1
|
Ohya M, Cueno ME, Tamura M, Ochiai K. Varying hemin concentrations affect Porphyromonas gingivalis strains differently. Microb Pathog 2015; 94:54-9. [PMID: 26597993 DOI: 10.1016/j.micpath.2015.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis requires heme to grow, however, heme availability and concentration in the periodontal pockets vary. Fluctuations in heme concentration may affect each P. gingivalis strain differently, however, this was never fully demonstrated. Here, we elucidated the effects of varying hemin concentrations in representative P. gingivalis strains. Throughout this study, representative P. gingivalis strains [FDC381 (type I), MPWIb-01 (type Ib), TDC60 (type II), ATCC49417 (type III), W83 (type IV), and HNA99 (type V)] were used and grown for 24 h in growth media under varying hemin concentrations (5 × , 1 × , 0.5 × , 0.1 × ). Samples were lysed and protein standardized. Arg-gingipain (Rgp), H2O2, and superoxide dismutase (SOD) levels were subsequently measured. We focused our study on 24 h-grown strains which excluded MPWIb-01 and HNA99. Rgp activity among the 4 remaining strains varied with Rgp peaking at: 1 × for FDC381, 5 × for TDC60, 0.5 × for ATCC49417, 5 × and 0.5 × for W83. With regards to H2O2 and SOD amounts: FDC381 had similar H2O2 amounts in all hemin concentrations while SOD levels varied; TDC60 had the lowest H2O2 amount at 1 × while SOD levels became higher in relation to hemin concentration; ATCC49417 also had similar H2O2 amounts in all hemin concentrations while SOD levels were higher at 1 × and 0.5 × ; and W83 had statistically similar H2O2 and SOD amounts regardless of hemin concentration. Our results show that variations in hemin concentration affect each P. gingivalis strain differently.
Collapse
Affiliation(s)
- Manabu Ohya
- Division of Oral Health Science, Nihon University Graduate School of Dentistry, Tokyo 101-8310 Japan; Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310 Japan
| | - Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310 Japan.
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310 Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310 Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310 Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310 Japan.
| |
Collapse
|
2
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
4
|
Sroka A, Sztukowska M, Potempa J, Travis J, Genco CA. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis. J Bacteriol 2001; 183:5609-16. [PMID: 11544223 PMCID: PMC95452 DOI: 10.1128/jb.183.19.5609-5616.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the beta-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a usable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant.
Collapse
Affiliation(s)
- A Sroka
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
5
|
Ratnayake DB, Wai SN, Shi Y, Amako K, Nakayama H, Nakayama K. Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1119-1127. [PMID: 10832639 DOI: 10.1099/00221287-146-5-1119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is an obligate anaerobe that utilizes haem, transferrin and haemoglobin efficiently as sources of iron for growth, and has the ability to store haem on its cell surface, resulting in black pigmentation of colonies on blood agar plates. However, little is known about intracellular iron storage in this organism. Ferritin is one of the intracellular iron-storage proteins and may also contribute to the protection of organisms against oxidative stresses generated by intracellular free iron. A ferritin-like protein was purified from P. gingivalis and the encoding gene (ftn) was cloned from chromosomal DNA using information on its amino-terminal amino acid sequence. Comparison of the amino acid sequence deduced from the nucleotide sequence of ftn with those of known ferritins and bacterioferritins identified the protein as a ferritin and positioned it between proteins from the Proteobacteria and Thermotogales. The P. gingivalis ferritin was found to contain non-haem iron, thus confirming its identity. Construction and characterization of a P. gingivalis ferritin-deficient mutant revealed that the ferritin was particularly important for the bacterium to survive under iron-depleted conditions (both haemin and transferrin starvation), indicating that intracellular iron is stored in ferritin regardless of the iron source and that the iron stored in ferritin is utilized under iron-restricted conditions. However, the ferritin appeared not to contribute to protection against oxidative stresses caused by peroxides and atmospheric oxygen.
Collapse
Affiliation(s)
- Dinath B Ratnayake
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Sun Nyunt Wai
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Yixin Shi
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazunobu Amako
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Nakayama
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Nakayama
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Abstract
Myoglobin was found to bind reversibly to the envelope of Porphyromonas gingivalis in a pH-dependent manner; the binding took place below neutral pHs of the incubation mixtures and myoglobin bound released from the envelope at high pHs. The amounts of myoglobin bound to 1 mg of the envelope at pH 5.0 per min under the presence of sufficient myoglobin were 1.4 microg. K(d) for the reaction at pH 5.0 was 2.2 x 10(-10) M. From the dot blot assay, myoglobin obviously bound to hemoglobin-binding protein (HbBP) of P. gingivalis, however, the amounts of myoglobin that bound to HbBP were half those of hemoglobin. One of the fractions, separated by gel filtration, of the digested materials of myoglobin by the detergent-solubilized envelope containing proteinases was found to support the growth of P. gingivalis in the iron source-depleted medium.
Collapse
Affiliation(s)
- S Fujimura
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri-Shi, Nagano-Ken, Japan.
| | | |
Collapse
|
7
|
Duchesne P, Grenier D, Mayrand D. Binding and utilization of human transferrin by Prevotella nigrescens. Infect Immun 1999; 67:576-80. [PMID: 9916061 PMCID: PMC96357 DOI: 10.1128/iai.67.2.576-580.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets.
Collapse
Affiliation(s)
- P Duchesne
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | | | | |
Collapse
|
8
|
Sojar HT, Hamada N, Genco RJ. Structures involved in the interaction of Porphyromonas gingivalis fimbriae and human lactoferrin. FEBS Lett 1998; 422:205-8. [PMID: 9490007 DOI: 10.1016/s0014-5793(98)00002-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of laboratory and clinical strains of Porphyromonas gingivalis to bind lactoferrin has been assessed (FEMS Immunology and Medical Microbiology, 1996, 14, 135-143). Relative binding for P. gingivalis to lactoferrin varies among strains from 3.78 to 26.62%. We also observed that fimbriated strains of P. gingivalis bind more strongly to lactoferrin as compared to nonfimbriated strains of P. gingivalis. This observation led us to study fimbrial interaction with human lactoferrin and the fine structure of these interactions. Binding of iodinated purified fimbriae was studied using an overlay assay. Iodinated fimbriae bind specifically and strongly to human lactoferrin. When various sugars were used to inhibit binding, only N-acetylgalactosamine and fucose were inhibitory. To confirm further that oligosaccharide of lactoferrin is involved in the interaction, lactoferrin was chemically deglycosylated, and fimbriae failed to bind deglycosylated lactoferrin. Antifimbriae, as well as four antipeptide antibodies against different regions of the P. gingivalis fimbrillin, were used to inhibit the interaction. Antipeptide E, directed against amino acids 81-98 (AAGLIMTAEPKTIVLKAG-C), was found to be the most effective inhibitor for the lactoferrin-fimbriae interaction. These results suggest that the binding of P. gingivalis cells to lactoferrin is lectin like, directed to a oligosaccharide of lactoferrin. Furthermore, these studies suggest that the region of fimbriae that binds to lactoferrin is the N-terminus of the molecule. It is likely that binding of lactoferrin to P. gingivalis cells results in antimicrobial activity directed against these cells by virtue of its ability to deprive the bacterial cell of needed iron.
Collapse
Affiliation(s)
- H T Sojar
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA.
| | | | | |
Collapse
|
9
|
de Lillo A, Teanpaisan R, Fierro JF, Douglas CW. Binding and degradation of lactoferrin by Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1996; 14:135-43. [PMID: 8809549 DOI: 10.1111/j.1574-695x.1996.tb00280.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of laboratory and clinical strains of Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens to bind and to degrade lactoferrin (Lf) has been assessed. Lf bound readily to whole cells of each species apparently via high-affinity site and one or more low-affinity sites. P. gingivalis showed a lower affinity for Lf than the other two species (P < 0.001). Virtually all strains of P. gingivalis completely degraded Lf under the conditions employed, whereas P. intermedia and P. nigrescens showed only partial degradation. These data suggest that Lf binds to a high-affinity receptor on all these bacteria and, particularly in the case of P. gingivalis, is then degraded by cell-associated proteases. This property may provide protection to the cell against the effects of Lf in periodontal sites and so is a possible virulence factor in disease. There was no association between the ability to degrade Lf and whether the strains had originated from healthy or diseased oral sites.
Collapse
Affiliation(s)
- A de Lillo
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|