1
|
Amemiya K, Zeng X, Bearss JJ, Cote CK, Soffler C, Bernhards RC, Dankmeyer JL, Ribot WJ, Trevino SR, Welkos SL, Worsham PL, Waag DM. Laser Scanning Confocal Microscopy Was Used to Validate the Presence of Burkholderia Pseudomallei or B. Mallei in Formalin-Fixed Paraffin Embedded Tissues. Trop Med Infect Dis 2020; 5:tropicalmed5020065. [PMID: 32365605 PMCID: PMC7345562 DOI: 10.3390/tropicalmed5020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pseudomallei and B. mallei are Gram-negative, facultative intracellular bacteria that cause melioidosis and glanders, respectively. Currently, there are no vaccines for these two diseases. Animal models have been developed to evaluate vaccines and therapeutics. Tissues from infected animals, however, must be fixed in formalin and embedded in paraffin (FFPE) before analysis. A brownish staining material in infected tissues that represents the exopolysaccharide of the pathogen was seen by bright field microscopy but not the actual microorganism. Because of these results, FFPE tissue was examined by laser scanning confocal microscopy (LSCM) in an attempt to see the microorganism. Archival FFPE tissues were examined from ten mice, and five nonhuman primates after exposure to B. pseudomallei or B.mallei by LSCM. Additionally, a historical spleen biopsy from a human suspected of exposure to B. mallei was examined. B. pseudomallei was seen in many of the infected tissues from mice. Four out of five nonhuman primates were positive for the pathogen. In the human sample, B. mallei was seen in pyogranulomas in the spleen biopsy. Thus, the presence of the pathogen was validated by LSCM in murine, nonhuman primate, and human FFPE tissues.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
- Correspondence: ; Tel.: +1-301-619-2182
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (X.Z.); (J.J.B.)
| | - Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (X.Z.); (J.J.B.)
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Carl Soffler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Robert C. Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA;
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Wilson J. Ribot
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (C.K.C.); (C.S.); (J.L.D.); (W.J.R.); (S.R.T.); (S.L.W.); (P.L.W.); (D.M.W.)
| |
Collapse
|
2
|
David PHC, Sá-Pinto X, Nogueira T. Using SimulATe to model the effects of antibiotic selective pressure on the dynamics of pathogenic bacterial populations. Biol Methods Protoc 2019; 4:bpz004. [PMID: 32395623 PMCID: PMC7200973 DOI: 10.1093/biomethods/bpz004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
Antibiotics are notable weapons in fighting bacteria. Nowadays, however, the effectiveness of antibiotics is severely hindered by the increasing levels of antibiotic resistances in pathogenic bacterial populations, which can persist due to the selective pressure caused by antibiotic exposure. Arguably, the main cause of antibiotic resistances endurance in nature is antibiotic misuse, such as via overusing, inappropriate prescribing as well as the uncontrolled use in agriculture and livestock. There is also a lack of knowledge on appropriate antibiotic usage by the general public. Public scientific literacy and more research on therapeutic practices are fundamental to tackle this problem. Here, we present SimulATe a software which allows the simulation of the effects of antibiotic therapies on bacterial populations during human infections. This software can be used to develop students’ scientific literacy, using infections and antibiotic treatments as context to engage students in scientific practices, and discussions on antibiotic treatment onset and duration or on its use in immunosuppressed or critically ill individuals. SimulATe’s features also allow it to be used for research purposes allowing the simulation of real scenarios and exploration of their outcomes across the parameters’ landscape.
Collapse
Affiliation(s)
- Pedro H C David
- Centro de Ecologia, Evolução e Alterações Ambientais (CE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Xana Sá-Pinto
- Centro de Investigação em Didáctica e Tecnologia na Formação de Formadores (CIDTFF), Universidade de Aveiro (UA), Campus Universitário, 3810-193 Aveiro, Portugal.,P.PORTO-Escola Superior de Educação (ESE), Politécnico do Porto, Rua Dr. Roberto Frias 602, 4200-465 Porto, Portugal
| | - Teresa Nogueira
- Centro de Ecologia, Evolução e Alterações Ambientais (CE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Ruiz SI, Bowen LE, Bailey MM, Berkland C. Pulmonary Delivery of Ceftazidime for the Treatment of Melioidosis in a Murine Model. Mol Pharm 2018; 15:1371-1376. [PMID: 29363975 DOI: 10.1021/acs.molpharmaceut.7b00938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Burkholderia pseudomallei, the etiological agent responsible for melioidosis, exhibits a great public health toll in its endemic regions. The elevation of B. pseudomallei to a Tier I select agent underscores the urgent need for effective therapeutics and preventatives. The current treatment regimen for melioidosis is suboptimal, requiring an intensive phase of intravenous antibiotic followed by months of oral antibiotics. Inhaled antibiotics are a promising avenue to pursue for pulmonary diseases, including melioidosis, since this mode of delivery mimics the likely exposure route and can provide high drug doses directly to the infected tissue. Ceftazidime was delivered via a nose-only system to BALB/c mice challenged with B. pseudomallei. Mice treated with nebulized ceftazidime became symptomatic but survived until study end, which was comparable to those treated intraperitoneally. Upon necropsy, bacteria remained within the spleens of the majority of the experimental animals. The effectiveness of nebulized ceftazidime warrants additional studies to improve the treatment regimen and to test as a prophylactic therapy against B. pseudomallei.
Collapse
Affiliation(s)
- Sara I Ruiz
- United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , Maryland 21702 , United States.,Laulima Government Solution , Honolulu , Hawaii 96814 , United States
| | - Larry E Bowen
- United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , Maryland 21702 , United States.,Laulima Government Solution , Honolulu , Hawaii 96814 , United States.,PneumoDose, LLC , Alexandria , Virginia , 22314 United States
| | - Mark M Bailey
- PneumoDose, LLC , Alexandria , Virginia , 22314 United States
| | - Cory Berkland
- Department of Chemical & Petroleum Engineering , The University of Kansas , Lawrence , Kansas 66047 , United States.,Department of Pharmaceutical Chemistry , The University of Kansas , Lawrence , Kansas 66047 , United States
| |
Collapse
|
4
|
Peddayelachagiri BV, Paul S, Gogoi M, Sripathy MH, Batra HV. Evaluation of fimC and bdha based duplex PCR for specific identification and differentiation of Burkholderia pseudomallei from near-neighbor Burkholderia species. Int J Med Microbiol 2017; 308:271-278. [PMID: 29273310 DOI: 10.1016/j.ijmm.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 11/16/2022] Open
Abstract
Assays for the rapid detection and accurate differentiation of Burkholderia pseudomallei from near-neighbor species are urgently needed in melioidosis endemic regions due to the high associated mortality and biowarfare importance of the pathogen. PCR-based methods have revolutionized this field due to the accuracy, sensitivity, and specificity that are achievable in a rapid way. In this study, a compound molecular detection system, consisting of a duplex PCR assay, was developed for the specific identification of Burkholderia pseudomallei and differentiation from other Burkholderia species. For accurate identification of B. pseudomallei, we deciphered and adopted a novel gene termed putative fimbrial chaperone (fimC). d-beta hydroxybutyrate dehydrogenase (bdha), reported previously by our group for sequence-based differentiation of B. pseudomallei from other Burkholderia species, was employed as a genus-specific target. Enforcement of an internal amplification control in the PCR format ruled out possible false negative results in the assay. Thus, the developed PCR assay was highly specific (100%) in its detection features, and a clear detection sensitivity of 10 pg/μl for purified gDNA and 3 × 103 CFU/ml for B. pseudomallei spiked urine was recorded. Successful identification of B. pseudomallei from an experimental mouse model at both the genus and species level revealed the accurate diagnostic efficiency of the duplex PCR method.
Collapse
Affiliation(s)
| | - Soumya Paul
- Microbiology Division, Defence Food Research Laboratory, Mysore 570 011, Karnataka, India
| | - Madhurjya Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Murali H Sripathy
- Microbiology Division, Defence Food Research Laboratory, Mysore 570 011, Karnataka, India.
| | - Harsh V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore 570 011, Karnataka, India
| |
Collapse
|
5
|
Obersteller S, Neubauer H, Hagen RM, Frickmann H. Comparison of Five Commercial Nucleic Acid Extraction Kits for the PCR-based Detection of Burkholderia Pseudomallei DNA in Formalin-Fixed, Paraffin-Embedded Tissues. Eur J Microbiol Immunol (Bp) 2016; 6:244-252. [PMID: 27766174 PMCID: PMC5063018 DOI: 10.1556/1886.2016.00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
The extraction and further processing of nucleic acids (NA) from formalin-fixed paraffin-embedded (FFPE) tissues for microbiological diagnostic polymerase chain reaction (PCR) approaches is challenging. Here, we assessed the effects of five different commercially available nucleic acid extraction kits on the results of real-time PCR. FFPE samples from organs of Burkholderia pseudomallei-infected Swiss mice were subjected to processing with five different extraction kits from QIAGEN (FFPE DNA Tissue Kit, EZ1 DNA Tissue Kit, DNA Mini Kit, DNA Blood Mini Kit, and FlexiGene DNA Kit) in combination with three different real-time PCRs targeting B. pseudomallei-specific sequences of varying length after 16 years of storage. The EZ1 DNA Tissue Kit and the DNA Mini Kit scored best regarding the numbers of successful PCR reactions. In case of positive PCR, differences regarding the cycle-threshold (Ct) values were marginal. The impact of the applied extraction kits on the reliability of PCR from FFPE material seems to be low. Interfering factors like the quality of the dewaxing procedure or the sample age appear more important than the selection of specialized FFPE kits.
Collapse
Affiliation(s)
| | - Heinrich Neubauer
- Friedrich Loeffler Institute, Federal Research Institute for Animal Health , Jena, Germany
| | - Ralf Matthias Hagen
- NATO Center of Excellence for Military Medicine (MilMedCOE), Deployment Health Surveillance Capability (DHSC) , Munich, Germany
| | - Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany; Institut for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
6
|
Schully KL, Bell MG, Ward JM, Keane-Myers AM. Oropharyngeal aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c mice. PLoS One 2014; 9:e115066. [PMID: 25503969 PMCID: PMC4263729 DOI: 10.1371/journal.pone.0115066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/18/2014] [Indexed: 01/22/2023] Open
Abstract
Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.
Collapse
Affiliation(s)
- Kevin L. Schully
- Naval Medical Research Center-Frederick, Frederick, Maryland, United States of America
| | - Matthew G. Bell
- Naval Medical Research Center-Frederick, Frederick, Maryland, United States of America
| | - Jerrold M. Ward
- Global Vet Pathology, Montgomery Village, Maryland, United States of America
| | - Andrea M. Keane-Myers
- Naval Medical Research Center-Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis. Sci Rep 2013; 3:1146. [PMID: 23359492 PMCID: PMC3556592 DOI: 10.1038/srep01146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/26/2012] [Indexed: 11/08/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. Treatment of melioidosis is suboptimal and developing improved melioidosis therapies requires animal models. In this report, we exposed male BALB/c mice to various amounts of aerosolized B. pseudomallei 1026b to determine lethality. After establishing a median lethal dose (LD(50)) of 2,772 colony forming units (cfu)/animal, we tested the ability of doxycycline administered 6 hours after exposure to a uniformly lethal dose of ~20 LD(50) to prevent death and eliminate bacteria from the lung and spleens. Tissue bacterial burdens were examined by PCR analysis. We found that 100% of mice treated with doxycycline survived and B. pseudomallei DNA was not amplified from the lungs or spleens of most surviving mice. We conclude the BALB/c mouse is a useful model of melioidosis. Furthermore, the data generated in this mouse model indicate that doxycycline is likely to be effective in post-exposure prophylaxis of melioidosis.
Collapse
|
8
|
West TE, Myers ND, Liggitt HD, Skerrett SJ. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. Int J Exp Pathol 2013; 93:421-8. [PMID: 23136994 DOI: 10.1111/j.1365-2613.2012.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Melioidosis is a tropical disease caused by ingestion, percutaneous inoculation or inhalation of the Gram-negative soil saprophyte Burkholderia pseudomallei. We developed a reproducible experimental murine model of pneumonic melioidosis induced by inhalation of aerosolized B. pseudomallei 1026b. In a series of experiments performed to bracket the lethal dose, we found that C57BL/6 mice were modestly more resistant than BALB/c mice (median lethal dose 334 CFU/lung vs 204 CFU/lung). We further characterized infection and pulmonary inflammation in C57BL/6 mice infected with a sublethal dose. We observed pulmonary replication and dissemination of bacteria to distant organs in the first days after infection, followed by bacterial containment by day 4 and no evidence of recrudescent infection for up to 2 months. We measured a robust host inflammatory response notable for a neutrophilic bronchoalveolar lavage fluid profile, elevated cytokines and chemokines in the lung and serum and scattered foci of neutrophilic infiltrates in the alveoli and in a perivascular distribution on histological analysis. We previously noted a similar pattern of inflammation in mice infected with aerosolized B. thailandensis. This report builds on the limited literature describing experimental murine pneumonic melioidosis induced by aerosol and characterizes pulmonary infection and resultant inflammation in C57BL/6 mice infected with aerosolized B. pseudomallei. This model has utility for the study of bacterial and host factors that contribute to the virulence of melioidosis.
Collapse
Affiliation(s)
- T Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, WA 98104-2499, USA.
| | | | | | | |
Collapse
|
9
|
Froude JW, Stiles B, Pelat T, Thullier P. Antibodies for biodefense. MAbs 2011; 3:517-27. [PMID: 22123065 PMCID: PMC3242838 DOI: 10.4161/mabs.3.6.17621] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/03/2011] [Indexed: 12/11/2022] Open
Abstract
Potential bioweapons are biological agents (bacteria, viruses, and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons, or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus, and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases.
Collapse
Affiliation(s)
- Jeffrey W Froude
- US Army Medical Research and Material Command; Fort Detrick, MD USA
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Bradley Stiles
- US Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Thibaut Pelat
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| | - Philippe Thullier
- Unité de biotechnologie des anticorps et des toxines; Département de Microbiologie; Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); La Tronche Cedex, France
| |
Collapse
|
10
|
Hagen RM, Frickmann H, Elschner M, Melzer F, Neubauer H, Gauthier YP, Racz P, Poppert S. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples. Int J Med Microbiol 2011; 301:585-90. [PMID: 21658996 DOI: 10.1016/j.ijmm.2011.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
We evaluated newly developed probes for rapid identification of Burkholderia (B.) pseudomallei and B. mallei and differentiation from B. thailandensis by fluorescence in situ hybridization (FISH). FISH correctly identified 100% of the tested B. pseudomallei (11), B. mallei (11), and B. thailandensis (1) strains, excluded 100% of all tested negative controls (61), and allowed demonstration of B. pseudomallei infection in a paraffin-embedded spleen tissue sample of an experimentally infected mouse.
Collapse
Affiliation(s)
- Ralf M Hagen
- Department for Tropical Medicine at the Bernhard Nocht Institute, Bundeswehr Hospital Hamburg, Bernhard-Nocht-Strasse, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 2009; 33:1079-99. [PMID: 19732156 DOI: 10.1111/j.1574-6976.2009.00189.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Melioidosis, a febrile illness with disease states ranging from acute pneumonia or septicaemia to chronic abscesses, was first documented by Whitmore & Krishnaswami (1912). The causative agent, Burkholderia pseudomallei, was subsequently identified as a motile, gram-negative bacillus, which is principally an environmental saprophyte. Melioidosis has become an increasingly important disease in endemic areas such as northern Thailand and Australia (Currie et al., 2000). This health burden, plus the classification of B. pseudomallei as a category B biological agent (Rotz et al., 2002), has resulted in an escalation of research interest. This review focuses on the molecular and cellular basis of pathogenesis in melioidosis, with a comprehensive overview of the current knowledge on how B. pseudomallei can cause disease. The process of B. pseudomallei movement from the environmental reservoir to attachment and invasion of epithelial and macrophage cells and the subsequent intracellular survival and spread is outlined. Furthermore, the diverse assortment of virulence factors that allow B. pseudomallei to become an effective opportunistic pathogen, as well as to avoid or subvert the host immune response, is discussed. With the recent increase in genomic and molecular studies, the current understanding of the infection process of melioidosis has increased substantially, yet, much still remains to be elucidated.
Collapse
|
12
|
Lever MS, Nelson M, Stagg AJ, Beedham RJ, Simpson AJH. Experimental acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Int J Exp Pathol 2009; 90:16-25. [PMID: 19200247 DOI: 10.1111/j.1365-2613.2008.00619.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, which is considered a potential deliberate release agent. The objective of this study was to establish and characterise a relevant, acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Mice were infected with 100 B. pseudomallei strain BRI bacteria by the aerosol route (approximately 20 median lethal doses). Bacterial counts within lung, liver, spleen, brain, kidney and blood over 5 days were determined and histopathological and immunocytochemical profiles were assessed. Bacterial numbers in the lungs reached approximately 10(8) cfu/ml at day 5 post-infection. Bacterial numbers in other tissues were lower, reaching between 10(3) and 10(5) cfu/ml at day 4. Blood counts remained relatively constant at approximately 1.0 x 10(2) cfu/ml. Foci of acute inflammation and necrosis were seen within lungs, liver and spleen. These results suggest that the BALB/c mouse is highly susceptible to B. pseudomallei by the aerosol route and represents a relevant model system of acute human melioidosis.
Collapse
Affiliation(s)
- Mark S Lever
- Biomedical Sciences, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK.
| | | | | | | | | |
Collapse
|
13
|
Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 2008; 190:2306-13. [PMID: 18223084 DOI: 10.1128/jb.01735-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by these bacteria date back over 100 years, relatively little is known about their virulence and pathogenicity mechanisms. We used in silico genomic subtraction to generate their virulome, a set of 650 putative virulence-related genes shared by B. pseudomallei and B. mallei but not present in five closely related nonpathogenic Burkholderia species. Although most of these genes are clustered in putative operons, the number of targets for mutant construction and verification of reduced virulence in animal models is formidable. Therefore, Galleria mellonella (wax moth) larvae were evaluated as a surrogate host; we found that B. pseudomallei and B. mallei, but not other phylogenetically related bacteria, were highly pathogenic for this insect. More importantly, four previously characterized B. mallei mutants with reduced virulence in hamsters or mice had similarly reduced virulence in G. mellonella larvae. Site-specific inactivation of selected genes in the computationally derived virulome identified three new potential virulence genes, each of which was required for rapid and efficient killing of larvae. Thus, this approach may provide a means to quickly identify high-probability virulence genes in B. pseudomallei, B. mallei, and other pathogens.
Collapse
|
14
|
Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, Nathan S. Burkholderia pseudomallei animal and human isolates from Malaysia exhibit different phenotypic characteristics. Diagn Microbiol Infect Dis 2007; 58:263-70. [PMID: 17350202 DOI: 10.1016/j.diagmicrobio.2007.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/02/2007] [Accepted: 01/11/2007] [Indexed: 11/25/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.
Collapse
MESH Headings
- Animals
- Base Sequence
- Burkholderia pseudomallei/classification
- Burkholderia pseudomallei/genetics
- Burkholderia pseudomallei/isolation & purification
- Burkholderia pseudomallei/physiology
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Disease Models, Animal
- Genes, rRNA/genetics
- Humans
- Malaysia
- Melioidosis/microbiology
- Melioidosis/veterinary
- Mice
- Mice, Inbred BALB C
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spleen/microbiology
- Survival Analysis
- Virulence
Collapse
Affiliation(s)
- Song-Hua Lee
- Faculty of Science and Technology, School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
15
|
Bottex C, Gauthier YP, Hagen RM, Finke EJ, Splettstösser WD, Thibault FM, Neubauer H, Vidal DR. Attempted passive prophylaxis with a monoclonal anti-Burkholderia pseudomallei exopolysaccharide antibody in a murine model of melioidosis. Immunopharmacol Immunotoxicol 2006; 27:565-83. [PMID: 16435577 DOI: 10.1080/08923970500493995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Melioidosis is a severe gram-negative infection caused by the facultative intracellular bacterium Burkholderia pseudomallei, which is responsible for a broad spectrum of symptoms in both humans and animals. No licensed vaccine currently exists. This study evaluated the protective effect of a monoclonal antibody (Mab Ps6F6) specific to B. pseudomallei exopolysaccharide in an outbred murine model of sub-acute melioidosis. When administered before the infectious challenge, Ps6F6 significantly increased resistance to infection and restrained bacterial burden in the spleen over a 30-days period. Patterns of IFN-gamma production were similar in the treated and non treated groups of mice. However, Ps6F6 lowered IFN-gamma levels over the duration of the assay period, except on day 1, suggesting a transient and rapid production of IFN-gamma under Ps6F6 control. Minor but persisting increases occurred in IL-12 levels while TNF-alpha was detected only in the controls at the later stages of infection. No IL-10 secretion was detected in both groups of mice. These data suggest that passive prophylaxis with Mab Ps6F6 provide a moderate and transient induction of inflammatory responses in infected mice but failed to trigger a sterilizing protective immunity.
Collapse
Affiliation(s)
- Chantal Bottex
- Centre de Recherches du Service de Santé des Armées Emile Pardé, Unité de Microbiologie, La Tronche, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Boddey JA, Day CJ, Flegg CP, Ulrich RL, Stephens SR, Beacham IR, Morrison NA, Peak IRA. The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cell Microbiol 2006; 9:514-31. [PMID: 16987331 DOI: 10.1111/j.1462-5822.2006.00807.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis, a spectrum of potentially fatal diseases endemic in Northern Australia and South-East Asia. We demonstrate that B. pseudomallei rapidly modifies infected macrophage-like cells in a manner analagous to osteoclastogenesis. These alterations include multinucleation and the expression by infected cells of mRNA for factors required for osteoclastogenesis: the chemokines monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 gamma (MIP-1gamma), 'regulated on activation normal T cell expressed and secreted' (RANTES) and the transcription factor 'nuclear factor of activated T-cells cytoplasmic 1' (NFATc1). An increase in expression of these factors was also observed after infection with Burkholderia thailandensis. Expression of genes for the osteoclast markers calcitonin receptor (CTR), cathepsin K (CTSK) and tartrate-resistant acid phosphatase (TRAP) was also increased by B. pseudomallei-infected, but not by B. thailandensis-infected cells. The expression by B. pseudomallei-infected cells of these chemokine and osteoclast marker genes was remarkably similar to cells treated with RANKL, a stimulator of osteoclastogenesis. Analysis of dentine resorption by B. pseudomallei-induced osteoclast-like cells revealed that demineralization may occur but that authentic excavation does not take place under the tested conditions. Furthermore, we identified and characterized lfpA (for lactonase family protein A) in B. pseudomallei, which shares significant sequence similarity with the eukaryotic protein 'regucalcin', also known as 'senescence marker protein-30' (SMP-30). LfpA orthologues are widespread in prokaryotes and are well conserved, but are phylogenetically distinct from eukaryotic regucalcin orthologues. We demonstrate that lfpA mRNA expression is dramatically increased in association with macrophage-like cells. Mutation of lfpA significantly reduced expression of the tested host genes, relative to the response to wild-type B. pseudomallei. We also show that lfpA is required for optimal virulence in vivo.
Collapse
Affiliation(s)
- Justin A Boddey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wongratanacheewin S, Kespichayawattana W, Intachote P, Pichyangkul S, Sermswan RW, Krieg AM, Sirisinha S. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun 2004; 72:4494-502. [PMID: 15271908 PMCID: PMC470634 DOI: 10.1128/iai.72.8.4494-4502.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although CpG oligodeoxynucleotides (CpG ODNs) are known to enhance resistance against infection in a number of animal models, little is known about the CpG-induced protection against acute fatal sepsis such as that associated with the highly virulent bacterium Burkholderia pseudomallei. We previously demonstrated in an in vitro study that immunostimulatory CpG ODN 1826 enhances phagocytosis of B. pseudomallei and induces nitric oxide synthase and nitric oxide production by mouse macrophages. In the present study, CpG ODN 1826 given intramuscularly to BALB/c mice 2 to 10 days prior to B. pseudomallei challenge conferred better than 90% protection. CpG ODN 1826 given 2 days before the bacterial challenge rapidly enhanced the innate immunity of these animals, judging from the elevated serum levels of interleukin-12 (IL-12)p70 and gamma interferon (IFN-gamma) over the baseline values. No bacteremia was detected on day 2 in 85 to 90% of the CpG-treated animals, whereas more than 80% of the untreated animals exhibited heavy bacterial loads. Although marked elevation of IFN-gamma was found consistently in the infected animals 2 days after the bacterial challenge, it was ameliorated by the CpG ODN 1826 pretreatment (P = 0.0002). Taken together, the kinetics of bacteremia and cytokine profiles presented are compatible with the possibility that protection by CpG ODN 1826 against acute fatal septicemic melioidosis in this animal model is associated with a reduction of bacterial load and interference with the potential detrimental effect of the robust production of proinflammatory cytokines associated with B. pseudomallei multiplication.
Collapse
|
18
|
Hagen RM, Gauthier YP, Sprague LD, Vidal DR, Zysk G, Finke EJ, Neubauer H. Strategies for PCR based detection of Burkholderia pseudomallei DNA in paraffin wax embedded tissues. Mol Pathol 2002; 55:398-400. [PMID: 12456780 PMCID: PMC1187279 DOI: 10.1136/mp.55.6.398] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recently, several cases of melioidosis imported to Europe have been reported. The diagnosis of the acute or chronic infection remains challenging. This report describes an optimised protocol for fast and reliable DNA preparation for use in two different polymerase chain reaction (PCR) assays, namely: (1) a seminested PCR assay targeting a genus specific sequence of the ribosomal protein subunit 21 (rpsU) gene and (2) a nested PCR assay targeting the gene encoding the filament forming flagellin (fliC). Various strains of Burkholderia spp, strains of closely related genera, and spleen tissue samples of experimentally infected mice were investigated. The combination of PCR and sequencing of the amplicons resulted in high sensitivity and specificity. These procedures may allow rapid, sensitive, and reliable detection of B pseudomallei DNA in routinely formalin fixed and paraffin wax embedded samples, thus providing a safe diagnostic tool and avoiding the cultivation of a risk group 3 agent. In addition, this method could be useful for retrospective histopathological investigations.
Collapse
Affiliation(s)
- R M Hagen
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstr. 11, D-80937 München, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Sprague LD, Zysk G, Hagen RM, Meyer H, Ellis J, Anuntagool N, Gauthier Y, Neubauer H. A possible pitfall in the identification of Burkholderia mallei using molecular identification systems based on the sequence of the flagellin fliC gene. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:231-6. [PMID: 12423776 DOI: 10.1111/j.1574-695x.2002.tb00629.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amotile Burkholderia mallei and motile Burkholderia pseudomallei display a high similarity with regard to phenotype and clinical syndromes, glanders and melioidosis. The aim of this study was to establish a fast and reliable molecular method for identification and differentiation. Despite amotility, the gene of the filament forming flagellin (fliC) could be completely sequenced in two B. mallei strains. Only one mutation was identified discriminating between B. mallei and B. pseudomallei. A polymerase chain reaction-restriction fragment length polymorphism assay was designed making use of the absence of an AvaII recognition site in B. mallei. All seven B. mallei, 12 out of 15 B. pseudomallei and 36 closely related apathogenic Burkholderia thailandensis strains were identified correctly. However, in three B. pseudomallei strains a point mutation at gene position 798 (G to C) disrupted the AvaII site. Therefore, molecular systems based on the fliC sequence can be used for a reliable proof of strains of the three species but not for the differentiation of B. mallei and B. pseudomallei isolates.
Collapse
Affiliation(s)
- Lisa D Sprague
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Melioidosis is an important public health problem in some regions, and a potential bioweapon. Recent reports confirm that it is endemic in China, Taiwan and Laos, but the true incidence in most countries is unknown, and the ecology poorly understood. Potable water was the source of two recent outbreaks. The epidemiology and clinical manifestations of the disease in Australia are similar to those in Thailand, although prostatic abscesses and neurological manifestations are more common and parotid abscesses less so. Mycotic aneurysms are not uncommon. Patients with cystic fibrosis are at risk of pulmonary melioidosis. Comparison with the avirulent Burkholderia thailandensis has identified capsular polysaccharide as an important virulence determinant in Burkholderia pseudomallei. Diagnosis still relies on culture, and a throat swab is a worthwhile sample. Several beta-lactams, such as meropenem, reduce the mortality, and long courses of cotrimoxazole-containing regimes are needed to prevent relapse. The value of adjunctive treatments, such as granulocyte colony-stimulating factor, warrants further evaluation.
Collapse
Affiliation(s)
- David A B Dance
- Public Health Laboratory, Derriford Hospital, Plymouth, Devon, UK.
| |
Collapse
|