1
|
Long J, Yang C, Liu J, Ma C, Jiao M, Hu H, Xiong J, Zhang Y, Wei W, Yang H, He Y, Zhu M, Yu Y, Fu L, Chen H. Tannic acid inhibits Escherichia coli biofilm formation and underlying molecular mechanisms: Biofilm regulator CsgD. Biomed Pharmacother 2024; 175:116716. [PMID: 38735084 DOI: 10.1016/j.biopha.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.
Collapse
Affiliation(s)
- Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Can Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
2
|
Carneiro DG, Pereira Aguilar A, Mantovani HC, Mendes TADO, Vanetti MCD. The quorum sensing molecule C12-HSL promotes biofilm formation and increases adrA expression in Salmonella Enteritidis under anaerobic conditions. BIOFOULING 2024; 40:14-25. [PMID: 38254292 DOI: 10.1080/08927014.2024.2305385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
Collapse
Affiliation(s)
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Hilário Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Department of Animal and Dairy Sciences, University of WI, Madison, USA
| | | | | |
Collapse
|
3
|
Wang S, Mirmiran SD, Li X, Li X, Zhang F, Duan X, Gao D, Chen Y, Chen H, Qian P. Temperate phage influence virulence and biofilm-forming of Salmonella Typhimurium and enhance the ability to contaminate food product. Int J Food Microbiol 2023; 398:110223. [PMID: 37120944 DOI: 10.1016/j.ijfoodmicro.2023.110223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Salmonella is a food-borne zoonotic pathogen that threatens food safety and public health security. Temperate phages can influence bacterial virulence and phenotype and play an important role in bacterial evolution. However, most studies on Salmonella temperate phages focus on prophage induced by bacteria, with few reports on Salmonella temperate phages isolated in the environment. Moreover, whether temperate phages drive bacterial virulence and biofilm formation in food and animal models remains unknown. In this study, Salmonella temperate phage vB_Sal_PHB48 was isolated from sewage. TEM and phylogenetic analysis indicated that phage PHB48 belongs to the Myoviridae family. Additionally, Salmonella Typhimurium integrating PHB48 was screened and designated as Sal013+. Whole genome sequencing revealed that the integration site was specific and we confirmed that the integration of PHB48 did not change the O-antigen and coding sequences of Sal013. Our in vitro and in vivo studies showed that the integration of PHB48 could significantly enhance the virulence and biofilm formation of S. Typhimurium. More importantly, the integration of PHB48 significantly improved the colonization and contamination ability of bacteria in food samples. In conclusion, we isolated Salmonella temperate phage directly from the environment and systematically clarified that PHB48 enhanced the virulence and biofilm-forming ability of Salmonella. In addition, we found that PHB48 increased the colonization and contamination ability of Salmonella in food samples. These results indicated that the highly pathogenic Salmonella induced by temperate phage was more harmful to food matrices and public health security. Our results could enhance the understanding of the evolutionary relationship between bacteriophages and bacteria, and raise public awareness of large-scale outbreaks resulting from Salmonella virulence enhancement in food industry.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Seyyed Danial Mirmiran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Fenqiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaochao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dongyang Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yibao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
4
|
Ko D, Choi SH. Comparative genomics reveals an SNP potentially leading to phenotypic diversity of Salmonella enterica serovar Enteritidis. Microb Genom 2021; 7:000572. [PMID: 33952386 PMCID: PMC8209725 DOI: 10.1099/mgen.0.000572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chen S, Feng Z, Sun H, Zhang R, Qin T, Peng D. Biofilm-Formation-Related Genes csgD and bcsA Promote the Vertical Transmission of Salmonella Enteritidis in Chicken. Front Vet Sci 2021; 7:625049. [PMID: 33521095 PMCID: PMC7840958 DOI: 10.3389/fvets.2020.625049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The contamination of Salmonella Enteritidis in eggs and chicken meat via vertical transmission has become a worldwide public health concern. Biofilm formation by S. Enteritidis further enhances its antibacterial resistance. However, whether genes related to biofilm formation affect the level of vertical transmission is still unclear. Here, S. Enteritidis mutants ΔcsgD, ΔcsgA, ΔbcsA, and ΔadrA were constructed from wild type strain C50041 (WT), and their biofilm-forming ability was determined by Crystal violet staining assay. Then the median lethal dose (LD50) assay was performed to determine the effects of the selected genes on virulence. The bacterial load in eggs produced by infected laying hens via the intraperitoneal pathway or crop gavage was determined for evaluation of the vertical transmission. Crystal violet staining assay revealed that S. Enteritidis mutants ΔcsgD, ΔcsgA, and ΔbcsA, but not ΔadrA, impaired biofilm formation compared with WT strain. Furthermore, the LD50 in SPF chickens showed that both the ΔcsgD and ΔbcsA mutants were less virulent compared with WT strain. Among the intraperitoneally infected laying hens, the WT strain-infected group had the highest percentage of bacteria-positive eggs (24.7%), followed by the ΔadrA group (16%), ΔcsgA group (9.9%), ΔbcsA group (4.5%), and ΔcsgD group (2.1%). Similarly, among the crop gavage chickens, the WT strain group also had the highest infection percentage in eggs (10.4%), followed by the ΔcsgA group (8.5%), ΔadrA group (7.5%), ΔbcsA group (1.9%), and ΔcsgD group (1.0%). Our results indicate that the genes csgD and bcsA help vertical transmission of S. Enteritidis in chickens.
Collapse
Affiliation(s)
- Sujuan Chen
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Zheng Feng
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hualu Sun
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruonan Zhang
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
6
|
Karmakar K, Nair AV, Chandrasekharan G, Garai P, Nath U, Nataraj KN, N B P, Chakravortty D. Rhizospheric life of Salmonella requires flagella-driven motility and EPS-mediated attachment to organic matter and enables cross-kingdom invasion. FEMS Microbiol Ecol 2019; 95:fiz107. [PMID: 31271416 DOI: 10.1093/femsec/fiz107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/03/2019] [Indexed: 09/19/2023] Open
Abstract
Salmonella is an established pathogen of the members of the kingdom Animalia. Reports indicate that the association of Salmonella with fresh, edible plant products occurs at the pre-harvest state, i.e. in the field. In this study, we follow the interaction of Salmonella Typhimurium with the model plant Arabidopsis thaliana to understand the process of migration in soil. Plant factors like root exudates serve as chemo-attractants. Our ex situ experiments allowed us to track Salmonella from its free-living state to the endophytic state. We found that genes encoding two-component systems and proteins producing extracellular polymeric substances are essential for Salmonella to adhere to the soil and roots. To understand the trans-kingdom flow of Salmonella, we fed the contaminated plants to mice and observed that it invades and colonizes liver and spleen. To complete the disease cycle, we re-established the infection in plant by mixing the potting mixture with the fecal matter collected from the diseased animals. Our experiments revealed a cross-kingdom invasion by the pathogen via passage through a murine intermediate, a mechanism for its persistence in the soil and invasion in a non-canonical host. These results form a basis to break the life-cycle of Salmonella before it reaches its animal host and thus reduce Salmonella contamination of food products.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Giridhar Chandrasekharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Department of Microbiology, St. Joseph's College Autonomous, Bangalore, India
| | - Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Karaba N Nataraj
- Department of Crop Physiology, University of Agricultural Science, Bangalore, India
| | - Prakash N B
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Cimdins A, Simm R, Li F, Lüthje P, Thorell K, Sjöling Å, Brauner A, Römling U. Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28913868 PMCID: PMC5635171 DOI: 10.1002/mbo3.508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
Agar plate‐based biofilm of enterobacteria like Escherichia coli is characterized by expression of the extracellular matrix components amyloid curli and cellulose exopolysaccharide, which can be visually enhanced upon addition of the dye Congo Red, resulting in a red, dry, and rough (rdar) colony morphology. Expression of the rdar morphotype depends on the transcriptional regulator CsgD and occurs predominantly at ambient temperature in model strains. In contrast, commensal and pathogenic isolates frequently express the csgD‐dependent rdar morphotype semi‐constitutively, also at human host body temperature. To unravel the molecular basis of temperature‐independent rdar morphotype expression, biofilm components and c‐di‐GMP turnover proteins of seven commensal and uropathogenic E. coli isolates were analyzed. A diversity within the c‐di‐GMP signaling network was uncovered which suggests alteration of activity of the trigger phosphodiesterase YciR to contribute to (up)regulation of csgD expression and consequently semi‐constitutive rdar morphotype development.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
| | - Fengyang Li
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Sharma VK, Bayles DO, Alt DP, Looft T, Brunelle BW, Stasko JA. Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism. BMC Microbiol 2017; 17:56. [PMID: 28274217 PMCID: PMC5343319 DOI: 10.1186/s12866-017-0966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background Escherichia coli O157:H7 (O157) strain 86–24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR−) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms. Results To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR+ isolate was compared to the CR− parental isolate. Of the 242 genes expressed differentially in the CR+ isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR+ isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR+ and CR− isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR+ isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR+ isolate at the insertion site of the duplicated sequence. Complementation of CR+ isolate with rcsB of the CR− parent restored parental phenotypes to the CR+ isolate. Conclusions The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Collapse
Affiliation(s)
- V K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - D O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - D P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - B W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - J A Stasko
- Microscopy Services Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
9
|
Ahmad I, Cimdins A, Beske T, Römling U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 2017; 17:27. [PMID: 28148244 PMCID: PMC5289004 DOI: 10.1186/s12866-017-0934-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The secondary messenger cyclic di-GMP promotes biofilm formation by up regulating the expression of csgD, encoding the major regulator of rdar biofilm formation in Salmonella typhimurium. The GGDEF/EAL domain proteins regulate the c-di-GMP turnover. There are twenty- two GGDEF/EAL domain proteins in the genome of S. typhimurium. In this study, we dissect the role of individual GGDEF/EAL proteins for csgD expression and rdar biofilm development. RESULTS Among twelve GGDEF domains, two proteins upregulate and among fifteen EAL domains, four proteins down regulate csgD expression. We identified two additional GGDEF proteins required to promote optimal csgD expression. With the exception of the EAL domain of STM1703, solely, diguanylate cyclase and phosphodiesterase activities are required to regulate csgD mediated rdar biofilm formation. Identification of corresponding phosphodiesterases and diguanylate cyclases interacting in the csgD regulatory network indicates various levels of regulation by c-di-GMP. The phosphodiesterase STM1703 represses transcription of csgD via a distinct promoter upstream region. CONCLUSION The enzymatic activity and the protein scaffold of GGDEF/EAL domain proteins regulate csgD expression. Thereby, c-di-GMP adjusts csgD expression at multiple levels presumably using a multitude of input signals.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Timo Beske
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
11
|
Anwar N, Rouf SF, Römling U, Rhen M. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. PLoS One 2014; 9:e106095. [PMID: 25153529 PMCID: PMC4143323 DOI: 10.1371/journal.pone.0106095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Evans ML, Chapman MR. Curli biogenesis: order out of disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1551-8. [PMID: 24080089 PMCID: PMC4243835 DOI: 10.1016/j.bbamcr.2013.09.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Many bacteria assemble extracellular amyloid fibers on their cell surface. Secretion of proteins across membranes and the assembly of complex macromolecular structures must be highly coordinated to avoid the accumulation of potentially toxic intracellular protein aggregates. Extracellular amyloid fiber assembly poses an even greater threat to cellular health due to the highly aggregative nature of amyloids and the inherent toxicity of amyloid assembly intermediates. Therefore, temporal and spatial control of amyloid protein secretion is paramount. The biogenesis and assembly of the extracellular bacterial amyloid curli is an ideal system for studying how bacteria cope with the many challenges of controlled and ordered amyloid assembly. Here, we review the recent progress in the curli field that has made curli biogenesis one of the best-understood functional amyloid assembly pathways. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Margery L Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg Microbes Infect 2014; 3:e1. [PMID: 26038492 PMCID: PMC3913822 DOI: 10.1038/emi.2014.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/20/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
Abstract
In response to the limited nutrients and stressful conditions of their habitats, many microorganisms including Salmonella form a biofilm by secreting a polymeric matrix to interweave individual cells and to build structural communities on an abiotic or living surface. The biofilm formation in Salmonella is tightly regulated by a regulatory network that involves multiple transcriptional regulators. As a master transcriptional regulator in biofilm formation, curli subunit gene D (csgD) functions by activating the biosynthesis of the extracellular polymeric matrix composed of exopolysaccharide cellulose, curli and biofilm-associated proteins (Baps), assisting bacterial cells in transitioning from the planktonic stage to the multicellular state. The expression of CsgD itself is affected by cell growth stage and environmental stimuli through the action of other transcriptional factors, bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), regulatory small RNAs (sRNAs) and other elements. The formation of biofilm confers new physiological characteristics on the bacteria within, especially resistance against unfavorable environmental conditions. Herein, we summarize the CsgD regulatory network of Salmonella biofilm formation and the new traits acquired by Salmonella when within biofilm.
Collapse
|
14
|
Chen CY, Hofmann CS, Cottrell BJ, Strobaugh Jr TP, Paoli GC, Nguyen LH, Yan X, Uhlich GA. Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS One 2013; 8:e84863. [PMID: 24386426 PMCID: PMC3874044 DOI: 10.1371/journal.pone.0084863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 01/12/2023] Open
Abstract
The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
- * E-mail:
| | - Christopher S. Hofmann
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Bryan J. Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Terence P. Strobaugh Jr
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - George C. Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Ly-Huong Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Xianghe Yan
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Gaylen A. Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| |
Collapse
|
15
|
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.038] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Jørgensen MG, Nielsen JS, Boysen A, Franch T, Møller-Jensen J, Valentin-Hansen P. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol Microbiol 2012; 84:36-50. [DOI: 10.1111/j.1365-2958.2012.07976.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ogasawara H, Yamada K, Kori A, Yamamoto K, Ishihama A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology (Reading) 2010; 156:2470-2483. [DOI: 10.1099/mic.0.039131-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under stressful conditions in nature, Escherichia coli forms biofilms for long-term survival. Curli fimbriae are an essential architecture for cell–cell contacts within biofilms. Structural components and assembly factors of curli are encoded by two operons, csgBA and csgDEFG. The csgD gene product controls transcription of both operons. Reflecting the response of csgD expression to external stresses, a number of transcription factors participate in the regulation of the csgD promoter. Analysis of the csgD mRNA obtained from E. coli mutants in different transcription factors indicated that CpxR and H-NS act as repressors while OmpR, RstA and IHF act as activators. An acid-stress response regulator, RstA, activates csgD only under acidic conditions. These five factors bind within a narrow region of about 200 bp upstream of the csgD promoter. After pair-wise promoter-binding assays, the increase in csgD transcription in the stationary phase was suggested to be due, at least in part, to the increase in IHF level cancelling the silencing effect of H-NS. In addition, we propose a novel regulation model of this complex csgD promoter through cooperation between the two positive factors (OmpR–IHF and RstA–IHF) and also between the two negative factors (CpxR–H-NS).
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kayoko Yamada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayako Kori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
18
|
Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol 2009; 192:456-66. [PMID: 19897646 DOI: 10.1128/jb.01826-08] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial persistence in the environment and in the infected host is often aided by the formation of exopolymer-enclosed communities known as biofilms. Heterogeneous gene expression takes place in microcompartments formed within the complex biofilm structure. This study describes cell differentiation within an isogenic bacterial cell population based on the example of biofilm formation by Salmonella enterica serovar Typhimurium. We analyzed the expression of the major biofilm regulator CsgD at the single-cell level with a chromosomal CsgD-green fluorescent protein (GFP) translational fusion. In individual cells, CsgD-GFP expression is mostly found in the cytoplasm. Quantitative expression analysis and results from three different models of S. Typhimurium biofilms demonstrated that CsgD is expressed in a bistable manner during biofilm development. CsgD expression is, however, monomodal when CsgD is expressed in larger amounts due to a promoter mutation or elevated levels of the secondary signaling molecule c-di-GMP. High levels of CsgD-GFP are associated with cellular aggregation in all three biofilm models. Furthermore, the subpopulation of cells expressing large amounts of CsgD is engaged in cellulose production during red, dry, and rough (rdar) morphotype development and in microcolony formation under conditions of continuous flow. Consequently, bistability at the level of CsgD expression leads to a corresponding pattern of task distribution in S. Typhimurium biofilms.
Collapse
|
19
|
Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
|
20
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|