1
|
Wang Y, Wang C, Chen Y, Cui M, Wang Q, Guo P. Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7. J Microbiol Biotechnol 2022; 32:749-760. [PMID: 35637170 PMCID: PMC9628905 DOI: 10.4014/jmb.2201.01022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60°C and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60°C. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90°C. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Chen Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, P.R. China
| | - Yonglun Chen
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, P.R. China
| | - MingYu Cui
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, P.R. China
| | - Qiong Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
2
|
Purification and characterisation of intracellular alpha-galactosidases from Acinetobacter sp. 3 Biotech 2015; 5:925-932. [PMID: 28324395 PMCID: PMC4624142 DOI: 10.1007/s13205-015-0290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/22/2015] [Indexed: 11/26/2022] Open
Abstract
Two alpha-galactosidases (Ag-I & Ag-II) were purified from Acinetobacter sp. Both the enzymes were monomeric with pH optima
of 7.0 and molecular weight of 65 kDa for Ag-I and 37 kDa for Ag-II. The temperature optima for Ag-I was between 50 and 60 °C and that of Ag-II was 40 °C. Both the enzymes were strongly inhibited by metal ions Ag2+ and Hg+, pCMB and SDS (1 %). The enzymes were found to be active on both natural and synthetic substrates. Artificial substrate, pNPGal, has shown more affinity to enzyme than natural substrate raffinose. The half-life (t1/2) of Ag-I varied from 1.85 h at 90 °C to 7.6 h at 70 °C.
Collapse
|
3
|
Brumm PJ, De Maayer P, Mead DA, Cowan DA. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies. Front Microbiol 2015; 6:430. [PMID: 26029180 PMCID: PMC4428132 DOI: 10.3389/fmicb.2015.00430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 11/13/2022] Open
Abstract
In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan.
Collapse
Affiliation(s)
- Phillip J. Brumm
- C5•6 TechnologiesMiddleton, WI, USA
- Great Lakes Bioenergy Research Center, University of WisconsinMadison, WI, USA
| | - Pieter De Maayer
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
- Department of Microbiology and Plant Pathology, University of PretoriaPretoria, South Africa
| | - David A. Mead
- C5•6 TechnologiesMiddleton, WI, USA
- Great Lakes Bioenergy Research Center, University of WisconsinMadison, WI, USA
- Lucigen CorporationMiddleton, WI, USA
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
4
|
Affiliation(s)
- David J Studholme
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
5
|
Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering. Appl Microbiol Biotechnol 2014; 98:6715-23. [PMID: 24788326 DOI: 10.1007/s00253-014-5746-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications.
Collapse
|
6
|
Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, Gouet P. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies. J Biol Chem 2012; 287:39642-52. [PMID: 23012371 DOI: 10.1074/jbc.m112.394114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α-galactosidase AgaA from the thermophilic microorganism Geobacillus stearothermophilus has great industrial potential because it is fully active at 338 K against raffinose and can increase the yield of manufactured sucrose. AgaB has lower affinity for its natural substrates but is a powerful tool for the enzymatic synthesis of disaccharides by transglycosylation. These two enzymes have 97% identity and belong to the glycoside hydrolase (GH) family GH36 for which few structures are available. To understand the structural basis underlying the differences between these two enzymes, we determined the crystal structures of AgaA and AgaB by molecular replacement at 3.2- and 1.8 Å-resolution, respectively. We also solved a 2.8-Å structure of the AgaA(A355E) mutant, which has enzymatic properties similar to those of AgaB. We observe that residue 355 is located 20 Å away from the active site and that the A355E substitution causes structural rearrangements resulting in a significant displacement of the invariant Trp(336) at catalytic subsite -1. Hence, the active cleft of AgaA is narrowed in comparison with AgaB, and AgaA is more efficient than AgaB against its natural substrates. The structure of AgaA(A355E) complexed with 1-deoxygalactonojirimycin reveals an induced fit movement; there is a rupture of the electrostatic interaction between Glu(355) and Asn(335) and a return of Trp(336) to an optimal position for ligand stacking. The structures of two catalytic mutants of AgaA(A355E) complexed with raffinose and stachyose show that the binding interactions are stronger at subsite -1 to enable the binding of various α-galactosides.
Collapse
Affiliation(s)
- Romain Merceron
- Biocrystallography and Structural Biology of Therapeutic Targets, Bases Moléculaires et Structurales des Systèmes Infectieux-Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
7
|
Calcium alginate entrapped preparation of α-galactosidase: its stability and application in hydrolysis of soymilk galactooligosaccharides. J Ind Microbiol Biotechnol 2010; 38:1399-405. [PMID: 21181428 DOI: 10.1007/s10295-010-0925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Thermostable α-galactosidase from Aspergillus terreus (GR) was insolubilized using concanavalin A obtained from jack bean extract and in order to maintain the integrity of complex in the presence of its substrate or products, this complex was crosslinked with glutaraldehyde. Soluble α-galactosidase entrapped in calcium alginate retained 82% of enzyme activity whereas, Con A-α-galactosidase complex entrapped in calcium alginate and crosslinked Con A-α-galactosidase complex entrapped calcium alginate retained 74 and 61% activity, respectively. A fluidized bed reactor was constructed for continuous hydrolysis of galactooligosaccharides in soymilk using crosslinked Con A-α-galactosidase complex entrapped calcium alginate. Optimum conditions such as pH (5.0) and temperature (65°C) were the same for all immobilized enzyme preparations and soluble enzyme. Crosslinked Con A-α-galactosidase entrapped complex exhibited enhanced thermostability and showed 62% of activity (38%) after 360 min at 65°C. Entrapped crosslinked Con A-α-galactosidase complex preparation was superior in the continuous hydrolysis of oligosaccharides in soymilk by batch processes compared to the other entrapped preparations. The entrapped crosslinked concanavalin A-α-galactosidase complex retained 95% activity after eight cycles of use.
Collapse
|
8
|
Brouns SJJ, Smits N, Wu H, Snijders APL, Wright PC, de Vos WM, van der Oost J. Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 2006; 188:2392-9. [PMID: 16547025 PMCID: PMC1428385 DOI: 10.1128/jb.188.7.2392-2399.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeon that thrives in acidic volcanic pools. In this study, we have purified and characterized a thermostable alpha-galactosidase from cell extracts of S. solfataricus P2 grown on the trisaccharide raffinose. The enzyme, designated GalS, is highly specific for alpha-linked galactosides, which are optimally hydrolyzed at pH 5 and 90 degrees C. The protein consists of 74.7-kDa subunits and has been identified as the gene product of open reading frame Sso3127. Its primary sequence is most related to plant enzymes of glycoside hydrolase family 36, which are involved in the synthesis and degradation of raffinose and stachyose. Both the galS gene from S. solfataricus P2 and an orthologous gene from Sulfolobus tokodaii have been cloned and functionally expressed in Escherichia coli, and their activity was confirmed. At present, these Sulfolobus enzymes not only constitute a distinct type of thermostable alpha-galactosidases within glycoside hydrolase clan D but also represent the first members from the Archaea.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Foucault M, Watzlawick H, Mattes R, Haser R, Gouet P. Crystallization and preliminary X-ray diffraction studies of two thermostable alpha-galactosidases from glycoside hydrolase family 36. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:100-3. [PMID: 16511274 PMCID: PMC2150962 DOI: 10.1107/s1744309105042582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 12/20/2005] [Indexed: 11/10/2022]
Abstract
alpha-Galactosidases from thermophilic organisms have gained interest owing to their applications in the sugar industry. The alpha-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 A resolution, respectively. Crystals of AgaB belong to space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 87.5, b = 113.3, c = 161.6 A. Crystals of AgaA A355E belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 150.1, c = 233.2 A.
Collapse
Affiliation(s)
- M. Foucault
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
| | - H. Watzlawick
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - R. Mattes
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - R. Haser
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
| | - P. Gouet
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
- Correspondence e-mail:
| |
Collapse
|
10
|
Jindou S, Karita S, Fujino E, Fujino T, Hayashi H, Kimura T, Sakka K, Ohmiya K. alpha-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J Bacteriol 2002; 184:600-4. [PMID: 11751843 PMCID: PMC139563 DOI: 10.1128/jb.184.2.600-604.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Clostridium josui aga27A gene encodes the cellulosomal alpha-galactosidase Aga27A, which comprises a catalytic domain of family 27 of glycoside hydrolases and a dockerin domain responsible for cellulosome assembly. The catalytic domain is highly homologous to those of various alpha-galactosidases of family 27 of glycoside hydrolases from eukaryotic organisms, especially plants. The recombinant Aga27A alpha-galactosidase devoid of the dockerin domain preferred highly polymeric galactomannan as a substrate to small saccharides such as melibiose and raffinose.
Collapse
Affiliation(s)
- Sadanari Jindou
- Faculty of Bioresources, Mie University, Tsu 514-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Coombs J, Brenchley JE. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl Environ Microbiol 2001; 67:5094-9. [PMID: 11679331 PMCID: PMC93276 DOI: 10.1128/aem.67.11.5094-5099.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an alpha-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb beta-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb beta-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus lactis, for which the genome sequence is known. To determine if these sequences encoded enzymes with alpha- and beta-galactosidase activities, we subcloned the genes and examined the enzyme properties. The alpha-galactosidase, AgaA, hydrolyzes para-nitrophenyl-alpha-D-galactopyranoside and has optimal activity at 32 to 37 degrees C. The beta-galactosidase, BgaC, has an optimal activity at 40 degrees C and a half-life of 15 min at 45 degrees C. The regulation of these enzymes was tested in C. piscicola strain BA and activity on both alpha- and beta-galactoside substrates decreased for cells grown with added glucose or lactose. Instead, an increase in activity on a phosphorylated beta-galactoside substrate was found for the cells supplemented with lactose, suggesting that a phospho-galactosidase functions during lactose utilization. Thus, the two beta-galactosidases may act synergistically with the alpha-galactosidase to degrade other polysaccharides available in the environment.
Collapse
Affiliation(s)
- J Coombs
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
12
|
Fridjonsson O, Watzlawick H, Gehweiler A, Rohrhirsch T, Mattes R. Cloning of the gene encoding a novel thermostable alpha-galactosidase from Thermus brockianus ITI360. Appl Environ Microbiol 1999; 65:3955-63. [PMID: 10473401 PMCID: PMC99726 DOI: 10.1128/aem.65.9.3955-3963.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1999] [Accepted: 06/29/1999] [Indexed: 11/20/2022] Open
Abstract
An alpha-galactosidase gene from Thermus brockianus ITI360 was cloned, sequenced, and expressed in Escherichia coli, and the recombinant protein was purified. The gene, designated agaT, codes for a 476-residue polypeptide with a calculated molecular mass of 53, 810 Da. The native structure of the recombinant enzyme (AgaT) was estimated to be a tetramer. AgaT displays amino acid sequence similarity to the alpha-galactosidases of Thermotoga neapolitana and Thermotoga maritima and a low-level sequence similarity to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme is thermostable, with a temperature optimum of activity at 93 degrees C with para-nitrophenyl-alpha-galactopyranoside as a substrate. Half-lives of inactivation at 92 and 80 degrees C are 100 min and 17 h, respectively. The pH optimum is between 5.5 and 6.5. The enzyme displayed high affinity for oligomeric substrates. The K(m)s for melibiose and raffinose at 80 degrees C were determined as 4.1 and 11.0 mM, respectively. The alpha-galactosidase gene in T. brockianus ITI360 was inactivated by integrational mutagenesis. Consequently, no alpha-galactosidase activity was detectable in crude extracts of the mutant strain, and it was unable to use melibiose or raffinose as a single carbohydrate source.
Collapse
Affiliation(s)
- O Fridjonsson
- Institut für Industrielle Genetik, Universität Stuttgart, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|