1
|
Zuchowski R, Schito S, Mack C, Wirtz A, Bott M, Polen T, Noack S, Baumgart M. ALE reveals a surprising link between [Fe-S] cluster formation, tryptophan biosynthesis and the potential regulatory protein TrpP in Corynebacterium glutamicum. BMC Microbiol 2025; 25:214. [PMID: 40229682 PMCID: PMC11995493 DOI: 10.1186/s12866-025-03939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The establishment of synthetic microbial communities comprising complementary auxotrophic strains requires efficient transport processes for common goods. With external supplementation of the required metabolite, most auxotrophic strains reach wild-type level growth. One exception was the L-trypton auxotrophic strain phaCorynebacterium glutamicum ΔTRP ΔtrpP, which grew 35% slower than the wild type in supplemented defined media. C. glutamicum ΔTRP ΔtrpP lacks the whole L-tryptophan biosynthesis cluster (TRP, cg3359-cg3364) as well as the putative L-tryptophan transporter TrpP (Cg3357). We wanted to explore the role of TrpP in L-tryptophan transport, metabolism or regulation and to elucidate the cause of growth limitation despite supplementation. RESULTS Mutants lacking either TRP or trpP revealed that the growth defect was caused solely by trpP deletion, whereas L-tryptophan auxotrophy was caused only by TRP deletion. Notably, not only the deletion but also the overexpression of trpP in an L-tryptophan producer increased the final L-tryptophan titer, arguing against a transport function of TrpP. A transcriptome comparison of C. glutamicum ΔtrpP with the wild type showed alterations in the regulon of WhcA, that contains an [Fe-S] cluster. Through evolution-guided metabolic engineering, we discovered that inactivation of SufR (Cg1765) partially complemented the growth defect caused by ΔtrpP. SufR is the transcriptional repressor of the suf operon (cg1764-cg1759), which encodes the only system of C. glutamicum for iron‒sulfur cluster formation and repair. Finally, we discovered that the combined deletion of trpP and sufR increased L-tryptophan production by almost 3-fold in comparison with the parental strain without the deletions. CONCLUSIONS On the basis of our results, we exclude the possibility that TrpP is an L-tryptophan transporter. TrpP presence influences [Fe-S] cluster formation or repair, presumably through a regulatory function via direct interaction with another protein. [Fe-S] cluster availability influences not only certain enzymes but also targets of the WhiB-family regulator WhcA, which is involved in oxidative stress response. The reduced growth of WT ΔtrpP is likely caused by the reduced activity of [Fe-S]-cluster-containing enzymes involved in central metabolism, such as aconitase or succinate: menaquinone oxidoreductase. In summary, we identified a very interesting link between L-tryptophan biosynthesis and iron sulfur cluster formation that is relevant for L-tryptophan production. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rico Zuchowski
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Simone Schito
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Zhao G, Zhao S, Hagner Nielsen L, Zhou F, Gu L, Tilahun Tadesse B, Solem C. Transforming acid whey into a resource by selective removal of lactic acid and galactose using optimized food-grade microorganisms. BIORESOURCE TECHNOLOGY 2023; 387:129594. [PMID: 37532060 DOI: 10.1016/j.biortech.2023.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The presence of lactic acid and galactose makes spray drying of acid whey (AW) a significant challenge for the dairy industry. In this study, a novel approach is explored to remove these compounds, utilizing food-grade microorganisms. For removing lactic acid, Corynebacterium glutamicum was selected, which has an inherent ability to metabolize lactic acid but does so slowly. To accelerate lactic acid metabolism, a mutant strain G6006 was isolated through adaptive laboratory evolution, which metabolized all lactic acid from AW two times faster than its parent strain. To eliminate galactose, a lactose-negative mutant of Lactococcus lactis that cannot produce lactate was generated. This strain was then co-cultured with G6006 to maximize the removal of both lactic acid and galactose. The microbially "filtered" AW could readily be spray dried into a stable lactose powder. This study highlights the potential of utilizing food-grade microorganisms to process AW, which currently constitutes a global challenge.
Collapse
Affiliation(s)
- Ge Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Fa Zhou
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Liuyan Gu
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Belay Tilahun Tadesse
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
5
|
Nah HJ, Park J, Choi S, Kim ES. WblA, a global regulator of antibiotic biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2021; 48:6127318. [PMID: 33928363 PMCID: PMC9113171 DOI: 10.1093/jimb/kuab007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Streptomyces species are soil-dwelling bacteria that produce vast numbers of pharmaceutically valuable secondary metabolites (SMs), such as antibiotics, immunosuppressants, antiviral, and anticancer drugs. On the other hand, the biosynthesis of most SMs remains very low due to tightly controlled regulatory networks. Both global and pathway-specific regulators are involved in the regulation of a specific SM biosynthesis in various Streptomyces species. Over the past few decades, many of these regulators have been identified and new ones are still being discovered. Among them, a global regulator of SM biosynthesis named WblA was identified in several Streptomyces species. The identification and understanding of the WblAs have greatly contributed to increasing the productivity of several Streptomyces SMs. This review summarizes the characteristics and applications on WblAs reported to date, which were found in various Streptomyces species and other actinobacteria.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jihee Park
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
The osnR gene of Corynebacterium glutamicum plays a negative regulatory role in oxidative stress responses. ACTA ACUST UNITED AC 2019; 46:241-248. [DOI: 10.1007/s10295-018-02126-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
Abstract
Among the Corynebacterium glutamicum ORFs that have been implicated in stress responses, we chose ORF cg3230, designated osnR, and analyzed it further. Unlike the osnR-deleted strain (ΔosnR), the osnR-overexpressing strain (P180-osnR) developed growth defects and increased sensitivity to various oxidants including H2O2. Transcription in the P180-osnR strain of genes such as sodA (superoxide dismutase), ftn (ferritin biosynthesis), and ahpD (alkyl hydroperoxide reductase; cg2674), which are involved in the detoxification of reactive oxygen species, was only 40% that of the wild type. However, transcription of katA, encoding H2O2-detoxifying catalase, was unchanged in this strain. Genes such as trxB (thioredoxin reductase) and mtr (mycothiol disulfide reductase), which play roles in redox homeostasis, also showed decreased transcription in the strain. 2D-PAGE analysis indicated that genes involved in redox reactions were considerably affected by osnR overexpression. The NADPH/NADP+ ratio of the P180-osnR strain (1.35) was higher than that of the wild-type stain (0.78). Collectively, the phenotypes of the ΔosnR and P180-osnR strains suggest a global regulatory role as well as a negative role for the gene in stress responses, particularly in katA-independent oxidative stress responses.
Collapse
|
7
|
Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 2018; 110:663-676. [PMID: 30179278 PMCID: PMC6282962 DOI: 10.1111/mmi.14117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
The WhiB‐like (Wbl) family of proteins are exclusively found in Actinobacteria. Wbls have been shown to play key roles in virulence and antibiotic resistance in Mycobacteria and Corynebacteria, reflecting their importance during infection by the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Corynebacterium diphtheriae. In the antibiotic‐producing Streptomyces, several Wbls have important roles in the regulation of morphological differentiation, including WhiB, a protein that controls the initiation of sporulation septation and the founding member of the Wbl family. In recent years, genome sequencing has revealed the prevalence of Wbl paralogues in species throughout the Actinobacteria. Wbl proteins are small (generally ~80–140 residues) and each contains four invariant cysteine residues that bind an O2‐ and NO‐sensitive [4Fe–4S] cluster, raising the question as to how they can maintain distinct cellular functions within a given species. Despite their discovery over 25 years ago, the Wbl protein family has largely remained enigmatic. Here I summarise recent research in Mycobacteria, Corynebacteria and Streptomyces that sheds light on the biochemical function of Wbls as transcription factors and as potential sensors of O2 and NO. I suggest that Wbl evolution has created diversity in protein–protein interactions, [4Fe–4S] cluster‐sensitivity and the ability to bind DNA.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
8
|
SpiE interacts with Corynebacterium glutamicum WhcE and is involved in heat and oxidative stress responses. Appl Microbiol Biotechnol 2016; 100:4063-72. [PMID: 26996627 DOI: 10.1007/s00253-016-7440-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
The gene whcE in Corynebacterium glutamicum positively responds to oxidative and heat stress. To search for proteins that interact with WhcE, we employed a two-hybrid system with WhcE as the bait. Sequencing analysis of the isolated clones revealed peptide sequences, one of which showed high sequence identity to a hydrophobe/amphiphile efflux-1 family transporter encoded by NCgl1497. The interaction of the NCgl1497-encoded protein with WhcE in vivo was verified using reporter gene expression by real-time quantitative PCR (RT-qPCR). The WhcE protein strongly interacted with the NCgl1497-encoded protein in the presence of oxidative and heat stress. Furthermore, purified WhcE and NCgl1497-encoded proteins interacted in vitro, especially in the presence of the oxidant diamide, and the protein-protein interaction was disrupted in the presence of the reductant dithiothreitol. In addition, the transcription of NCgl1497 was activated approximately twofold in diamide- or heat-treated cells. To elucidate the function of the NCgl497 gene, an NCgl1497-deleted mutant strain was constructed. The mutant showed decreased viability in the presence of diamide and heat stress. The mutant strain also exhibited reduced transcription of the thioredoxin reductase gene, which is known to be regulated by whcE. Based on the results, NCgl1497 was named spiE (stress protein interacting with WhcE). Collectively, our data suggest that spiE is involved in the whcE-mediated oxidative stress response pathway of C. glutamicum.
Collapse
|
9
|
Hong EJ, Kim P, Kim ES, Kim Y, Lee HS. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum. Res Microbiol 2015; 167:20-8. [PMID: 26433092 DOI: 10.1016/j.resmic.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP(+) ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD(+) ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi 420-743, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| |
Collapse
|
10
|
Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014; 99:1363-74. [DOI: 10.1007/s00253-014-6327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 01/26/2023]
|
11
|
Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit A plays a role in cysR-mediated sulfur metabolism. Appl Microbiol Biotechnol 2014; 98:6751-9. [DOI: 10.1007/s00253-014-5823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
12
|
Hong EJ, Park JS, Kim Y, Lee HS. Role of Corynebacterium glutamicum sprA encoding a serine protease in glxR-mediated global gene regulation. PLoS One 2014; 9:e93587. [PMID: 24691519 PMCID: PMC3972247 DOI: 10.1371/journal.pone.0093587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Joon-Song Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
- * E-mail:
| |
Collapse
|
13
|
Analysis of cepA encoding an efflux pump-like protein in Corynebacterium glutamicum. J Microbiol 2014; 52:278-83. [DOI: 10.1007/s12275-014-3461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
14
|
Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS. Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses. J Biotechnol 2013; 168:149-54. [PMID: 23608553 DOI: 10.1016/j.jbiotec.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022]
Abstract
In this study, we analyzed the regulatory interaction of the Corynebacterium glutamicum whc genes that play roles in oxidative stress responses. We found that whcE and whcA transcription was minimal in the whcB-deleted mutant (ΔwhcB). However, whcB and whcA transcription increased in the ΔwhcE mutant during the log phase, whereas their transcription decreased during the stationary phase. In addition, cells carrying the P180-whcB vector, which showed retarded growth due to uncontrolled whcB overexpression, recovered when whcA was deleted from the cells. Furthermore, introducing a ΔwhcE mutation into cells carrying the P180-whcB vector also resulted in improved growth and decreased whcA transcription during the log phase, suggesting that the action of whcB on whcA is mediated by whcE. Collectively, these findings show that, although the whc genes are paralogues, they play distinctive regulatory roles during cellular responses to oxidative stress. Notably, the whcE gene played a dual role of repressing and activating the whcB gene depending on the growth phase.
Collapse
Affiliation(s)
- Joo-Young Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|