1
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
2
|
Hfq modulates global protein pattern and stress response in Bordetella pertussis. J Proteomics 2020; 211:103559. [DOI: 10.1016/j.jprot.2019.103559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
3
|
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun 2018; 86:e00445-17. [PMID: 29203545 PMCID: PMC5820963 DOI: 10.1128/iai.00445-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | | | - Irena Linhartova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | |
Collapse
|
4
|
Mechanisms of Stress-Mediated Modulation of Upper and Lower Respiratory Tract Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:215-23. [PMID: 26589221 DOI: 10.1007/978-3-319-20215-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stress is an external factor known to be a potent exacerbator of respiratory infections. Most explanations of how stress affects susceptibility to airway infections focus on the immune system. However, evidence is increasing that respiratory pathogens are equally responsive to the hormonal output of stress. This chapter considers the bacterial and mucosal determinants of respiratory tract infections and their interrelationship during stressful conditions.
Collapse
|
5
|
Alvarez Hayes J, Lamberti Y, Surmann K, Schmidt F, Völker U, Rodriguez ME. Shotgun proteome analysis of Bordetella pertussis
reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response. Proteomics 2015; 15:2258-66. [DOI: 10.1002/pmic.201400512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/09/2015] [Accepted: 03/03/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata); Facultad de Ciencias Exactas; Universidad Nacional de La Plata; La Plata Argentina
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata); Facultad de Ciencias Exactas; Universidad Nacional de La Plata; La Plata Argentina
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
- ZIK-FunGene Junior Research Group Applied Proteomics; University Medicine Greifswald; Greifswald Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata); Facultad de Ciencias Exactas; Universidad Nacional de La Plata; La Plata Argentina
| |
Collapse
|
6
|
de Vries SPW, Burghout P, Langereis JD, Zomer A, Hermans PWM, Bootsma HJ. Genetic requirements for Moraxella catarrhalis growth under iron-limiting conditions. Mol Microbiol 2012; 87:14-29. [PMID: 23163337 DOI: 10.1111/mmi.12081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2012] [Indexed: 11/26/2022]
Abstract
Iron sequestration by the human host is a first line defence against respiratory pathogens like Moraxella catarrhalis, which consequently experiences a period of iron starvation during colonization. We determined the genetic requirements for M. catarrhalis BBH18 growth during iron starvation using the high-throughput genome-wide screening technology genomic array footprinting (GAF). By subjecting a large random transposon mutant library to growth under iron-limiting conditions, mutants of the MCR_0996-rhlB-yggW operon, rnd, and MCR_0457 were negatively selected. Growth experiments using directed mutants confirmed the GAF phenotypes with ΔyggW (putative haem-shuttling protein) and ΔMCR_0457 (hypothetical protein) most severely attenuated during iron starvation, phenotypes which were restored upon genetic complementation of the deleted genes. Deletion of yggW resulted in similar attenuated phenotypes in three additional strains. Transcriptional profiles of ΔyggW and ΔMCR_0457 were highly altered with 393 and 192 differentially expressed genes respectively. In all five mutants, expression of nitrate reductase genes was increased and of nitrite reductase decreased, suggesting an impaired aerobic respiration. Alteration of iron metabolism may affect nasopharyngeal colonization as adherence of all mutants to respiratory tract epithelial cells was attenuated. In conclusion, we elucidated the genetic requirements for M. catarrhalis growth during iron starvation and characterized the roles of the identified genes in bacterial growth and host interaction.
Collapse
Affiliation(s)
- Stefan P W de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Brickman TJ, Cummings CA, Liew SY, Relman DA, Armstrong SK. Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol 2011; 193:4798-812. [PMID: 21742863 PMCID: PMC3165686 DOI: 10.1128/jb.05136-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/30/2011] [Indexed: 01/19/2023] Open
Abstract
Serological studies of patients with pertussis and the identification of antigenic Bordetella pertussis proteins support the hypothesis that B. pertussis perceives an iron starvation cue and expresses multiple iron source utilization systems in its natural human host environment. Furthermore, previous studies using a murine respiratory tract infection model showed that several of these B. pertussis iron systems are required for colonization and persistence and are differentially expressed over the course of infection. The present study examined genome-wide changes in B. pertussis gene transcript abundance in response to iron starvation in vitro. In addition to known iron source utilization genes, we identified a previously uncharacterized iron-repressed cytoplasmic membrane transporter system, fbpABC, that is required for the utilization of multiple structurally distinct siderophores including alcaligin, enterobactin, ferrichrome, and desferrioxamine B. Expression of type III secretion system genes was also found to be upregulated during iron starvation in both B. pertussis strain Tohama I and Bordetella bronchiseptica strain RB50. In a survey of type III secretion system protein production by an assortment of B. pertussis laboratory-adapted and low-passage clinical isolate strains, iron limitation increased the production and secretion of the type III secretion system-specific translocation apparatus tip protein Bsp22 in all Bvg-proficient strains. These results indicate that iron starvation in the infected host is an important environmental cue influencing not only Bordetella iron transport gene expression but also the expression of other important virulence-associated genes.
Collapse
Affiliation(s)
- Timothy J. Brickman
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Craig A. Cummings
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
- VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Sin-Yee Liew
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
- VA Palo Alto Health Care System, Palo Alto, California 94304
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
- VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Sandra K. Armstrong
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
8
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
9
|
Expression of BfrH, a putative siderophore receptor of Bordetella bronchiseptica, is regulated by iron, Fur1, and the extracellular function sigma factor EcfI. Infect Immun 2009; 78:1147-62. [PMID: 20008538 DOI: 10.1128/iai.00961-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.
Collapse
|