1
|
Leyton-Carcaman B, Abanto M. Beyond to the Stable: Role of the Insertion Sequences as Epidemiological Descriptors in Corynebacterium striatum. Front Microbiol 2022; 13:806576. [PMID: 35126341 PMCID: PMC8811144 DOI: 10.3389/fmicb.2022.806576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components’ acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.
Collapse
|
2
|
Montelongo Hernandez C, Putonti C, Wolfe AJ. Characterizing Plasmids in Bacteria Species Relevant to Urinary Health. Microbiol Spectr 2021; 9:e0094221. [PMID: 34937183 PMCID: PMC8694116 DOI: 10.1128/spectrum.00942-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The urinary tract has a microbial community (the urinary microbiota or urobiota) that has been associated with human health. Whole genome sequencing of bacteria is a powerful tool, allowing investigation of the genomic content of the urobiota, also called the urinary microbiome (urobiome). Bacterial plasmids are a significant component of the urobiome yet are understudied. Because plasmids can be vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. In this project, we sought plasmids in 11 clinically relevant urinary species: Aerococcus urinae, Corynebacterium amycolatum, Enterococcus faecalis, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Lactobacillus gasseri, Lactobacillus jensenii, Staphylococcus epidermidis, Streptococcus anginosus, and Streptococcus mitis. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in other species sequenced thus far. Some identified plasmidic assemblies were predicted to have putative virulence and/or antibiotic resistance genes, although the majority of their annotated coding regions were of unknown predicted function. In this study, we report on plasmids from urinary species as a first step to understanding the role of plasmids in the bacterial urobiota. IMPORTANCE The microbial community of the urinary tract (urobiota) has been associated with human health. Whole genome sequencing of bacteria permits examination of urobiota genomes, including plasmids. Because plasmids are vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. Currently, urobiota plasmids are understudied. Here, we sought plasmids in 11 clinically relevant urinary species. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in the other 6 species. We identified putative virulence and/or antibiotic resistance genes in some of the plasmidic assemblies, but most of their annotated coding regions were of unknown function. This is a first step to understanding the role of plasmids in the bacterial urobiota.
Collapse
Affiliation(s)
- Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl R. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum. Plasmid 2020; 112:102540. [DOI: 10.1016/j.plasmid.2020.102540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
4
|
High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control. J Biosci Bioeng 2019; 127:529-538. [DOI: 10.1016/j.jbiosc.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
|
5
|
Bukovska G, Ugorcakova J, Halgasova N, Bocanova L, Tkacova A. The BFK20 phage replication origin confers a phage-encoded resistance phenotype to the industrial strain Brevibacterium flavum. FEMS Microbiol Lett 2019; 366:5480461. [DOI: 10.1093/femsle/fnz090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Ugorcakova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
6
|
Resende B, Rebelato A, D'Afonseca V, Santos A, Stutzman T, Azevedo V, Santos L, Miyoshi A, Lopes D. DNA repair in Corynebacterium model. Gene 2011; 482:1-7. [DOI: 10.1016/j.gene.2011.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
7
|
Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H. Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 2010; 87:1855-66. [DOI: 10.1007/s00253-010-2701-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/25/2022]
|
8
|
Survey of genome organization and gene content of Corynebacterium pseudotuberculosis. Microbiol Res 2009; 165:312-20. [PMID: 19720513 DOI: 10.1016/j.micres.2009.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/21/2022]
Abstract
Corynebacterium pseudotuberculosis is an intracellular pathogen that causes Caseous lymphadenitis (CLA) disease in sheep and goats. The widespread occurrence and the economic importance of this pathogen have prompted investigation of its pathogenesis. We used a genomic library of C. pseudotuberculosis to generate 1440 genomic survey sequences (GSSs); these were analyzed in silico with bioinformatics tools, using public databases for comparative analyses. We employed non-redundant unique sequences as a query for BLAST searches against the genome, the translated genome and the proteome of four other Corynebacterium species that have been completely sequenced. We were able to characterize approximately 8% of the genome of C. pseudotuberculosis, including previously undescribed functional group genes, based on the COG database; the GSSs classification into categories gave 13% information storage and processing, 14% cellular processes and 23% metabolism. We found a close relation between C. pseudotuberculosis and C. diphtheriae conserved-gene synteny in Corynebacteria species.
Collapse
|
9
|
Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 2008; 81:1107-15. [PMID: 18936936 DOI: 10.1007/s00253-008-1746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coli-C. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.
Collapse
Affiliation(s)
- Yoshiki Tsuchida
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
10
|
Walia R, Deb JK, Mukherjee KJ. Development of expression vectors for Escherichia coli based on the pCR2 replicon. Microb Cell Fact 2007; 6:14. [PMID: 17490494 PMCID: PMC1876245 DOI: 10.1186/1475-2859-6-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different Escherichia coli plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these E.coli plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the lac promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility. Conclusion We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - J K Deb
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - K J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Vertès AA, Inui M, Yukawa H. Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 2006; 71:7633-42. [PMID: 16332735 PMCID: PMC1317429 DOI: 10.1128/aem.71.12.7633-7642.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alain A Vertès
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu, Soraku, Kyoto 619-0292, Japan
| | | | | |
Collapse
|
12
|
Srivastava P, Deb JK. Gene expression systems in corynebacteria. Protein Expr Purif 2005; 40:221-9. [PMID: 15766862 DOI: 10.1016/j.pep.2004.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/13/2004] [Indexed: 11/29/2022]
Abstract
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110 016, India
| | | |
Collapse
|
13
|
Danchin A. The bag or the spindle: the cell factory at the time of systems' biology. Microb Cell Fact 2004; 3:13. [PMID: 15537427 PMCID: PMC534799 DOI: 10.1186/1475-2859-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 11/10/2004] [Indexed: 11/10/2022] Open
Abstract
Genome programs changed our view of bacteria as cell factories, by making them amenable to systematic rational improvement. As a first step, isolated genes (including those of the metagenome), or small gene clusters are improved and expressed in a variety of hosts. New techniques derived from functional genomics (transcriptome, proteome and metabolome studies) now allow users to shift from this single-gene approach to a more integrated view of the cell, where it is more and more considered as a factory. One can expect in the near future that bacteria will be entirely reprogrammed, and perhaps even created de novo from bits and pieces, to constitute man-made cell factories. This will require exploration of the landscape made of neighbourhoods of all the genes in the cell. Present work is already paving the way for that futuristic view of bacteria in industry.
Collapse
Affiliation(s)
- Antoine Danchin
- Genetics of Bacterial Genomes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
14
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|
15
|
Moore M, Svenson C, Bowling D, Glenn D. Complete nucleotide sequence of a native plasmid from Brevibacterium linens. Plasmid 2003; 49:160-8. [PMID: 12726769 DOI: 10.1016/s0147-619x(02)00147-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brevibacterium linens has commercial significance in the dairy industry and potential application in the production of bacteriocins and carotenoids. Strain development of these industrially significant organisms would be facilitated by the use of vectors, yet few are available. In this study we report the isolation of four novel plasmids from the Gram-positive coryneform B. linens, and determine the first complete nucleotide sequence of a native plasmid of B. linens. The cryptic plasmid pLIM is 7610 bp in length, and belongs to a subfamily of theta replicating ColE2-related plasmids. Initial investigation suggests that replication in pLIM requires two replicases, a primase (RepA) and a DNA binding protein (RepB), encoded by a single operon repAB. The origin of replication is located upstream of repAB transcription.
Collapse
Affiliation(s)
- Mathew Moore
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
16
|
Lei C, Ren Z, Yang W, Chen Y, Chen D, Liu M, Yan W, Zheng Z. Characterization of a novel plasmid pXZ608 from Corynebacterium glutamicum. FEMS Microbiol Lett 2002; 216:71-5. [PMID: 12423755 DOI: 10.1111/j.1574-6968.2002.tb11417.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The complete nucleotide sequence of a novel cryptic plasmid pXZ608 from Corynebacterium glutamicum 227 was determined. pXZ608 was 5949 bp with six open reading frames (ORF1-6). The predicted ORF1 gene product was homologous to replication proteins of rolling circle replication plasmids. The conserved single- and double-stranded origins of rolling circle replication were found, and interestingly, the two origins were both located on ORF1, which indicated that the Rep protein encoded by ORF1 could bind to its own gene region. Deletion analysis revealed that the minimal replicon was located on the 2.14-kb SacI-BstEII fragment.
Collapse
Affiliation(s)
- Chengxiang Lei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Srivastava P, Deb JK. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 2002; 212:209-16. [PMID: 12113936 DOI: 10.1111/j.1574-6968.2002.tb11268.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110 016, India
| | | |
Collapse
|