1
|
Werner E, Huokko T, Santana-Sánchez A, Picossi S, Nikkanen L, Herrero A, Allahverdiyeva Y. The role of the LysR-type transcription factor PacR in regulating nitrogen metabolism in Anabaena sp. PCC7120. PHYSIOLOGIA PLANTARUM 2025; 177:e70248. [PMID: 40325601 DOI: 10.1111/ppl.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
In the filamentous cyanobacterium Anabaena sp. PCC 7120, heterocyst formation is triggered by changes in the C/N-ratio and relies on transcriptional reprogramming. The transcription factor PacR is considered a global regulator of carbon assimilation under photoautotrophic conditions, influencing the carbon concentrating mechanism and photosynthesis. It plays a role in balancing reducing power generation while protecting the photosynthetic apparatus from oxidative damage. However, PacR also binds to promoters of genes associated with heterocyst formation, although the underlying mechanisms remain unclear. To explore this, we studied the response of a PacR-deletion mutant to a nitrogen source shift from ammonium to nitrate. The absence of PacR led to heterocyst formation in nitrate-containing media, as well as reduced growth and chlorophyll content. We observed impaired nitrate uptake and disrupted ammonium assimilation via the GS/GOGAT-cycle. This phenotype may stem from PacR-mediated regulation of key genes of nitrogen and carbon metabolism as well as photosynthesis. An impact on photosynthesis is also apparent in the mutant, including a slight decrease in the size of the photo-reducible Fed-pool, suggesting that a shortage of reducing equivalents may contribute to nitrogen metabolism impairment.
Collapse
Affiliation(s)
- Elisa Werner
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Tuomas Huokko
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Anita Santana-Sánchez
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Thenmozhi Kulasekaran N, Vanlalrovi, Subramanian L, Lee JK, Gopal D, Marimuthu J. Molecular characterization and computational analysis of a highly specific L-glutaminase from a marine bacterium Bacillus australimaris NIOT30. Sci Rep 2024; 14:26676. [PMID: 39496784 PMCID: PMC11535052 DOI: 10.1038/s41598-024-77959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
An alkaline active L-glutaminase (BALG) producing bacterium was screened and identified from seamount sediment samples of the Arabian Sea. The isolate was confirmed to be Bacillus australimaris NIOT30 based on morphological characteristics and 16 S rRNA gene sequencing. The glutaminase gene, balg was PCR amplified, cloned and expressed in E. coli BL21 (DE3) host. The molecular weight of purified BALG was estimated to be 36 kDa and the enzyme showed a specific activity of 507 ± 27 Umg-1 against L-glutamine under optimal assay conditions of pH 7.0 and temperature at 37 °C for 15 min. The enzyme showed maximum activity at pH 7 and retained 95% activity at pH 10. BALG retained a relative activity of about 82% and 45% at 45 °C and 60 °C respectively. The kinetic parameters of BALG, Km and Kcat/Km were determined to be of 210 ± 11 mM and 4.4 × 102 M s-1 respectively. Homology modeling and substrate ligand interaction studies revealed the stability of the enzyme-substrate complex. The present study highlights the characterization of a highly active L-glutaminase from B. australimaris NIOT30. Further, mutational analyses of ligand binding residues would show insights into the affinity of L-Glutaminase.
Collapse
Affiliation(s)
| | - Vanlalrovi
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Lenin Subramanian
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India.
| | - Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India.
| |
Collapse
|
3
|
L-Glutamine-, peptidyl- and protein-glutaminases: structural features and applications in the food industry. World J Microbiol Biotechnol 2022; 38:204. [PMID: 36002753 DOI: 10.1007/s11274-022-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
L-Glutaminases are enzymes that catalyze the cleavage of the gamma-amido bond of L-glutamine residues, producing ammonia and L-glutamate. These enzymes have several applications in food and pharmaceutical industries. However, the L-glutaminases that hydrolyze free L-glutamine (L-glutamine glutaminases, EC 3.5.1.2) have different structures and properties with respect to the L-glutaminases that hydrolyze the same amino acid covalently bound in peptides (peptidyl glutaminases, EC 3.5.1.43) and proteins (protein-glutamine glutaminase, EC 3.5.1.44). In the food industry, L-glutamine glutaminases are applied to enhance the flavor of foods, whereas protein glutaminases are useful to improve the functional properties of proteins. This review will focus on structural backgrounds and differences between these enzymes, the methodology available to measure the activity as well as strengths and limitations. Production methods, applications, and challenges in the food industry will be also discussed. This review will provide useful information to search and identify the suitable L-glutaminase that best fits to the intended application.
Collapse
|
4
|
Ferreira FV, Herrmann-Andrade AM, Binolfi A, Calabrese CD, Mac Cormack WP, Musumeci MA. Characteristics of a Cold-Adapted L-glutaminase with Potential Applications in the Food Industry. Appl Biochem Biotechnol 2021; 193:3121-3138. [PMID: 34085170 DOI: 10.1007/s12010-021-03596-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
L-glutaminases are enzymes that catalyze the hydrolysis of L-glutamine, producing L-glutamate and ammonium, and they have promising applications in pharmaceutical and food industries. Several investigations have focused on thermo-tolerant L-glutaminases; however, studies on cold-adapted L-glutaminases have not been reported. These enzymes could be useful in the food industry because they display high catalytic activity at low and room temperatures, a valuable feature in processes aimed to save energy. Besides, they can be easily inactivated by warming and are suitable to prevent decomposition of thermo-labile compounds. The objectives of this work were to characterize the L-glutaminase from the Antarctic bacterium Bizionia argentinensis and analyze its capability as flavor enhancer of protein hydrolysates. The enzyme was heterologously expressed and purified from Escherichia coli, obtaining optimum and homogeneous yields. Kinetic parameters Km and Vmax were located at the lower and upper range of values reported for L-glutaminases, suggesting high catalytic efficiency. Optimum temperature was 25 °C, and the enzyme conserved around 90% of maximum activity at 0 °C and in presence of 15% (v/v) ethanol and methanol. In saline conditions, the enzyme conserved around 80% of maximum activity in 3 M NaCl. Analysis of structural model suggested cold-adaptation features such as low Arg/(Arg+Lys) ratio and fewer intramolecular interactions than mesophilic and thermo-tolerant L-glutaminases. This work provides a novel cold-adapted L-glutaminase with promising features in the food industry.
Collapse
Affiliation(s)
- Flavia V Ferreira
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Andreina M Herrmann-Andrade
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Andrés Binolfi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Instituto de Biología Molecular y Celular de Rosario (IBR), Ocampo y Esmeralda (S2000EZP), Rosario, Santa Fe, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Carla D Calabrese
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, 956 (C1113AAZ), Junín, Buenos Aires, Argentina
- Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina
| | - Matías A Musumeci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina.
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina.
| |
Collapse
|
5
|
Amobonye A, Singh S, Pillai S. Recent advances in microbial glutaminase production and applications-a concise review. Crit Rev Biotechnol 2019; 39:944-963. [PMID: 31327254 DOI: 10.1080/07388551.2019.1640659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article focuses on significant advances in the production and applications of microbial glutaminases and provides insight into the structures of different glutaminases. Glutaminases catalyze the deamidation of glutamine to glutamic acid, and this unique ability forms the basis of their applications in various industries such as pharmaceutical and food organizations. Microbial glutaminases from bacteria, actinomycetes, yeast, and fungi are of greater significance than animal glutaminases because of their stability, affordability, and ease of production. Owing to these notable benefits, they are considered to possess considerable potential in anticancer and antiviral therapy, flavor enhancers in oriental foods, biosensors and in the production of a nutraceutical theanine. This review also aims to fully explore the potential of microbial glutaminases and to set the pace for future prospects.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| | - Suren Singh
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| | - Santhosh Pillai
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| |
Collapse
|
6
|
Xing J, Liu P, Zhao L, Huang F. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:2154. [PMID: 29326747 PMCID: PMC5736878 DOI: 10.3389/fpls.2017.02154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/24/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1) in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN)/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS) stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH) and increased tolerance to neutral red (NR) and rose bengal (RB) that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR) indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST). The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.
Collapse
Affiliation(s)
- Jiale Xing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, Sukumaran RK, Singh SP, Pandey A. Recent developments in l-glutaminase production and applications - An overview. BIORESOURCE TECHNOLOGY 2017; 245:1766-1774. [PMID: 28549811 DOI: 10.1016/j.biortech.2017.05.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
l-glutaminases is an important industrial enzyme which finds potential applications in different sectors ranging from therapeutic to food industry. It is widely distributed in bacteria, actinomycetes, yeast and fungi. l-Glutaminases are mostly produced by Bacillus and Pseudomonas sp. and few reports were available with fungal, actinomycete and yeast system. Modern biotechnological tools help in the improved production as well as with tailor made properties for specific applications. Most of the genetic engineering studies were carried out for the production of l-glutaminase with improved thermo-tolerance and salt tolerance. Considering the potential of in vitro applications of l-glutaminase, extracellular enzymes are important and most microbes produce this enzyme intracellularly. Several research and developmental activities are going on for the extracellular production of l-glutaminase. This review discusses recent trends and developments and applications of l-glutaminases.
Collapse
Affiliation(s)
- Parameswaran Binod
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India
| | - Amith Abraham
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Anil Kuruvilla Mathew
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Ummalyma Sabeela Beevi
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795 001, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| |
Collapse
|
8
|
Li Y, Peer J, Zhao R, Xu Y, Wu B, Wang Y, Tian C, Huang Y, Zheng J. Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration. Transl Neurodegener 2017; 6:10. [PMID: 28439409 PMCID: PMC5399437 DOI: 10.1186/s40035-017-0080-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Background Glutaminase 1 is a phosphate-activated metabolic enzyme that catalyzes the first step of glutaminolysis, which converts glutamine into glutamate. Glutamate is the major neurotransmitter of excitatory synapses, executing important physiological functions in the central nervous system. There are two isoforms of glutaminase 1, KGA and GAC, both of which are generated through alternative splicing from the same gene. KGA and GAC both transcribe 1–14 exons in the N-terminal, but each has its unique C-terminal in the coding sequence. We have previously identified that KGA and GAC are differentially regulated during inflammatory stimulation and HIV infection. Furthermore, glutaminase 1 has been linked to brain diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease, and hepatic encephalopathy. Core enzyme structure of KGA and GAC has been published recently. However, how other coding sequences affect their functional enzyme activity remains unclear. Methods We cloned and performed serial deletions of human full-length KGA and GAC from the N-terminal and the C-terminal at an interval of approximately 100 amino acids (AAs). Prokaryotic expressions of the mutant glutaminase 1 protein and a glutaminase enzyme activity assay were used to determine if KGA and GAC have similar efficiency and efficacy to convert glutamine into glutamate. Results When 110 AAs or 218 AAs were deleted from the N-terminal or when the unique portions of KGA and GAC that are beyond the 550 AA were deleted from the C-terminal, KGA and GAC retained enzyme activity comparable to the full length proteins. In contrast, deletion of 310 AAs or more from N-terminal or deletion of 450 AAs or more from C-terminal resulted in complete loss of enzyme activity for KGA/GAC. Consistently, when both N- and C-terminal of the KGA and GAC were removed, creating a truncated protein that expressed the central 219 AA - 550 AA, the protein retained enzyme activity. Furthermore, expression of the core 219 AA - 550 AA coding sequence in cells increased extracellular glutamate concentrations to levels comparable to those of full-length KGA and GAC expressions, suggesting that the core enzyme activity of the protein lies within the central 219 AA - 550 AA. Full-length KGA and GAC retained enzyme activities when kept at 4 °C. In contrast, 219 AA - 550 AA truncated protein lost glutaminase activities more readily compared with full-length KGA and GAC, suggesting that the N-terminal and C-terminal coding regions are required for the stability KGA and GAC. Conclusions Glutaminase isoforms KGA and GAC have similar efficacy to catalyze the conversion of glutamine to glutamate. The core enzyme activity of glutaminase 1 protein is within the central 219 AA - 550 AA. The N-terminal and C-terminal coding regions of KGA and GAC help maintain the long-term activities of the enzymes.
Collapse
Affiliation(s)
- Yuju Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Justin Peer
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Runze Zhao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yinghua Xu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Beiqing Wu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yi Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Changhai Tian
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.,Shanghai Tenth People's Hospital affiliated with Tongji University School of Medicine, Shanghai, 200072 China.,Laboratory of Neuroimmunology and Regenerative Therapy, Departments of Pharmacology and Experimental Neuroscience and Pathology and Microbiology, 985930 Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA.,Shanghai Tenth People's Hospital affiliated with Tongji University School of Medicine, Shanghai, 200072 China.,Laboratory of Neuroimmunology and Regenerative Therapy, Departments of Pharmacology and Experimental Neuroscience and Pathology and Microbiology, 985930 Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
9
|
Yang H, Liao L, Bo T, Zhao L, Sun X, Lu X, Norling B, Huang F. Slr0151 in Synechocystis sp. PCC 6803 is required for efficient repair of photosystem II under high-light condition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1136-50. [PMID: 25146729 DOI: 10.1111/jipb.12275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/18/2014] [Indexed: 05/06/2023]
Abstract
Cyanobacteria are ancient photosynthetic prokaryotes that have adapted successfully to adverse environments including high-light irradiation. Although it is known that the repair of photodamaged photosystem II (PSII) in the organisms is a highly regulated process, our knowledge of the molecular components that regulate each step of the process is limited. We have previously identified a hypothetical protein Slr0151 in the membrane fractions of cyanobacterium Synechocystis sp. PCC 6803. Here, we report that Slr0151 is involved in PSII repair of the organism. We generated a mutant strain (Δslr0151) lacking the protein Slr0151 and analyzed its characteristics under normal and high-light conditions. Targeted deletion of slr0151 resulted in decreased PSII activity in Synechocystis. Moreover, the mutant exhibited increased photoinhibition due to impairment of PSII repair under high-light condition. Further analysis using in vivo radioactive labeling and 2-D blue native/sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the PSII repair cycle was hindered at the levels of D1 synthesis and disassembly and/or assembly of PSII in the mutant. Protein interaction assays demonstrated that Slr0151 interacts with D1 and CP43 proteins. Taken together, these results indicate that Slr0151 plays an important role in regulating PSII repair in the organism under high-light stress condition.
Collapse
Affiliation(s)
- Haomeng Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao L, Chen M, Cheng D, Yang H, Sun Y, Zhou H, Huang F. Different B-type methionine sulfoxide reductases in Chlamydomonas may protect the alga against high-light, sulfur-depletion, or oxidative stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1054-68. [PMID: 24034412 DOI: 10.1111/jipb.12104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/28/2013] [Indexed: 05/06/2023]
Abstract
The genome of unicellular green alga Chlamydomonas reinhardtii contains four genes encoding B-type methionine sulfoxide reductases, MSRB1.1, MSRB1.2, MSRB2.1, and MSRB2.2, with functions largely unknown. To understand the cell defense system mediated by the methionine sulfoxide reductases in Chlamydomonas, we analyzed expression and physiological roles of the MSRBs under different abiotic stress conditions using immunoblotting and quantitative polymerase chain reaction (PCR) analyses. We showed that the MSRB2.2 protein was accumulated in cells treated with high light (1,300 µE/m² per s), whereas MSRB1.1 was accumulated in the cells under 1 mmol/L H₂O₂ treatment or sulfur depletion. We observed that the cells with the MSRB2.2 knockdown and overexpression displayed increased and decreased sensitivity to high light, respectively, based on in situ chlorophyll a fluorescence measures. We also observed that the cells with the MSRB1.1 knockdown and overexpression displayed decreased and increased tolerance to sulfur-depletion and oxidative stresses, respectively, based on growth and H₂-producing performance. The physiological implications revealed from the experimental data highlight the importance of MSRB2.2 and MSRB1.1 in protecting Chlamydomonas cells against adverse conditions such as high-light, sulfur-depletion, and oxidative stresses.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Efficient expression and purification of recombinant glutaminase from Bacillus licheniformis (GlsA) in Escherichia coli. Protein Expr Purif 2012; 83:52-8. [PMID: 22433447 DOI: 10.1016/j.pep.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/24/2022]
Abstract
Glutaminase or L-glutamine aminohydrolase (EC 3.5.1.2) is an enzyme that catalyzes the formation of glutamic acid and ammonium ion from glutamine. This enzyme functions in cellular metabolism of every organism by supplying nitrogen required for the biosynthesis of a variety of metabolic intermediates, while glutamic acid plays a role in both sensory and nutritional properties of food. So far there have been only a few reports on cloning, expression and characterization of purified glutaminases. Microbial glutaminases are enzymes with emerging potential in both the food and the pharmaceutical industries. In this research a recombinant glutaminase from Bacillus licheniformis (GlsA) was expressed in Escherichia coli, under the control of a ptac promoter. The recombinant enzyme was tagged with decahistidine tag at its C-terminus and could be conveniently purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The enzyme could be induced for efficient expression with IPTG, yielding approximately 26,000 units from 1-l shake flask cultures. The enzyme was stable at 30°C and pH 7.5 for up to 6h, and could be used efficiently to increase glutamic acid content when protein hydrolysates from soy and anchovy were used as substrates. The study demonstrates an efficient expression system for the production and purification of bacterial glutaminase. In addition, its potential application for bioconversion of glutamine to flavor-enhancing glutamic acid has been demonstrated.
Collapse
|
12
|
Kumar L, Singh B, Adhikari DK, Mukherjee J, Ghosh D. A temperature and salt-tolerant L-glutaminase from gangotri region of uttarakhand himalaya: enzyme purification and characterization. Appl Biochem Biotechnol 2012; 166:1723-35. [PMID: 22367638 DOI: 10.1007/s12010-012-9576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 01/19/2012] [Indexed: 11/29/2022]
Abstract
Purification and characterization of halotolerant, thermostable alkaline L-glutaminase from a Bacillus sp. LKG-01 (MTCC 10401), isolated from Gangotri region of Uttarakhand Himalaya, is being reported in this paper. Enzyme has been purified 49-fold from cell-free extract with 25% recovery (specific activity 584.2 U/mg protein) by (NH₄)₂SO₄ precipitation followed by anion exchange chromatography and gel filtration. Enzyme has a molecular weight of 66 kDa. L-Glutaminase is most active at pH 11.0 and stable in the pH range 8.0-11.0. Temperature optimum is 70 °C and is completely stable after 3 h pre-incubation at 50 °C. Enzyme reflects more enhanced activity with 1-20% (w/v) NaCl, which is further reduced to 80% when NaCl concentration was increased up to 25%. L-Glutaminase is almost active with K⁺, Zn²⁺, and Ni²⁺ ions and K(m) and V(max) values of 240 μM and 277.77 ± 1.1 U/mg proteins, respectively. Higher specific activity, purification fold, better halo-tolerance, and thermostability would make this enzyme more attractive for food fermentation with respect to other soil microbe derived L-glutaminase reported so far.
Collapse
Affiliation(s)
- Lokendra Kumar
- Department of Biochemistry, Sardar Bhagwan Singh PG Institute of Biomedical Sciences and Research, Balawala, Dehradun 248161, India
| | | | | | | | | |
Collapse
|
13
|
Li T, Yang HM, Cui SX, Suzuki I, Zhang LF, Li L, Bo TT, Wang J, Murata N, Huang F. Proteomic Study of the Impact of Hik33 Mutation in Synechocystis sp. PCC 6803 under Normal and Salt Stress Conditions. J Proteome Res 2011; 11:502-14. [DOI: 10.1021/pr200811s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Meng Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Su-Xia Cui
- College of Life Sciences, Capital Normal University, Beijing 100037, China
| | - Iwane Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Li-Fang Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Bo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- National Center of Biomedical Analysis, Beijing, China
| | - Norio Murata
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, KSA
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
14
|
Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 2010; 9:3854-66. [PMID: 20509623 DOI: 10.1021/pr100076c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The green alga Chlamydomonas reinhardtii is a model organism to study H(2) metabolism in photosynthetic eukaryotes. To understand the molecular mechanism of H(2) metabolism, we used 2-DE coupled with MALDI-TOF and MALDI-TOF/TOF-MS to investigate proteomic changes of Chlamydomonas cells that undergo sulfur-depleted H(2) photoproduction process. In this report, we obtained 2-D PAGE soluble protein profiles of Chlamydomonas at three time points representing different phases leading to H(2) production. We found over 105 Coomassie-stained protein spots, corresponding to 82 unique gene products, changed in abundance throughout the process. Major changes included photosynthetic machinery, protein biosynthetic apparatus, molecular chaperones, and 20S proteasomal components. A number of proteins related to sulfate, nitrogen and acetate assimilation, and antioxidative reactions were also changed significantly. Other proteins showing alteration during the sulfur-depleted H(2) photoproduction process were proteins involved in cell wall and flagella metabolisms. In addition, among these differentially expressed proteins, 11 were found to be predicted proteins without functional annotation in the Chlamydomonas genome database. The results of this proteomic analysis provide new insight into molecular basis of H(2) photoproduction in Chlamydomonas under sulfur depletion.
Collapse
Affiliation(s)
- Mei Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 2009; 8:2892-902. [PMID: 19351138 DOI: 10.1021/pr900024w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique prokaryotes possessing plasma-, outer- and thylakoid membranes. The plasma membrane of a cyanobacterial cell serves as a crucial barrier against its environment and is essential for biogenesis of cyanobacterial photosystems. Previously, we have identified 79 different proteins in the plasma membrane of Synechocystis sp. Strain PCC 6803 based on 2D- and 1D- gels and MALDI-TOF MS. In this work, we have performed a proteomic study screening for high-pH-stress proteins in Synechocystis. 2-D gel profiles of plasma membranes isolated from both control and high pH-treated cells were constructed and compared quantitatively based on different protein staining methods including DIGE analysis. A total of 55 differentially expressed protein spots were identified using MALDI-TOF MS and MALDI-TOF/TOF MS, corresponding to 39 gene products. Twenty-five proteins were enhanced/induced and 14 reduced by high pH. One-third of the enhanced/induced proteins were transport and binding proteins of ABC transporters including 3 phosphate transport proteins. Other proteins include MinD involved in cell division, Cya2 in signaling and proteins involved in photosynthesis and respiration. Furthermore, among these proteins regulated by high pH, eight were found to be hypothetical proteins. Functional significance of the high-pH-stress proteins is discussed integrating current knowledge on cyanobacterial cell physiology.
Collapse
Affiliation(s)
- Li-Fang Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|