1
|
Heppert JK, Awori RM, Cao M, Chen G, McLeish J, Goodrich-Blair H. Analyses of Xenorhabdus griffiniae genomes reveal two distinct sub-species that display intra-species variation due to prophages. BMC Genomics 2024; 25:1087. [PMID: 39548374 PMCID: PMC11566119 DOI: 10.1186/s12864-024-10858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications. RESULTS Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species. CONCLUSIONS Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | | | - Mengyi Cao
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Grischa Chen
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
2
|
Zhang Y, Li H, Wang F, Liu C, Reddy GVP, Li H, Li Z, Sun Y, Zhao Z. Discovery of a new highly pathogenic toxin involved in insect sepsis. Microbiol Spectr 2023; 11:e0142223. [PMID: 37787562 PMCID: PMC10715044 DOI: 10.1128/spectrum.01422-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE As a current biocontrol resource, entomopathogenic nematodes and their symbiotic bacterium can produce many toxin factors to trigger insect sepsis, having the potential to promote sustainable pest management. In this study, we found Steinernema feltiae and Xenorhabdus bovienii were highly virulent against the insects. After infective juvenile injection, Galleria mellonella quickly turned black and softened with increasing esterase activity. Simultaneously, X. bovienii attacked hemocytes and released toxic components, resulting in extensive hemolysis and sepsis. Then, we applied high-resolution mass spectrometry-based metabolomics and found multiple substances were upregulated in the host hemolymph. We found extremely hazardous actinomycin D produced via 3-hydroxyanthranilic acid metabolites. Moreover, a combined transcriptomic analysis revealed that gene expression of proteins associated with actinomycin D was upregulated. Our research revealed actinomycin D might be responsible for the infestation activity of X. bovienii, indicating a new direction for exploring the sepsis mechanism and developing novel biotic pesticides.
Collapse
Affiliation(s)
- Yuan Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fang Wang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Chang Liu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Gadi V. P. Reddy
- Department of Entomology, Lousiana State University, Baton Rouge, Los Angeles, USA
| | - Hu Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| | - Yucheng Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zihua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| |
Collapse
|
3
|
Borowicz M, Krzyżanowska DM, Narajczyk M, Sobolewska M, Rajewska M, Czaplewska P, Węgrzyn K, Czajkowski R. Soft rot pathogen Dickeya dadantii 3937 produces tailocins resembling the tails of Peduovirus P2. Front Microbiol 2023; 14:1307349. [PMID: 38098664 PMCID: PMC10719855 DOI: 10.3389/fmicb.2023.1307349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Tailocins are nanomolecular machines with bactericidal activity. They are produced by bacteria to contribute to fitness in mixed communities, and hence, they play a critical role in their ecology in a variety of habitats. Here, we characterized the new tailocin produced by Dickeya dadantii strain 3937, a well-characterized member of plant pathogenic Soft Rot Pectobacteriaceae (SRP). Tailocins induced in D. dadantii were ca. 166 nm long tubes surrounded by contractive sheaths with baseplates having tail fibers at one end. A 22-kb genomic cluster involved in their synthesis and having high homology to the cluster coding for the tail of the Peduovirus P2 was identified. The D. dadantii tailocins, termed dickeyocins P2D1 (phage P2-like dickeyocin 1), were resistant to inactivation by pH (3.5-12), temperature (4-50°C), and elevated osmolarity (NaCl concentration: 0.01-1 M). P2D1 could kill a variety of different Dickeya spp. but not any strain of Pectobacterium spp. tested and were not toxic to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Marcin Borowicz
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Sobolewska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Lefoulon E, Campbell N, Stock SP. Identification of novel prophage regions in Xenorhabdus nematophila genome and gene expression analysis during phage-like particle induction. PeerJ 2022; 10:e12956. [PMID: 35186508 PMCID: PMC8855722 DOI: 10.7717/peerj.12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Entomopathogenic Xenorhabdus bacteria are endosymbionts of Steinernema nematodes and together they form an insecticidal mutualistic association that infects a wide range of insect species. Xenorhabdus produce an arsenal of toxins and secondary metabolites that kill the insect host. In addition, they can induce the production of diverse phage particles. A few studies have focused on one integrated phage responsible for producing a phage tail-like bacteriocin, associated with an antimicrobial activity against other Xenorhabdus species. However, very little is known about the diversity of prophage regions in Xenorhabdus species. METHODS In the present study, we identified several prophage regions in the genome of Xenorhabdus nematophila AN6/1. We performed a preliminary study on the relative expression of genes in these prophage regions. We also investigated some genes (not contained in prophage region) known to be involved in SOS bacterial response (recA and lexA) associated with mitomycin C and UV exposure. RESULTS We described two integrated prophage regions (designated Xnp3 and Xnp4) not previously described in the genome of Xenorhabdus nematophila AN6/1. The Xnp3 prophage region appears very similar to complete Mu-like bacteriophage. These prophages regions are not unique to X. nematophila species, although they appear less conserved among Xenorhabdus species when compared to the previously described p1 prophage region. Our results showed that mitomycin C exposure induced an up-regulation of recA and lexA suggesting activation of SOS response. In addition, mitomycin C and UV exposure seems to lead to up-regulation of genes in three of the four integrated prophages regions.
Collapse
Affiliation(s)
- Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Natalie Campbell
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - S. Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,College of Agriculture, California State University, Chico, CA, USA
| |
Collapse
|
6
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
7
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Thappeta KRV, Ciezki K, Morales-Soto N, Wesener S, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment. MICROBIOLOGY-SGM 2020; 166:1074-1087. [PMID: 33064635 DOI: 10.1099/mic.0.000981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- University of Wisconsin, Milwaukee, WI, USA.,Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore
| | - Kristin Ciezki
- Aurora Health Care, Milwaukee, WI, USA.,University of Wisconsin, Milwaukee, WI, USA
| | - Nydia Morales-Soto
- Eck Institute for Global Health, University of Notre Dame, IN, USA.,University of Wisconsin, Milwaukee, WI, USA
| | | | - Heidi Goodrich-Blair
- University of Tennessee, Knoxville, TN, USA.,University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
9
|
Bhattacharya A, Stacy A, Bashey F. Suppression of bacteriocin resistance using live, heterospecific competitors. Evol Appl 2019; 12:1191-1200. [PMID: 31293631 PMCID: PMC6597863 DOI: 10.1111/eva.12797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Rapidly spreading antibiotic resistance has led to the need for novel alternatives and sustainable strategies for antimicrobial use. Bacteriocins are a class of proteinaceous anticompetitor toxins under consideration as novel therapeutic agents. However, bacteriocins, like other antimicrobial agents, are susceptible to resistance evolution and will require the development of sustainable strategies to prevent or decelerate the evolution of resistance. Here, we conduct proof-of-concept experiments to test whether introducing a live, heterospecific competitor along with a bacteriocin dose can effectively suppress the emergence of bacteriocin resistance in vitro. Previous work with conventional chemotherapeutic agents suggests that competition between conspecific sensitive and resistant pathogenic cells can effectively suppress the emergence of resistance in pathogenic populations. However, the threshold of sensitive cells required for such competitive suppression of resistance may often be too high to maintain host health. Therefore, here we aim to ask whether the principle of competitive suppression can be effective if a heterospecific competitor is used. Our results show that a live competitor introduced in conjunction with low bacteriocin dose can effectively control resistance and suppress sensitive cells. Further, this efficacy can be matched by using a bacteriocin-producing competitor without any additional bacteriocin. These results provide strong proof of concept for the effectiveness of competitive suppression using live, heterospecific competitors. Currently used probiotic strains or commensals may provide promising candidates for the therapeutic use of bacteriocin-mediated competitive suppression.
Collapse
Affiliation(s)
| | | | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
10
|
Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, Becker M. Phage tail-like particles are versatile bacterial nanomachines - A mini-review. J Adv Res 2019; 19:75-84. [PMID: 31341672 PMCID: PMC6629978 DOI: 10.1016/j.jare.2019.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/14/2019] [Indexed: 11/27/2022] Open
Abstract
Suggestion to simplify and unify the nomenclature of phage tail-like particles. Discovery of kosakonicin, a new bacteriocin and tailocin. Microscopy of kosakonicin from Kosakonia radicincitans DSM 16656. Discovery of multiple tail fiber genes in the kosakonicin gene cluster. Discovery of large genetic diversity in the kosakonicin tail fiber locus among ten Kosakonia strains.
Type VI secretion systems and tailocins, two bacterial phage tail-like particles, have been reported to foster interbacterial competition. Both nanostructures enable their producer to kill other bacteria competing for the same ecological niche. Previously, type VI secretion systems and particularly R-type tailocins were considered highly specific, attacking a rather small range of competitors. Their specificity is conferred by cell surface receptors of the target bacterium and receptor-binding proteins on tailocin tail fibers and tail fiber-like appendages of T6SS. Since many R-type tailocin gene clusters contain only one tail fiber gene it was appropriate to expect small R-type tailocin target ranges. However, recently up to three tail fiber genes and broader target ranges have been reported for one plant-associated Pseudomonas strain. Here, we show that having three tail fiber genes per R-type tailocin gene cluster is a common feature of several strains of Gram-negative (often plant-associated) bacteria of the genus Kosakonia. Knowledge about the specificity of type VI secretion systems binding to target bacteria is even lower than in R-type tailocins. Although the mode of operation implicated specific binding, it was only published recently that type VI secretion systems develop tail fiber-like appendages. Here again Kosakonia, exhibiting up to three different type VI secretion systems, may provide valuable insights into the antagonistic potential of plant-associated bacteria. Current understanding of the diversity and potential of phage tail-like particles is fragmentary due to various synonyms and misleading terminology. Consistency in technical terms is a precondition for concerted and purposeful research, which precedes a comprehensive understanding of the specific interaction between bacteria producing phage tail-like particles and their targets. This knowledge is fundamental for selecting and applying tailored, and possibly engineered, producer bacteria for antagonizing plant pathogenic microorganisms.
Collapse
Affiliation(s)
- Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Katja R Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Beatrice Berger
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Matthias Becker
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany.,Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| |
Collapse
|
11
|
Dreyer J, Malan AP, Dicks LMT. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front Microbiol 2018; 9:3177. [PMID: 30619229 PMCID: PMC6305712 DOI: 10.3389/fmicb.2018.03177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
The genus Xenorhabdus of the family Enterobacteriaceae, are mutualistically associated with entomopathogenic nematodes of the genus Steinernema. Although most of the associations are species-specific, a specific Xenorhabdus sp. may infect more than one Steinernema sp. During the Xenorhabdus-Steinernema life cycle, insect larvae are infected and killed, while both mutualists produce bioactive compounds. These compounds act synergistically to ensure reproduction and proliferation of the nematodes and bacteria. A single strain of Xenorhabdus may produce a variety of antibacterial and antifungal compounds, some of which are also active against insects, nematodes, protozoa, and cancer cells. Antimicrobial compounds produced by Xenorhabdus spp. have not been researched to the same extent as other soil bacteria and they may hold the answer to novel antibacterial and antifungal compounds. This review summarizes the bioactive secondary metabolites produced by Xenorhabdus spp. and their application in disease control. Gene regulation and increasing the production of a few of these antimicrobial compounds are discussed. Aspects limiting future development of these novel bioactive compounds are also pointed out.
Collapse
Affiliation(s)
- Jönike Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Antoinette P. Malan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Bertoloni Meli S, Bashey F. Trade-off between reproductive and anti-competitor abilities in an insect-parasitic nematode-bacteria symbiosis. Ecol Evol 2018; 8:10847-10856. [PMID: 30519411 PMCID: PMC6262920 DOI: 10.1002/ece3.4538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022] Open
Abstract
Mutualistic symbionts can provide diverse benefits to their hosts and often supply key trait variation for host adaptation. The bacterial symbionts of entomopathogenic nematodes play a crucial role in successful colonization of and reproduction in the insect host. Additionally, these symbionts can produce a diverse array of antimicrobial compounds to deter within-host competitors. Natural isolates of the symbiont, Xenorhabdus bovienii, show considerable variation in their ability to target sympatric competitors via bacteriocins, which can inhibit the growth of sensitive Xenorhabdus strains. Both the bacteria and its nematode partner have been shown to benefit from bacteriocin production when within-host competition with a sensitive competitor occurs. Despite this benefit, several isolates of Xenorhabdus do not inhibit sympatric strains. To understand how this variation in allelopathy could be maintained, we tested the hypothesis that inhibiting isolates face a reproductive cost in the absence of competition. We tested this hypothesis by examining the reproductive success of inhibiting and non-inhibiting isolates coupled with their natural nematode host in a non-competitive context. We found that nematodes carrying non-inhibitors killed the insect host more rapidly and were more likely to successfully reproduce than nematodes carrying inhibitors. Lower reproductive success of inhibiting isolates was repeatable across nematode generations and across insect host species. However, no difference in insect mortality was observed between inhibiting and non-inhibiting isolates when bacteria were injected into insects without their nematode partners. Our results indicate a trade-off between the competitive and reproductive roles of symbionts, such that inhibiting isolates, which are better in the face of within-host competition, pay a reproductive cost in the absence of competition. Furthermore, our results support the hypothesis that symbiont variation within populations can be maintained through context-dependent fitness benefits conferred to their hosts. As such, our study offers novel insights into the selective forces maintaining variation within a single host-symbiont population and highlights the role of competition in mutualism evolution.
Collapse
Affiliation(s)
| | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
13
|
Affiliation(s)
- Dean Scholl
- AvidBiotics Corp., South San Francisco, California 94080;,
| |
Collapse
|
14
|
Ciezki K, Murfin K, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins in related strains of Xenorhabdus bovienii: Xenorhabdicin tail fiber modularity and contribution to competitiveness. FEMS Microbiol Lett 2016; 364:fnw235. [PMID: 27737947 DOI: 10.1093/femsle/fnw235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023] Open
Abstract
R-type bacteriocins are contractile phage tail-like structures that are bactericidal towards related bacterial species. The C-terminal region of the phage tail fiber protein determines target-binding specificity. The mutualistic bacteria Xenorhabdus nematophila and X. bovienii produce R-type bacteriocins (xenorhabdicins) that are selectively active against different Xenorhabdus species. We analyzed the P2-type remnant prophage clusters in draft sequences of nine strains of X. bovienii The C-terminal tail fiber region in each of the respective strains was unique and consisted of mosaics of modular units. The region between the main tail fiber gene (xbpH1) and the sheath gene (xbpS1) contained a variable number of modules encoding tail fiber fragments. DNA inversion and module exchange between strains was involved in generating tail fiber diversity. Xenorhabdicin-enriched fractions from three different X. bovienii strains isolated from the same nematode species displayed distinct activities against each other. In one set of strains, the strain that produced highly active xenorhabdicin was able to eliminate a sensitive strain. In contrast, xenorhabdicin activity was not a determining factor in the competitive fitness of a second set of strains. These findings suggest that related strains of X. bovienii use xenorhabdicin and additional antagonistic molecules to compete against each other.
Collapse
Affiliation(s)
- Kristin Ciezki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Kristen Murfin
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.,Department of Microbiology, Yale University, New Haven, CT 06519, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.,Department of Microbiology, University of Tennessee-Knoxville, TN 37996, USA
| | - S Patricia Stock
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| |
Collapse
|
15
|
F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins. J Bacteriol 2016; 198:2784-93. [PMID: 27457717 DOI: 10.1128/jb.00489-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Listeria monocytogenes is a significant foodborne human pathogen that can cause severe disease in certain high-risk individuals. L. monocytogenes is known to produce high-molecular-weight, phage tail-like bacteriocins, or "monocins," upon induction of the SOS system. In this work, we purified and characterized monocins and found them to be a new class of F-type bacteriocins. The L. monocytogenes monocin genetic locus was cloned and expressed in Bacillus subtilis, producing specifically targeted bactericidal particles. The receptor binding protein, which determines target cell specificity, was identified and engineered to change the bactericidal spectrum. Unlike the F-type pyocins of Pseudomonas aeruginosa, which are related to lambda-like phage tails, monocins are more closely related to TP901-1-like phage tails, structures not previously known to function as bacteriocins. Monocins therefore represent a new class of phage tail-like bacteriocins. It appears that multiple classes of phage tails and their related bacteriocins have coevolved separately in parallel. IMPORTANCE Phage tail-like bacteriocins (PTLBs) are structures widespread among the members of the bacterial kingdom that are evolutionarily related to the DNA delivery organelles of phages (tails). We identified and characterized "monocins" of Listeria monocytogenes and showed that they are related to the tail structures of TP901-1-like phages, structures not previously known to function as bacteriocins. Our results show that multiple types of envelope-penetrating machines have coevolved in parallel to function either for DNA delivery (phages) or as membrane-disrupting bacteriocins. While it has commonly been assumed that these structures were coopted from phages, we cannot rule out the opposite possibility, that ancient phages coopted complex bacteriocins from the cell, which then underwent adaptations to become efficient at translocating DNA.
Collapse
|
16
|
Hillman K, Goodrich-Blair H. Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr Opin Microbiol 2016; 31:184-190. [DOI: 10.1016/j.mib.2016.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
|
17
|
Bisch G, Ogier JC, Médigue C, Rouy Z, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Genome Biol Evol 2016; 8:148-60. [PMID: 26769959 PMCID: PMC4758244 DOI: 10.1093/gbe/evv248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Within Xenorhabdus bovienii species, the X. bovienii CS03 strain (Xb CS03) is nonvirulent when directly injected into lepidopteran insects, and displays a low virulence when associated with its Steinernema symbiont. The genome of Xb CS03 was sequenced and compared with the genome of a virulent strain, X. bovienii SS-2004 (Xb SS-2004). The genome size and content widely differed between the two strains. Indeed, Xb CS03 had a large genome containing several specific loci involved in the inhibition of competitors, including a few NRPS-PKS loci (nonribosomal peptide synthetases and polyketide synthases) producing antimicrobial molecules. Consistently, Xb CS03 had a greater antimicrobial activity than Xb SS-2004. The Xb CS03 strain contained more pseudogenes than Xb SS-2004. Decay of genes involved in the host invasion and exploitation (toxins, invasins, or extracellular enzymes) was particularly important in Xb CS03. This may provide an explanation for the nonvirulence of the strain when injected into an insect host. We suggest that Xb CS03 and Xb SS-2004 followed divergent evolutionary scenarios to cope with their peculiar life cycle. The fitness strategy of Xb CS03 would involve competitor inhibition, whereas Xb SS-2004 would quickly and efficiently kill the insect host. Hence, Xenorhabdus strains would have widely divergent host exploitation strategies, which impact their genome structure.
Collapse
Affiliation(s)
- Gaëlle Bisch
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Jean-Claude Ogier
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Patrick Tailliez
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Alain Givaudan
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Sophie Gaudriault
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| |
Collapse
|
18
|
Antimicrobials and the Natural Biology of a Bacterial-Nematode Symbiosis. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
The Tailocin Tale: Peeling off Phage Tails. Trends Microbiol 2015; 23:587-590. [DOI: 10.1016/j.tim.2015.07.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022]
|
20
|
Ghequire MGK, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates. Genome Biol Evol 2015; 7:2810-28. [PMID: 26412856 PMCID: PMC4684702 DOI: 10.1093/gbe/evv184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| | - Yörg Dillen
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, University of Leuven, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| |
Collapse
|
21
|
Goldberg A, Fridman O, Ronin I, Balaban NQ. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med 2014; 6:112. [PMID: 25530806 PMCID: PMC4272514 DOI: 10.1186/s13073-014-0112-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Bacteria have been shown to generate constant genetic variation in a process termed phase variation. We present a tool based on whole genome sequencing that allows detection and quantification of coexisting genotypes mediated by genomic inversions in bacterial cultures. We tested our method on widely used strains of Escherichia coli, and detected stable and reproducible phase variation in several invertible loci. These are shown here to be responsible for maintaining constant variation in populations grown from a single colony. Applying this tool on other bacterial strains can shed light on how pathogens adjust to hostile environments by diversifying their genomes.
Collapse
Affiliation(s)
- Amir Goldberg
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Ofer Fridman
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Irine Ronin
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Nathalie Q Balaban
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| |
Collapse
|
22
|
Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. J Bacteriol 2014; 196:3351-9. [PMID: 25022851 DOI: 10.1128/jb.01889-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.
Collapse
|
23
|
Ogier JC, Pagès S, Bisch G, Chiapello H, Médigue C, Rouy Z, Teyssier C, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Genome Biol Evol 2014; 6:1495-513. [PMID: 24904010 PMCID: PMC4079199 DOI: 10.1093/gbe/evu119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host.
Collapse
Affiliation(s)
- Jean-Claude Ogier
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sylvie Pagès
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Gaëlle Bisch
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Hélène Chiapello
- INRA Toulouse Midi-Pyrénées, Unité MIA-T, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Corinne Teyssier
- Université Montpellier 1, UFR des Sciences Pharmaceutiques et Biologiques/UMR95 Qualisud, CIRAD-Persyst, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Patrick Tailliez
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Alain Givaudan
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sophie Gaudriault
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| |
Collapse
|