1
|
Eren Eroğlu AE, Eroğlu V, Yaşa İ. Genomic Insights into the Symbiotic and Plant Growth-Promoting Traits of " Candidatus Phyllobacterium onerii" sp. nov. Isolated from Endemic Astragalus flavescens. Microorganisms 2024; 12:336. [PMID: 38399740 PMCID: PMC10891626 DOI: 10.3390/microorganisms12020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
A novel strain of Gram-negative, rod-shaped aerobic bacteria, identified as IY22, was isolated from the root nodules of Astragalus flavescens. The analysis of the 16S rDNA and recA (recombinase A) gene sequences indicated that the strain belongs to the genus Phyllobacterium. During the phylogenetic analysis, it was found that strain IY22 is closely related to P. trifolii strain PETP02T and P. bourgognense strain STM 201T. The genome of IY22 was determined to be 6,010,116 base pairs long with a DNA G+C ratio of 56.37 mol%. The average nucleotide identity (ANI) values showed a range from 91.7% to 93.6% when compared to its close relatives. Moreover, IY22 and related strains had digital DNA-DNA hybridization (dDDH) values ranging from 16.9% to 54.70%. Multiple genes (including nodACDSNZ, nifH/frxC, nifUS, fixABCJ, and sufABCDES) associated with symbiotic nitrogen fixation have been detected in strain IY22. Furthermore, this strain features genes that contribute to improving plant growth in various demanding environments. This study reports the first evidence of an association between A. flavescens and a rhizobial species. Native high-altitude legumes are a potential source of new rhizobia, and we believe that they act as a form of insurance for biodiversity against the threats of desertification and drought.
Collapse
Affiliation(s)
- Asiye Esra Eren Eroğlu
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Volkan Eroğlu
- Botany Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - İhsan Yaşa
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| |
Collapse
|
2
|
Paudel D, Liu F, Wang L, Crook M, Maya S, Peng Z, Kelley K, Ané JM, Wang J. Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Front Microbiol 2020; 11:93. [PMID: 32117123 PMCID: PMC7020250 DOI: 10.3389/fmicb.2020.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
In many legumes, the colonization of roots by rhizobia is via "root hair entry" and its molecular mechanisms have been extensively studied. However, the nodulation of peanuts (Arachis hypogaea L.) by Bradyrhizobium strains requires an intercellular colonization process called "crack entry," which is understudied. To understand the intercellular crack entry process, it is critical to develop the tools and resources related to the rhizobium in addition to focus on investigating the mechanisms of the plant host. In this study, we isolated a Bradyrhizobium sp. strain, Lb8 from peanut root nodules and sequenced it using PacBio long reads. The complete genome sequence was a circular chromosome of 8,718,147 base-pair (bp) with an average GC content of 63.14%. No plasmid sequence was detected in the sequenced DNA sample. A total of 8,433 potential protein-encoding genes, one rRNA cluster, and 51 tRNA genes were annotated. Fifty-eight percent of the predicted genes showed similarity to genes of known functions and were classified into 27 subsystems representing various biological processes. The genome shared 92% of the gene families with B. diazoefficens USDA 110T. A presumptive symbiosis island of 778 Kb was detected, which included two clusters of nif and nod genes. A total of 711 putative protein-encoding genes were in this region, among which 455 genes have potential functions related to symbiotic nitrogen fixation and DNA transmission. Of 21 genes annotated as transposase, 16 were located in the symbiosis island. Lb8 possessed both Type III and Type IV protein secretion systems, and our work elucidated the association of flagellar Type III secretion systems in bradyrhizobia. These observations suggested that complex rearrangement, such as horizontal transfer and insertion of different DNA elements, might be responsible for the plasticity of the Bradyrhizobium genome.
Collapse
Affiliation(s)
- Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Fengxia Liu
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Matthew Crook
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Stephanie Maya
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen Kelley
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jean-Michel Ané
- Departments of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Yuan S, Li R, Chen S, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Yang Z, Qiu D, Zhang X, Zhou X. RNA-Seq Analysis of Differential Gene Expression Responding to Different Rhizobium Strains in Soybean (Glycine max) Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:721. [PMID: 27303417 PMCID: PMC4885319 DOI: 10.3389/fpls.2016.00721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 05/25/2023]
Abstract
The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient and productive source of nitrogen fixation, and has critical importance in agriculture and mesology. Soybean (Glycine max), one of the most important legume crops in the world, establishes a nitrogen-fixing symbiosis with different types of rhizobia, and the efficiency of symbiotic nitrogen fixation in soybean greatly depends on the symbiotic host-specificity. Although, it has been reported that rhizobia use surface polysaccharides, secretion proteins of the type-three secretion systems and nod factors to modulate host range, the host control of nodulation specificity remains poorly understood. In this report, the soybean roots of two symbiotic systems (Bradyrhizobium japonicum strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean)with notable different nodulation phenotypes and the control were studied at five different post-inoculation time points (0.5, 7-24 h, 5, 16, and 21 day) by RNA-seq (Quantification). The results of qPCR analysis of 11 randomly-selected genes agreed with transcriptional profile data for 136 out of 165 (82.42%) data points and quality assessment showed that the sequencing library is of quality and reliable. Three comparisons (control vs. 113-2, control vs. USDA205 and USDA205 vs. 113-2) were made and the differentially expressed genes (DEGs) between them were analyzed. The number of DEGs at 16 days post-inoculation (dpi) was the highest in the three comparisons, and most of the DEGs in USDA205 vs. 113-2 were found at 16 dpi and 21 dpi. 44 go function terms in USDA205 vs. 113-2 were analyzed to evaluate the potential functions of the DEGs, and 10 important KEGG pathway enrichment terms were analyzed in the three comparisons. Some important genes induced in response to different strains (113-2 and USDA205) were identified and analyzed, and these genes primarily encoded soybean resistance proteins, NF-related proteins, nodulins and immunity defense proteins, as well as proteins involving flavonoids/flavone/flavonol biosynthesis and plant-pathogen interaction. Besides, 189 candidate genes are largely expressed in roots and\or nodules. The DEGs uncovered in this study provides molecular candidates for better understanding the mechanisms of symbiotic host-specificity and explaining the different symbiotic effects between soybean roots inoculated with different strains (113-2 and USDA205).
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| |
Collapse
|
5
|
Tu Q, Zhou X, He Z, Xue K, Wu L, Reich P, Hobbie S, Zhou J. The Diversity and Co-occurrence Patterns of N₂-Fixing Communities in a CO₂-Enriched Grassland Ecosystem. MICROBIAL ECOLOGY 2016; 71:604-615. [PMID: 26280746 DOI: 10.1007/s00248-015-0659-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Marine Sciences, Ocean College, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA
| | - Xishu Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhili He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Kai Xue
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Liyou Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55455, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, 2753, NSW, Australia
| | - Sarah Hobbie
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55455, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA.
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele. Appl Environ Microbiol 2015; 81:6710-7. [PMID: 26187957 PMCID: PMC4561682 DOI: 10.1128/aem.01942-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.
Collapse
Affiliation(s)
- Omar M Faruque
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiharu Fujii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 2013; 67:626-30. [DOI: 10.1016/j.ympev.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
|
8
|
Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 2012; 96:543-54. [DOI: 10.1007/s00253-011-3832-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
9
|
Yang S, Tang F, Gao M, Krishnan HB, Zhu H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci U S A 2010; 107:18735-40. [PMID: 20937853 PMCID: PMC2973005 DOI: 10.1073/pnas.1011957107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic host-bacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors.
Collapse
Affiliation(s)
- Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Fang Tang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
- College of Bioengineering, Chongqing University, Chongqing 400044, China; and
| | - Muqiang Gao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Hari B. Krishnan
- US Department of Agriculture–Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
10
|
Provorov NA, Vorobyov NI, Andronov EE. Macro- and microevolution of bacteria in symbiotic systems. RUSS J GENET+ 2008. [DOI: 10.1134/s102279540801002x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kamakura T, Yamaguchi S, Saitoh KI, Teraoka T, Yamaguchi I. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:437-444. [PMID: 12036274 DOI: 10.1094/mpmi.2002.15.5.437] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The conidial germ tube of the rice blast fungus, Magnaporthe grisea, differentiates a specialized cell, an appressorium, required for penetration into the host plant. Formation of the appressorium is also observed on artificial solid substrata such as polycarbonate. A novel emerging germ tube-specific gene, CBP1 (chitin-binding protein), was found in a cDNA subtractive differential library. CBP1 coded for a putative extracellular protein (signal peptide) with two similar chitin-binding domains at both ends of a central domain with homology to fungal chitin deacetylases and with a C-terminus domain rich in Ser/Thr related extracellular matrix protein such as agglutinin. The consensus sequence of the chitin-binding domain found in CBP1 has never been reported in fungi and is similar to the chitin-binding motif in plant lectins and plant chitinases classes I and IV. CBPI was disrupted in order to identify its function. Null mutants of CBP1 failed to differentiate appressoria normally on artificial surface but succeeded in normally differentiating appressoria on the plant leaf surface. Since the null mutant Cbp1- showed abnormal appressorium differentiation only on artificial surfaces and was sensitive to the chemical inducers, CBP1 seemed to play an important role in the recognition of physical factors on solid surfaces.
Collapse
Affiliation(s)
- Takashi Kamakura
- Microbial Toxicology Laboratory, RIKEN Institute, Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
12
|
Ip H, D'Aoust F, Begum AA, Zhang H, Smith DL, Driscoll BT, Charles TC. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1404-1410. [PMID: 11768535 DOI: 10.1094/mpmi.2001.14.12.1404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.
Collapse
Affiliation(s)
- H Ip
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Yokoyama T, Kobayashi N, Kouchi H, Minamisawa K, Kaku H, Tsuchiya K. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:71-8. [PMID: 10792822 DOI: 10.1046/j.1365-313x.2000.00713.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lipochito-oligosaccharides (Nod factors) produced by Rhizobium or Bradyrhizobium are the key signal molecules for eliciting nodulation in their corresponding host legumes. To elucidate the signal transduction events mediated by Nod factors, we investigated the effects of Nod factors on the cytosolic [Ca2+] of protoplasts prepared from roots and suspension-cultured cells of soybean (Glycine max and G. soja) using a fluorescent Ca2+ indicator, Fura-PE3. NodBj-V (C18:1, MeFuc), which is a major component of Nod factors produced by Bradyrhizobium japonicum, induces transient elevation of cytosolic [Ca2+] in the cells of soybean within a few minutes. This effect is specific to soybean cells and was not observed in the tobacco BY-2 cells. Furthermore, NodBj-V without MeFuc did not induce any cytosolic [Ca2+] elevation in soybean cells. Exclusion of Ca2+ from the medium, as well as pre-treatment of the cells with an external Ca2+ chelator or with a plasma membrane voltage-dependent Ca2+ channel inhibitor, suppressed the Nod factor-dependent cytosolic [Ca2+] elevation. These results indicate that transient Ca2+ influx from extracellular fluid is one of the earliest responses of soybean cells to NodBj-V (C18:1, MeFuc) in a host-specific manner.
Collapse
Affiliation(s)
- T Yokoyama
- National Institute of Agrobiological Resources, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
15
|
Summers ML, Denton MC, McDermott TR. Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by phoB. J Bacteriol 1999; 181:2217-24. [PMID: 10094701 PMCID: PMC93636 DOI: 10.1128/jb.181.7.2217-2224.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work in this laboratory has shown that the gene coding for acetate kinase (ackA) in Sinorhizobium meliloti is up-regulated in response to phosphate limitation. Characterization of the region surrounding ackA revealed that it is adjacent to pta, which codes for phosphotransacetylase, and that these two genes are part of an operon composed of at least two additional genes in the following order: an open reading frame (orfA), pta, ackA, and the partial sequence of a gene with an inferred peptide that has a high degree of homology to enoyl-ACP reductase (fabI). Experiments combining enzyme assays, a chromosomal lacZ::ackA transcriptional fusion, complementation analysis with cosmid subclones, and the creation of mutations in pta and ackA all indicated that the orfA-pta-ackA-fabI genes are cotranscribed in response to phosphate starvation. Primer extension was used to map the position of the phosphate starvation-inducible transcriptional start sites upstream of orfA. The start sites were found to be preceded by a sequence having similarity to PHO boxes from other phosphate-regulated genes in S. meliloti and to the consensus PHO box in Escherichia coli. Introduction of a phoB mutation in the wild-type strain eliminated elevated levels of acetate kinase and phosphotransacetylase activities in response to phosphate limitation and also eliminated the phosphate stress-induced up-regulation of the ackA::lacZ fusion. Mutations in either ackA alone or both pta and ackA did not affect the nodulation or nitrogen fixation phenotype of S. meliloti.
Collapse
Affiliation(s)
- M L Summers
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
16
|
Kamst E, Spaink HP, Kafetzopoulos D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell Biochem 1998; 29:29-71. [PMID: 9594644 DOI: 10.1007/978-1-4899-1707-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- E Kamst
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands
| | | | | |
Collapse
|
17
|
Schultze M, Kondorosi A. The role of Nod signal structures in the determination of host specificity in the Rhizobium-legume symbiosis. World J Microbiol Biotechnol 1996; 12:137-49. [DOI: 10.1007/bf00364678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|