazil
| | - Jennifer Kimball
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Fernanda P do Amaral
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Tomas P Pereira
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil
| | | | - Fabio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 19046, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 19046, Brazil
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, NC 27695-7613, U.S.A
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 19046, Brazil
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
15
|
Faoro H, Oliveira WK, Weiss VA, Tadra-Sfeir MZ, Cardoso RL, Balsanelli E, Brusamarello-Santos LCC, Camilios-Neto D, Cruz LM, Raittz RT, Marques ACQ, LiPuma J, Fadel-Picheth CMT, Souza EM, Pedrosa FO. Genome comparison between clinical and environmental strains of Herbaspirillum seropedicae reveals a potential new emerging bacterium adapted to human hosts. BMC Genomics 2019; 20:630. [PMID: 31375067 PMCID: PMC6679464 DOI: 10.1186/s12864-019-5982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbaspirillum seropedicae is an environmental β-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. RESULTS Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. CONCLUSIONS Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.
Collapse
Affiliation(s)
- Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, FIOCRUZ, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná 81350-010 Brazil
| | - Willian K. Oliveira
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, FIOCRUZ, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná 81350-010 Brazil
| | - Vinicius A. Weiss
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Rodrigo L. Cardoso
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Liziane C. C. Brusamarello-Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Department of Biochemistry and Biothecnology, Universidade Estadual de Londrina, Celso Garcia Cid street, Londrina, Paraná 86057-970 Brazil
| | - Leonardo M. Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Roberto T. Raittz
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
| | - Ana C. Q. Marques
- Department of Clinical Analyses, Universidade Federal do Paraná, Av. Lothário Meissner 632, Curitiba, Paraná 80210-170 Brazil
| | - John LiPuma
- Department of Pediatrics, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Cyntia M. T. Fadel-Picheth
- Department of Clinical Analyses, Universidade Federal do Paraná, Av. Lothário Meissner 632, Curitiba, Paraná 80210-170 Brazil
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Fabio O. Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| |
Collapse
|
16
|
Defining the Genetic Basis of Plant⁻Endophytic Bacteria Interactions. Int J Mol Sci 2019; 20:ijms20081947. [PMID: 31010043 PMCID: PMC6515357 DOI: 10.3390/ijms20081947] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Endophytic bacteria, which interact closely with their host, are an essential part of the plant microbiome. These interactions enhance plant tolerance to environmental changes as well as promote plant growth, thus they have become attractive targets for increasing crop production. Numerous studies have aimed to characterise how endophytic bacteria infect and colonise their hosts as well as conferring important traits to the plant. In this review, we summarise the current knowledge regarding endophytic colonisation and focus on the insights that have been obtained from the mutants of bacteria and plants as well as ‘omic analyses. These show how endophytic bacteria produce various molecules and have a range of activities related to chemotaxis, motility, adhesion, bacterial cell wall properties, secretion, regulating transcription and utilising a substrate in order to establish a successful interaction. Colonisation is mediated by plant receptors and is regulated by the signalling that is connected with phytohormones such as auxin and jasmonic (JA) and salicylic acids (SA). We also highlight changes in the expression of small RNAs and modifications of the cell wall properties. Moreover, in order to exploit the beneficial plant-endophytic bacteria interactions in agriculture successfully, we show that the key aspects that govern successful interactions remain to be defined.
Collapse
|
17
|
Tuleski TR, Baura VAD, Donatti L, Pedrosa FDO, Souza EMD, Monteiro RA. Cellulose production increases sorghum colonization and the pathogenic potential of Herbaspirillum rubrisubalbicans M1. Sci Rep 2019; 9:4041. [PMID: 30858484 PMCID: PMC6412066 DOI: 10.1038/s41598-019-40600-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Three species of the β-Proteobacterial genus Herbaspirillum are able to fix nitrogen in endophytic associations with such important agricultural crops as maize, rice, sorghum, sugar-cane and wheat. In addition, Herbaspirillum rubrisubalbicans causes the mottled-stripe disease in susceptible sugar-cane cultivars as well as the red-stripe disease in some sorghum cultivars. The xylem of these cultivars exhibited a massive colonisation of mucus-producing bacteria leading to blocking the vessels. A cluster of eight genes (bcs) are involved in cellulose synthesis in Herbaspirillum rubrisubalbicans. Mutation of bcsZ, that encodes a 1,4-endoglucanase, impaired the exopolysaccharide production, the ability to form early biofilm and colonize sorghum when compared to the wild-type strain M1. This mutation also impaired the ability of Herbaspirillum rubrisubalbicans M1 to cause the red-stripe disease in Sorghum bicolor. We show cellulose synthesis is involved in the biofilm formation and as a consequence significantly modulates bacterial-plant interactions, indicating the importance of cellulose biosynthesis in this process.
Collapse
Affiliation(s)
- Thalita Regina Tuleski
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Valter Antônio de Baura
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Lucélia Donatti
- Department of Cellular and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
18
|
Velichko NS, Surkina AK, Fedonenko YP, Zdorovenko EL, Konnova SA. Structural Peculiarities and Biological Properties of the Lipopolysaccharide from Herbaspirillum seropedicae Z78. Microbiology (Reading) 2018. [DOI: 10.1134/s002626171805017x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
20
|
Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility. J Bacteriol 2017; 199:JB.00218-17. [PMID: 28484044 DOI: 10.1128/jb.00218-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain pilT, a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design.IMPORTANCE Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a relatively short list of bacterial species, this list contains many emerging pathogens. We show that HKIIIs likely control bacterial motility across solid surfaces, which is a key virulence factor in many bacteria, including those causing severe infections. Full understanding of this putative function may help in designing effective drugs against pathogens that will not affect the majority of the beneficial human microbiome.
Collapse
|
21
|
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 2017; 100:1738-50. [PMID: 28222096 DOI: 10.3732/ajb.1200572] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/07/2017] [Accepted: 02/10/2017] [Indexed: 05/20/2023] Open
Abstract
Community-level data, the type generated by an increasing number of metabarcoding studies, is often graphed as stacked bar charts or pie graphs that use color to represent taxa. These graph types do not convey the hierarchical structure of taxonomic classifications and are limited by the use of color for categories. As an alternative, we developed metacoder, an R package for easily parsing, manipulating, and graphing publication-ready plots of hierarchical data. Metacoder includes a dynamic and flexible function that can parse most text-based formats that contain taxonomic classifications, taxon names, taxon identifiers, or sequence identifiers. Metacoder can then subset, sample, and order this parsed data using a set of intuitive functions that take into account the hierarchical nature of the data. Finally, an extremely flexible plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree format by mapping statistics to the color and size of tree nodes and edges. Metacoder also allows exploration of barcode primer bias by integrating functions to run digital PCR. Although it has been designed for data from metabarcoding research, metacoder can easily be applied to any data that has a hierarchical component such as gene ontology or geographic location data. Our package complements currently available tools for community analysis and is provided open source with an extensive online user manual.
Collapse
Affiliation(s)
- Zachary S L Foster
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
22
|
Kaul S, Sharma T, K. Dhar M. "Omics" Tools for Better Understanding the Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:955. [PMID: 27446181 PMCID: PMC4925718 DOI: 10.3389/fpls.2016.00955] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 06/15/2016] [Indexed: 05/20/2023]
Abstract
Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unraveling the gray areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant-endophyte relationship. The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights "omics" tools that can be explored for understanding the role of endophytes in the plant microbiome.
Collapse
|
23
|
Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae strain SmR1 in maize roots. Mol Biotechnol 2015; 56:660-70. [PMID: 24563376 DOI: 10.1007/s12033-014-9742-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The plant growth promoting bacteria Herbaspirillum seropedicae SmR1 is an endophytic diazotroph found in several economically important crops. Considering that methods to monitor the plant-bacteria interaction are required, our objective was to develop a real-time PCR method for quantification of PGPB H. seropedicae in the rhizosphere of maize seedlings. Primer pairs were designed, and their specificity was verified using DNA from 12 different bacterial species. Ten standard curves of qPCR assay using HERBAS1 primers and tenfold serial dilutions of H. seropedicae SmR1 DNA were performed, and PCR efficiency of 91 % and correlation coefficient of 0.99 were obtained. H. seropedicae SmR1 limit of detection was 10(1) copies (corresponding to 60.3 fg of bacterial DNA). qPCR assay using HERBAS1 was used to detect and quantify H. seropedicae strain SmR1 in inoculated maize roots, cultivated in vitro and in pots, harvested 1, 4, 7, and 10 days after inoculation. The estimated bacterial DNA copy number per gram of root was in the range 10(7)-10(9) for plants grown in vitro and it was around 10(6) for plants grown in pots. Primer pair HERBAS1 was able to quantify H. seropedicae SmR1, and this assay can be useful for monitoring plant-bacteria interaction.
Collapse
|
24
|
The gene expression profile of porcine alveolar macrophages infected with a highly pathogenic porcine reproductive and respiratory syndrome virus indicates overstimulation of the innate immune system by the virus. Arch Virol 2014; 160:649-62. [PMID: 25504361 DOI: 10.1007/s00705-014-2309-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Since the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) variant emerged in 2006, it has caused death in more than 20 million pigs in China and other Southeast Asian countries, making it the most destructive swine pathogen currently in existence. To characterize the cellular responses to HP-PRRSV infection, the gene expression profile of porcine alveolar macrophage (PAM) cells, the primary target cells of PRRSV, was analyzed in HP-PRRSV-infected and uninfected PAMs by suppression subtractive hybridization. After confirmation by Southern blot, genes that were differentially expressed in the HP-PRRSV-infected and uninfected PAMs were sequenced and annotated. Genes that were upregulated mainly in HP-PRRSV-infected PAM cells were related to immunity and cell signaling. Among the differentially expressed genes, Mx1 and HSP70 protein expression was confirmed by western blotting, and IL-8 expression was confirmed by ELISA. In PAM cells isolated from HP-PRRSV-infected piglets, the differential expression of 21 genes, including IL-16, TGF-beta type 1 receptor, epidermal growth factor, MHC-I SLA, Toll-like receptor, hepatoma-derived growth factor, FTH1, and MHC-II SLA-DRB1, was confirmed by real-time PCR. To our knowledge, this is the first study to demonstrate differential gene expression between HP-PRRSV-infected and uninfected PAMs in vivo. The results indicate that HP-PRRSV infection excessively stimulates genes involved in the innate immune response, including proinflammatory cytokines and chemokines.
Collapse
|
25
|
Farrar K, Bryant D, Cope-Selby N. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1193-206. [PMID: 25431199 PMCID: PMC4265282 DOI: 10.1111/pbi.12279] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/22/2014] [Accepted: 10/09/2014] [Indexed: 05/16/2023]
Abstract
Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.
Collapse
Affiliation(s)
- Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
- *Correspondence (Tel +0044 (0)1970 823097; fax 0044 (0)1970 828357; email )
| | - David Bryant
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
| | - Naomi Cope-Selby
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
26
|
Straub D, Yang H, Liu Y, Tsap T, Ludewig U. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30(T). JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4603-15. [PMID: 24043849 PMCID: PMC3808336 DOI: 10.1093/jxb/ert276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The bacterial endophyte Herbaspirillum frisingense GSF30(T) is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but had only a minor impact on nutrient concentrations. The bacterium affected the root architecture and increased fine-root structures. Although H. frisingense has the genetic requirements to fix nitrogen, only minor changes in nitrogen concentrations were observed. Herbaspirillum agglomerates were identified primarily in the root apoplast but also in the shoots. The short-term (3h) and long-term (3 weeks) transcriptomic responses of the plant to bacterial inoculation revealed that H. frisingense induced rapid changes in plant hormone signalling, most prominent in jasmonate signalling. Ethylene signalling pathways were also affected and persisted after 3 weeks in the root. Growth stimulation of the root by the ethylene precursor 1-aminocyclopropane 1-carboxylic acid was dose dependent and was affected by H. frisingense inoculation. Minor changes in the proteome were identified after 3 weeks. This study suggests that H. frisingense improves plant growth by modulating plant hormone signalling pathways and provides a framework to understand the beneficial effects of diazotrophic plant-growth-promoting bacteria, such as H. frisingense, on the biomass grass Miscanthus.
Collapse
Affiliation(s)
- Daniel Straub
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim, Fruwirthstrasse 20, D-70593 Stuttgart, Germany
| | - Huaiyu Yang
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim, Fruwirthstrasse 20, D-70593 Stuttgart, Germany
| | - Yan Liu
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim, Fruwirthstrasse 20, D-70593 Stuttgart, Germany
| | - Tatsiana Tsap
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim, Fruwirthstrasse 20, D-70593 Stuttgart, Germany
| | - Uwe Ludewig
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim, Fruwirthstrasse 20, D-70593 Stuttgart, Germany
| |
Collapse
|
27
|
Straub D, Rothballer M, Hartmann A, Ludewig U. The genome of the endophytic bacterium H. frisingense GSF30(T) identifies diverse strategies in the Herbaspirillum genus to interact with plants. Front Microbiol 2013; 4:168. [PMID: 23825472 PMCID: PMC3695564 DOI: 10.3389/fmicb.2013.00168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 01/14/2023] Open
Abstract
The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30T has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations.
Collapse
Affiliation(s)
- Daniel Straub
- Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität Hohenheim Stuttgart, Germany
| | | | | | | |
Collapse
|
28
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
29
|
Draft Genome Sequence of Herbaspirillum huttiense subsp. putei IAM 15032, a Strain Isolated from Well Water. GENOME ANNOUNCEMENTS 2013; 1:genomeA00252-12. [PMID: 23469362 PMCID: PMC3587956 DOI: 10.1128/genomea.00252-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 12/05/2022]
Abstract
Here we report the one-scaffold draft genome of Herbaspirillum huttiense subsp. putei strain 7-2T (IAM 15032), which was isolated from well water.
Collapse
|
30
|
Draft genome sequence of Herbaspirillum lusitanum P6-12, an endophyte isolated from root nodules of Phaseolus vulgaris. J Bacteriol 2012; 194:4136-7. [PMID: 22815451 DOI: 10.1128/jb.00657-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herbaspirillum lusitanum strain P6-12 (DSM 17154) is, so far, the only species of Herbaspirillum isolated from plant root nodules. Here we report a draft genome sequence of this organism.
Collapse
|
31
|
Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C. Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 2012; 163:500-10. [DOI: 10.1016/j.resmic.2012.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
|