1
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024; 13:e2401307. [PMID: 39175382 PMCID: PMC11582516 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Janis Locs
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| |
Collapse
|
2
|
Li Z, Chen Z, Chen X, Zhao R. Mechanical properties of triply periodic minimal surface (TPMS) scaffolds: considering the influence of spatial angle and surface curvature. Biomech Model Mechanobiol 2022; 22:541-560. [PMID: 36550240 DOI: 10.1007/s10237-022-01661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
Triply periodic minimal surface (TPMS) has a promising application in the design of bone scaffolds due to its relevance in bone structure. Notably, the mechanical properties of TPMS scaffolds can be affected by many factors, including the spatial angle and surface curvature, which, however, remain to be discovered. This paper illustrates our study on the mechanical properties of tissue scaffolds consisting of TPMS structures (Primitive and I-WP) by considering the influence of spatial angle and surface curvature. Also, the development of a novel model representative of the mechanical properties of scaffolds based on the entropy weight fuzzy comprehensive evaluation method is also presented. For experimental investigation and validation, we employed the selective laser melting technology to manufacture scaffolds with varying structures from AlSi10Mg powder and then performed mechanical testing on the scaffolds. Our results show that for a given porosity, the Gaussian curvature of the stretched TPMS structures is more concentrated and have a higher elastic modulus and fatigue life. At the spatial angle θ = 27°, the shear modulus of the primitive unit reaches its largest value; the shear modulus of the I-WP unit is positively correlated with the spatial angle. Additionally, it is found that the comprehensive mechanical properties of TPMS structures can be significantly improved after changing the surface curvature. Taken together, the identified influence of spatial angle and surface curvature and the developed models of scaffold mechanical properties would be of significant advance and guidance for the design and development of bone scaffolds.
Collapse
Affiliation(s)
- Zhitong Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| | - Zhaobo Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N5A9, Canada
| | - Runchao Zhao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| |
Collapse
|
3
|
Billström GH, Lopes VR, Illies C, Gallinetti S, Åberg J, Engqvist H, Aparicio C, Larsson S, Linder LKB, Birgersson U. Guiding bone formation using semi-onlay calcium phosphate implants in an ovine calvarial model. J Tissue Eng Regen Med 2022; 16:435-447. [PMID: 35195935 PMCID: PMC9303616 DOI: 10.1002/term.3288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 01/29/2022] [Indexed: 11/14/2022]
Abstract
The restoration of cranio‐maxillofacial deformities often requires complex reconstructive surgery in a challenging anatomical region, with abnormal soft tissue structures and bony deficits. In this proof‐of‐concept, the possibility of vertical bone augmentation was explored by suspending hemispherically shaped titanium‐reinforced porous calcium phosphate (CaP) implants (n = 12) over the frontal bone in a sheep model (n = 6). The animals were euthanized after week 13 and the specimens were subject to micro‐computed tomography (μCT) and comprehensive histological analysis. Histology showed that the space between implant and the recipient bone was filled with a higher percentage of newly formed bone (NFB) versus soft tissue with a median of 53% and 47%, respectively. Similar results were obtained from the μ‐CT analysis, with a median of 56% NFB and 44% soft tissue filling the void. Noteworthy, significantly higher bone‐implant contact was found for the CaP (78%, range 14%–94%) versus the Titanium (29%, range 0%–75%) portion of the implant exposed to the surrounding bone. The histological analysis indicates that the CaP replacement by bone is driven by macrophages over time, emphasized by material‐filled macrophages found in close vicinity to the CaP with only a small number of single osteoclasts found actively remodeling the NFB. This study shows that CaP based implants can be assembled with the help of additive manufacturing to guide vertical bone formation without decortification or administration of growth factors. Furthermore, it highlights the potential disadvantage of a seamless fit between the implant and the recipient's bone.
Collapse
Affiliation(s)
- Gry Hulsart Billström
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, Uppsala, Sweden
| | - Viviana R Lopes
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Christopher Illies
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gallinetti
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Jonas Åberg
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Conrado Aparicio
- Faculty of Odontology, International University of Catalonia, Barcelona, Spain
| | - Sune Larsson
- Department of Surgical Sciences, Orthopaedics, Uppsala University, Uppsala, Sweden
| | | | - Ulrik Birgersson
- Department of Clinical Neuroscience, Neurosurgical Section, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institute, Huddinge, Sweden.,OssDsign, Uppsala, Sweden
| |
Collapse
|
4
|
Gupta D, Hossain KMZ, Roe M, Smith EF, Ahmed I, Sottile V, Grant DM. Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS APPLIED BIO MATERIALS 2021; 4:5987-6004. [DOI: 10.1021/acsabm.1c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhanak Gupta
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kazi M. Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Martin Roe
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Emily F. Smith
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - David M. Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
5
|
Sangkert S, Kamolmatyakul S, Meesane J. The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering. J Appl Biomater Funct Mater 2020; 18:2280800019893204. [PMID: 32297820 DOI: 10.1177/2280800019893204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This research explored a new trend in biomaterials science. The bone-mimicking effect of calcium phosphate on chitosan composite scaffolds was evaluated. Chitosan with 2% calcium phosphate was found to have suitable bone-mimicking performance for maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Supaporn Sangkert
- Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Thailand
| | | | - Jirut Meesane
- Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
6
|
Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L, Feng G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 2020; 106:22-33. [PMID: 31926336 DOI: 10.1016/j.actbio.2019.12.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) ceramics have been widely used for bone regeneration because of their ability to induce osteogenesis. Surface properties, including chemical composition and surface structure, are known to play a crucial role in osteoconduction and osteoinduction. This review systematically analyzes the effects of surface properties, in particular the surface structure, of CaP scaffolds on cell behavior and new bone formation. We also summarize the possible signaling pathways involved in the osteogenic differentiation of bone-related cells when cultured on surfaces with various structures in vitro. The significant immune response initiated by surface structure involved in osteogenic differentiation of cells is also discussed in this review. Taken together, the new biological principle for advanced biomaterials is not only to directly stimulate osteogenic differentiation of bone-related cells but also to modulate the immune response in vivo. Although the reaction mechanism responsible for bone formation induced by CaP surface structure is not clear yet, the insights on surface structure-mediated osteogenic differentiation and osteoimmunomodulation could aid the optimization of CaP-based biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: CaP ceramics have similar inorganic composition with natural bone, which have been widely used for bone tissue scaffolds. CaP themselves are not osteoinductive; however, osteoinductive properties could be introduced to CaP materials by surface engineering. This paper systematically summarizes the effects of surface properties, especially surface structure, of CaP scaffolds on bone formation. Additionally, increasing evidence has proved that the bone healing process is not only affected by the osteogenic differentiation of bone-related cells, but also relevant to the the cooperation of immune system. Thus, we further review the possible signaling pathways involved in the osteogenic differentiation and immune response of cells cultured on scaffold surface. These insights into surface structure-mediated osteogenic differentiation and osteoimmunomodulated-based strategy could aid the optimization of CaP-based biomaterials.
Collapse
|
7
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Fava F, Fabbri P, Taddei P, Prati C. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:341-361. [PMID: 31147007 DOI: 10.1016/j.msec.2019.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Polycaprolactone (PCL), dicalcium phosphate dihydrate (DCPD) and/or calcium silicates (CaSi) have been used to prepare highly porous scaffolds by thermally induced phase separation technique (TIPS). Three experimental mineral-doped formulations were prepared (PCL-10CaSi, PCL-5CaSi-5DCPD, PCL-10CaSi-10DCPD); pure PCL scaffolds constituted the control group. Scaffolds were tested for their chemical-physical and biological properties, namely thermal properties by differential scanning calorimetry (DSC), mechanical properties by quasi-static parallel-plates compression testing, porosity by a standard water-absorption method calcium release, alkalinizing activity, surface microchemistry and micromorphology by Environmental Scanning electronic Microscopy (ESEM), apatite-forming ability in Hank Balanced Saline Solution (HBSS) by Energy Dispersive X-ray Spectroscopy (EDX) and micro-Raman, and direct contact cytotoxicity. All mineral-doped scaffolds released calcium and alkalinized the soaking medium, which may favor a good biological (osteogenic) response. ESEM surface micromorphology analyses after soaking in HBSS revealed: pure PCL, PCL-10CaSi and PCL-10CaSi-10DCPD kept similar surface porosity percentages but different pore shape modifications. PCL-5CaSi-5DCPD revealed a significant surface porosity increase despite calcium phosphates nucleation (p < 0.05). Micro-Raman spectroscopy detected the formation of a B-type carbonated apatite (Ap) layer on the surface of PCL-10CaSi-10DCPD aged for 28 days in HBSS; a similar phase (but of lower thickness) formed also on PCL-5CaSi-5DCPD and PCL; the deposit formed on PCL-10CaSi was mainly composed of calcite. All PCL showed bulk open porosity higher than 94%; however, no relevant brittleness was observed in the materials, which retained the possibility to be handled without collapsing. The thermo-mechanical properties showed that the reinforcing and nucleating action of the inorganic fillers CaSi and DCPD improved viscoelastic properties of the scaffolds, as confirmed by the increased value of storage modulus and the slight increase in the crystallization temperature for all the biomaterials. A detrimental effect on the mechanical properties was observed in samples with the highest amount of inorganic particles (PCL-10CaSi-10DCPD). All the scaffolds showed absence of toxicity, in particular PCL-10CaSi-10DCPD. The designed scaffolds are biointeractive (release biologically relevant ions), nucleate apatite, possess high surface and internal open porosity and can be colonized by cells, creating a bone forming osteoblastic microenvironment and appearing interesting materials for bone regeneration purposes.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Federica Chiellini
- BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Zhao R, Chen S, Yuan B, Chen X, Yang X, Song Y, Tang H, Yang X, Zhu X, Zhang X. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. NANOSCALE 2019; 11:2721-2732. [PMID: 30672553 DOI: 10.1039/c8nr09417a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The micro-/nano-structured calcium phosphate bioceramic exhibited a higher new bone substitution rate in an osteoporotic bone defect rat model.
Collapse
Affiliation(s)
- Rui Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xi Yang
- Department of Orthopaedics
- West China Hospital of Sichuan University
- Chengdu 610041
- China
| | - Yueming Song
- Department of Orthopaedics
- West China Hospital of Sichuan University
- Chengdu 610041
- China
| | - Hai Tang
- Department of Orthopedics
- Beijing Friendship Hospital
- Capital Medical University
- Beijing 100050
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
9
|
Garcia Garcia A, Hébraud A, Duval JL, Wittmer CR, Gaut L, Duprez D, Egles C, Bedoui F, Schlatter G, Legallais C. Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction. ACS Biomater Sci Eng 2018; 4:3317-3326. [PMID: 33435068 DOI: 10.1021/acsbiomaterials.8b00521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The elaboration of biomimetic materials inspired from the specific structure of native bone is one the main goal of tissue engineering approaches. To offer the most appropriate environment for bone reconstruction, we combined electrospinning and electrospraying to elaborate an innovative scaffold composed of alternating layers of polycaprolactone (PCL) and hydroxyapatite (HA). In our approach, the electrospun PCL was shaped into a honeycomb-like structure with an inner diameter of 160 μm, capable of providing bone cells with a 3D environment while ensuring the material biomechanical strength. After 5 days of culture without any differentiation factor, the murine embryonic cell line demonstrated excellent cell viability on contact with the PCL-HA structures as well as active colonization of the scaffold. The cell differentiation, as tested by RT-qPCR, revealed a 6-fold increase in the expression of the RNA of the Bglap involved in bone mineralization as compared to a classical 2D culture. This differentiation of the cells into osteoblasts was confirmed by alkaline phosphatase staining of the scaffold cultivated with the cell lineage. Later on, organotypic cultures of embryonic bone tissues showed the high capacity of the PCL-HA honeycomb structure to guide the migration of differentiated bone cells throughout the cavities and the ridge of the biomaterial, with a colonization surface twice as big as that of the control. Taken together, our results indicate that PCL-HA honeycomb structures are biomimetic supports that promotes in vitro osteocompatibility, osteoconduction, and osteoinduction and could be suitable for being used for bone reconstruction in complex situations such as the repair of maxillofacial defects.
Collapse
Affiliation(s)
- Alejandro Garcia Garcia
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Anne Hébraud
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-Luc Duval
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Corinne R Wittmer
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Ludovic Gaut
- CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.,Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France
| | - Delphine Duprez
- CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.,Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France
| | - Christophe Egles
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Fahmi Bedoui
- Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiègne, France
| | - Guy Schlatter
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Cecile Legallais
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| |
Collapse
|
10
|
Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours. Biomech Model Mechanobiol 2018; 17:1357-1371. [DOI: 10.1007/s10237-018-1031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/12/2018] [Indexed: 01/11/2023]
|
11
|
Ripamonti U. Functionalized Surface Geometries Induce: " Bone: Formation by Autoinduction". Front Physiol 2018; 8:1084. [PMID: 29467661 PMCID: PMC5808255 DOI: 10.3389/fphys.2017.01084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β) supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized geometric nanotopographic cues to set into motion osteogenesis independently of the exogenous application of the osteogenic soluble molecular signals. Inductive morphogenetic surfaces are the way ahead of biomaterials' science: the connubium of stem cells on primed functionalized surfaces precisely regulates gene expression and the induction of the osteogenic phenotype.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Gupta D, Grant DM, Zakir Hossain KM, Ahmed I, Sottile V. Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation. J Biomater Appl 2017; 32:906-919. [DOI: 10.1177/0885328217745699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dhanak Gupta
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham, UK
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Kazi M Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Aquino-Martínez R, Angelo AP, Pujol FV. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem Cell Res Ther 2017; 8:265. [PMID: 29145866 PMCID: PMC5689169 DOI: 10.1186/s13287-017-0713-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4) on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO4 scaffolds could have potential applications for bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alcira P Angelo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura Pujol
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
14
|
Santos PS, Cestari TM, Paulin JB, Martins R, Rocha CA, Arantes RVN, Costa BC, Dos Santos CM, Assis GF, Taga R. Osteoinductive porous biphasic calcium phosphate ceramic as an alternative to autogenous bone grafting in the treatment of mandibular bone critical-size defects. J Biomed Mater Res B Appl Biomater 2017; 106:1546-1557. [PMID: 28755493 DOI: 10.1002/jbm.b.33963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 01/07/2023]
Abstract
The bone-induction capacity of a porous biphasic calcium phosphate (pBCP) using heterotopic implantation in mouse (mHI-model) and its efficacy as substitute for autograft in mandibular critical-size defect in rabbit (rabMCSD-model) was investigated. In mHI-model, pBCP was implanted into the thigh muscles and bone formation was histomorphometrically and immunohistochemically evaluated. In rabMCSD-model, 13 mm bone defects were treated with pBCP or autograft and bone repair comparatively evaluated by radiographic and histomorphometric methods. In mHI-model, formed bone and immunolabeling for bone morphogenetic protein-2 and osteopontin were observed in 90% of pBCP implanted samples after 12 weeks. In rabMCSD-model neither statistically significant difference was found in newly formed bone between pBCP and autograft groups at 4 weeks (18.8 ± 5.5% vs 27.1 ± 5.6%), 8 weeks (22.3 ± 2.7% vs 26.2 ± 5.1), and 12 weeks (19.6 ± 4.7% vs 19.6 ± 2.3%). At 12 weeks, the stability and contour of the mandible were restored in both treatments. Near tooth remaining, pBCP particles were covered by small amount of mineralized tissue exhibiting perpendicular attachments of collagen fiber bundles with histological characteristic of acellular cementum. Within the limitations of this study, it was concluded that pBCP is osteoinductive and able to stimulate the new formation of bone and cementum-like tissues in rabMCSD-model, suggesting that it may be an alternative to treatment of large bone defect and in periodontal regenerative therapy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1546-1557, 2018.
Collapse
Affiliation(s)
- Paula Sanches Santos
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | - Tania Mary Cestari
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | - Jéssica Botto Paulin
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | - Renato Martins
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | - Caroline Andrade Rocha
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | | | - Bruna Carolina Costa
- Physics Department, Advanced Materials Laboratory, São Paulo State University, UNESP, Bauru, Sao Paulo, 17033-360, Brazil
| | - Cássio Morilla Dos Santos
- Physics Department, Advanced Materials Laboratory, São Paulo State University, UNESP, Bauru, Sao Paulo, 17033-360, Brazil
| | - Gerson Francisco Assis
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| | - Rumio Taga
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, 17012-901, Brazil
| |
Collapse
|
15
|
Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA Plus and Biodentine in rabbit intramedullary model: Microchemical characterization and histological analysis. Dent Mater 2017; 33:e221-e238. [PMID: 28233601 DOI: 10.1016/j.dental.2017.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study the in vivo osteoinductive potential, bone-bonding ability (bioactivity) and bone biomineralization of current hydraulic calcium silicate cements used as graft materials and placed in contact with medullary bone. METHODS ProRoot MTA, MTA Plus and Biodentine were used to fill surgical bone defects (2-mm diameter through the entire cortical thickness to reach the medullary bone) in the tibia of mature male rabbits. Tibiae were retrieved after 30days and submitted to histological analysis and microchemical characterization using Optical Microscopy (OM) and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis (ESEM-EDX). Bone neoformation and histomorphometric evaluations, degree of mineralization (by Ca/P, Ca/N and P/N ratios) and the diffusion of material elements were studied. RESULTS Bone neoformation was observed in response to all materials. No sign of necrosis were found on the walls of the pre-existing cortical bone. No osteoclasts and no formation of fibrous tissue were evident. Sign of angiogenesis were present. EDX (element content, line profile and element mapping) showed the increase in Ca and P and decrease in C, S and N from the mature bone towards the mineralizing interface. Ca/P, Ca/N and P/N ratios showed differences in the degree of mineralization/maturation stage of bone. MTA Plus and ProRoot MTA exhibited close contact with the pre-existing bone and good bone-bonding with neoformed bone juxtaposed on the medullary side of the materials without interposed connective tissue or resorption lacunae or gaps. The materials showed a dense appearance with 100% of residual materials and no colonization by fluids and cells. No migration of Bi or Al material elements to the newly formed bone was found. Biodentine showed newly formed trabecular bone with marrow spaces and sparse traces of residual material (≈9%). SIGNIFICANCE The in vivo osteoinductive properties with dynamic biomineralization processes around these calcium silicate materials extruded in medullary bone in appropriate animal model have been demonstrated by ESEM-EDX in association with OM. Good biocompatibility was evident as only slight inflammatory infiltrate and no sign of necrosis at the interface with the pre-existing bone were found. MTA Plus and ProRoot MTA exhibited bioactive potential as they can bond to bone directly without interposed connective tissue. Biodentine was replaced by newly formed bone. CLINICAL SIGNIFICANCE The results of the study demonstrate the capacity of calcium silicate cements to allow osteoid matrix deposition by activated osteoblasts and favour its biomineralization, and to achieve a direct bond between the (bioactive) materials surface and the mineralized bone matrix.
Collapse
|
16
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. Cementogenesis and osteogenesis in periodontal tissue regeneration by recombinant human transforming growth factor-β3: a pilot studyin Papio ursinus. J Clin Periodontol 2016; 44:83-95. [DOI: 10.1111/jcpe.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Ruqayya Parak
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Oral Biological Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Roland M. Klar
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Caroline Dickens
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Raquel Duarte
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| |
Collapse
|
17
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family. Biomaterials 2016; 104:279-96. [DOI: 10.1016/j.biomaterials.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/28/2022]
|
18
|
Georgiadis M, Guizar-Sicairos M, Gschwend O, Hangartner P, Bunk O, Müller R, Schneider P. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture. PLoS One 2016; 11:e0159838. [PMID: 27547973 PMCID: PMC4993496 DOI: 10.1371/journal.pone.0159838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/08/2016] [Indexed: 01/27/2023] Open
Abstract
Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the microarchitecture, being oriented mostly parallel to bone surface, and (v) local surface curvature seems to have an effect on the ultrastructure organization. Further studies that investigate bone ultrastructure orientation and arrangement are needed in order to understand its organization and consequently its relation to bone biology and mechanics.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Bunk
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Canullo L, Pellegrini G, Canciani E, Heinemann F, Galliera E, Dellavia C. Alveolar socket preservation technique: Effect of biomaterial on bone regenerative pattern. Ann Anat 2016; 206:73-9. [DOI: 10.1016/j.aanat.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
20
|
Urquia Edreira ER, Hayrapetyan A, Wolke JGC, Croes HJE, Klymov A, Jansen JA, van den Beucken JJJP. Effect of calcium phosphate ceramic substrate geometry on mesenchymal stromal cell organization and osteogenic differentiation. Biofabrication 2016; 8:025006. [DOI: 10.1088/1758-5090/8/2/025006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Ripamonti U. Redefining the induction of periodontal tissue regeneration in primates by the osteogenic proteins of the transforming growth factor-β supergene family. J Periodontal Res 2016; 51:699-715. [PMID: 26833268 DOI: 10.1111/jre.12356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 12/20/2022]
Abstract
The molecular bases of periodontal tissue induction and regeneration are the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family. These morphogens act as soluble mediators for the induction of tissues morphogenesis sculpting the multicellular mineralized structures of the periodontal tissues with functionally oriented ligament fibers into newly formed cementum. Human TGF-β3 (hTGF-β3 ) in growth factor-reduced Matrigel® matrix induces cementogenesis when implanted in class II mandibular furcation defects surgically prepared in the non-human primate Chacma baboon, Papio ursinus. The newly formed periodontal ligament space is characterized by running fibers tightly attached to the cementoid surface penetrating as mineralized constructs within the newly formed cementum assembling and initiating within the mineralized dentine. Angiogenesis heralds the newly formed periodontal ligament space, and newly sprouting capillaries are lined by cellular elements with condensed chromatin interpreted as angioblasts responsible for the rapid and sustained induction of angiogenesis. The inductive activity of hTGF-β3 in Matrigel® matrix is enhanced by the addition of autogenous morcellated fragments of the rectus abdominis muscle potentially providing myoblastic, pericytic/perivascular stem cells for continuous tissue induction and morphogenesis. The striated rectus abdominis muscle is endowed with stem cell niches in para/perivascular location, which can be dominant, thus imposing stem cell features or stemness to the surrounding cells. This capacity to impose stemness is morphologically shown by greater alveolar bone induction and cementogenesis when hTGF-β3 in Matrigel® matrix is combined with morcellated fragments of autogenous rectus abdominis muscle. The induction of periodontal tissue morphogenesis develops as a mosaic structure in which the osteogenic proteins of the TGF-β supergene family singly, synergistically and synchronously initiate and maintain tissue induction and morphogenesis. In primates, the presence of several homologous yet molecularly different isoforms with osteogenic activity highlights the biological significance of this apparent redundancy and indicates multiple interactions during embryonic development and bone regeneration in postnatal life. Molecular redundancy with associated different biological functionalities in primate tissues may simply represent the fine-tuning of speciation-related molecular evolution in anthropoid apes at the early Pliocene boundary, which resulted in finer tuning of the bone induction cascade.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Laboratory, Department of Oral Medicine & Periodontology, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Ripamonti U, Klar RM, Parak R, Dickens C, Dix-Peek T, Duarte R. Tissue segregation restores the induction of bone formation by the mammalian transforming growth factor-β(3) in calvarial defects of the non-human primate Papio ursinus. Biomaterials 2016; 86:21-32. [PMID: 26874889 DOI: 10.1016/j.biomaterials.2016.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 12/12/2022]
Abstract
A diffusion molecular hypothesis from the dura and/or the leptomeninges below that would control the induction of calvarial membranous bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) was investigated. Coral-derived calcium carbonate-based macroporous constructs (25 mm diameter; 3.5/4 mm thickness) with limited hydrothermal conversion to hydroxyapatite (7% HA/CC) were inserted into forty calvarial defects created in 10 adult Chacma baboons Papio ursinus. In 20 defects, an impermeable nylon foil membrane (SupraFOIL(®)) was inserted between the cut endocranial bone and the underlying dura mater. Twenty of the macroporous constructs were preloaded with hTGF-β3 (125 μg in 1000 μl 20 mM sodium succinate, 4% mannitol pH4.0), 10 of which were implanted into defects segregated by the SupraFOIL(®) membrane, and 10 into non-segregated defects. Tissues were harvested on day 90, processed for decalcified and undecalcified histology and quantitative real-time polymerase chain reaction (qRT-PCR). Segregated untreated macroporous specimens showed a reduction of bone formation across the macroporous spaces compared to non-segregated constructs. qRT-PCR of segregated untreated specimens showed down regulation of osteogenic protein-1 (OP-1), osteocalcin (OC), bone morphogenetic protein-2 (BMP-2), RUNX-2 and inhibitor of DNA binding-2 and -3 (ID2,ID3) and up regulation of TGF-β3, a molecular signalling pathway inhibiting the induction of membranous bone formation. Non-segregated hTGF-β3/treated constructs also showed non-osteogenic expression profiles when compared to non-segregated untreated specimens. Segregated hTGF-β3/treated 7% HA/CC constructs showed significantly greater induction of bone formation across the macroporous spaces and, compared to non-segregated hTGF-β3/treated constructs, showed up regulation of OP-1, OC, BMP-2, RUNX-2, ID2 and ID3. Similar up-regulated expression profiles were seen for untreated non-segregated constructs. TGF-β signalling via ID genes creates permissive or refractory micro-environments that regulate the induction of calvarial bone formation which is controlled by the exogenous hTGF-β3 upon segregation of the calvarial defects. The dura is the common regulator of the induction of calvarial bone formation modulated by the presence or absence of the SupraFOIL(®) membrane with or without hTGF-β3.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Laboratory, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Roland Manfred Klar
- Bone Research Laboratory, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Molecular and Cellular Biology Laboratories, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruqayya Parak
- Bone Research Laboratory, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline Dickens
- Molecular and Cellular Biology Laboratories, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Therese Dix-Peek
- Molecular and Cellular Biology Laboratories, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Molecular and Cellular Biology Laboratories, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Ripamonti U, Dix-Peek T, Parak R, Milner B, Duarte R. Profiling bone morphogenetic proteins and transforming growth factor-βs by hTGF-β3 pre-treated coral-derived macroporous bioreactors: The power of one. Biomaterials 2015; 49:90-102. [DOI: 10.1016/j.biomaterials.2015.01.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/27/2022]
|
24
|
Re-evaluating the induction of bone formation in primates. Biomaterials 2014; 35:9407-22. [DOI: 10.1016/j.biomaterials.2014.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
25
|
Nedjari S, Eap S, Hébraud A, Wittmer CR, Benkirane-Jessel N, Schlatter G. Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization. Macromol Biosci 2014; 14:1580-9. [DOI: 10.1002/mabi.201400226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Salima Nedjari
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRS; Université de Strasbourg; 25 Rue Becquerel 67089 Strasbourg Cedex France
| | - Sandy Eap
- INSERM Unité 1109; Université de Strasbourg; 11 Rue Humann F-67085 Strasbourg Cedex France
| | - Anne Hébraud
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRS; Université de Strasbourg; 25 Rue Becquerel 67089 Strasbourg Cedex France
| | - Corinne R. Wittmer
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRS; Université de Strasbourg; 25 Rue Becquerel 67089 Strasbourg Cedex France
| | - Nadia Benkirane-Jessel
- INSERM Unité 1109; Université de Strasbourg; 11 Rue Humann F-67085 Strasbourg Cedex France
| | - Guy Schlatter
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRS; Université de Strasbourg; 25 Rue Becquerel 67089 Strasbourg Cedex France
| |
Collapse
|
26
|
Klar RM, Duarte R, Dix-Peek T, Ripamonti U. The induction of bone formation by the recombinant human transforming growth factor-β3. Biomaterials 2014; 35:2773-88. [DOI: 10.1016/j.biomaterials.2013.12.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 01/22/2023]
|
27
|
Bianchi M, Urquia Edreira ER, Wolke JG, Birgani ZT, Habibovic P, Jansen JA, Tampieri A, Marcacci M, Leeuwenburgh SC, van den Beucken JJ. Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics. Acta Biomater 2014; 10:661-9. [PMID: 24184857 DOI: 10.1016/j.actbio.2013.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 01/18/2023]
Abstract
Repetitive concavities on the surface of bone implants have recently been demonstrated to foster bone formation when implanted at ectopic locations in vivo. The current study aimed to evaluate the effect of surface concavities on the surface mineralization of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics in vitro. Hemispherical concavities with different diameters were prepared at the surface of HA and β-TCP sintered disks: 1.8mm (large concavity), 0.8mm (medium concavity) and 0.4mm (small concavity). HA and β-TCP disks were sintered at 1100 or 1200°C and soaked in simulated body fluid for 28 days at 37°C; the mineralization process was followed by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and calcium quantification analyses. The results showed that massive mineralization occurred exclusively at the surface of HA disks treated at 1200°C and that nucleation of large aggregates of calcium phosphate started specifically inside small concavities instead of on the planar surface of the disks. Regarding the effect of concavity diameter size on surface mineralization, it was observed that small concavities induce 124- and 10-fold increased mineralization compared to concavities of large or medium size, respectively. The results of this study demonstrated that (i) in vitro surface mineralization of calcium phosphate ceramics with surface concavities starts preferentially within the concavities and not on the planar surface, and (ii) concavity size is an effective parameter to control the spatial position and extent of mineralization in vitro.
Collapse
|
28
|
Klar RM, Duarte R, Dix-Peek T, Dickens C, Ferretti C, Ripamonti U. Calcium ions and osteoclastogenesis initiate the induction of bone formation by coral-derived macroporous constructs. J Cell Mol Med 2013; 17:1444-57. [PMID: 24106923 PMCID: PMC4117557 DOI: 10.1111/jcmm.12125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/12/2013] [Indexed: 01/06/2023] Open
Abstract
Coral-derived calcium carbonate/hydroxyapatite macroporous constructs of the genus Goniopora with limited hydrothermal conversion to hydroxyapatite (7% HA/CC) initiate the induction of bone formation. Which are the molecular signals that initiate pattern formation and the induction of bone formation? To evaluate the role of released calcium ions and osteoclastogenesis, 7% HA/CC was pre-loaded with either 500 μg of the calcium channel blocker, verapamil hydrochloride, or 240 μg of the osteoclast inhibitor, biphosphonate zoledronate, and implanted in the rectus abdominis muscle of six adult Chacma baboons Papio ursinus. Generated tissues on days 15, 60 and 90 were analysed by histomorphometry and qRT-PCR. On day 15, up-regulation of type IV collagen characterized all the implanted constructs correlating with vascular invasion. Zoledronate-treated specimens showed an important delay in tissue patterning and morphogenesis with limited bone formation. Osteoclastic inhibition yielded minimal, if any, bone formation by induction. 7% HA/CC pre-loaded with the Ca++ channel blocker verapamil hydrochloride strongly inhibited the induction of bone formation. Down-regulation of bone morphogenetic protein-2 (BMP-2) together with up-regulation of Noggin genes correlated with limited bone formation in 7% HA/CC pre-loaded with either verapamil or zoledronate, indicating that the induction of bone formation by coral-derived macroporous constructs is via the BMPs pathway. The spontaneous induction of bone formation is initiated by a local peak of Ca++ activating stem cell differentiation and the induction of bone formation.
Collapse
Affiliation(s)
- Roland M Klar
- Bone Research Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
29
|
Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Bréchet YJM, Fratzl P, Dunlop JWC. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One 2012; 7:e36336. [PMID: 22606256 PMCID: PMC3350529 DOI: 10.1371/journal.pone.0036336] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/30/2012] [Indexed: 11/24/2022] Open
Abstract
This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of the curved surface, thus creating an actin “chord” by generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling.
Collapse
Affiliation(s)
- Cécile M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (CB); (JD)
| | - Krishna P. Kommareddy
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Monika Rumpler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Philip Kollmannsberger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yves J. M. Bréchet
- Materials and Processes Science and Engineering Laboratory (SIMaP), Grenoble, France
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (CB); (JD)
| |
Collapse
|
30
|
Ripamonti U, Roden LC, Renton LF. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 2012; 33:3813-23. [PMID: 22364700 DOI: 10.1016/j.biomaterials.2012.01.050] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/27/2012] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that heterotopic induction of bone formation by calcium phosphate-based macroporous constructs is set into motion by the geometry of the implanted substrata, i.e. a sequence of repetitive concavities assembled within the macroporous spaces. The aim of this study was to construct osteoinductive titanium implants that per se, and without the exogenous application of the osteogenic soluble molecular signals of the transforming growth factor-β supergene family, would initiate the induction of bone formation. To generate intrinsically osteoinductive titanium implants for translation in clinical contexts, titanium grade Ti-6A1-4V cylinders of 15 mm in length and 3.85 mm in diameter, with or without concavities, were plasma sprayed with crystalline hydroxyapatite resulting in a uniform layer of 30 μm in thickness. Before coating, experimental titanium implants were prepared with a sequence of 36 repetitive concavities 1600 μm in diameter and 800 μm in depth, spaced a distance of 1000 μm apart. Mandibular molars and premolars were extracted to prepare edentulous mandibular ridges for later implantation. Planar and geometric hydroxyapatite-coated titanium constructs were implanted in the left and right edentulized hemi-mandibles, respectively, after a healing period of 7-8 months, 3 per hemi-mandible. Three planar and three geometric implants were implanted in the left and right tibiae, respectively; additionally, planar and geometric constructs were also inserted in the rectus abdominis muscle. Six animals were euthanized at 30 and 90 days after implantation; one animal had to be euthanized 5 days after surgery and the remaining animal was euthanized 31 months after implantation. Undecalcified longitudinal sections were precision-sawed, ground and polished to 40-60 μm; all sections were stained with a modified Goldner's trichrome. Undecalcified specimen block preparation was performed using the EXAKT precision cutting and grinding system. Histomorphometric analyses of bone in contact (BIC) showed that on day 30 there was no difference between the geometric vs. planar control implants; on day 90, the ratio of BIC to surface within the geometric implants was greater than on the standard planar implants in both mandibular and tibial sites; 31 months after implantation, selected concavities cut into the geometric implants harvested from the rectus abdominis muscle showed the spontaneous induction of bone formation with mineralized bone surfaced by osteoid seams. These data in non-human primates indicate that geometrically-constructed plasma-sprayed titanium implants are per se osteogenic, the concavities providing a unique microenvironment to initiate bone differentiation by induction.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, School of Physiology, Medical Research Council/University of the Witwatersrand, Johannesburg, 2193 Parktown, South Africa.
| | | | | |
Collapse
|
31
|
Abstract
The new strategy of tissue engineering, and regenerative medicine at large, is to construct biomimetic matrices to mimic nature's hierarchical structural assemblages and mechanisms of simplicity and elegance that are conserved throughout genera and species. There is a direct spatial and temporal relationship of morphologic and molecular events that emphasize the biomimetism of the remodeling cycles of the osteonic corticocancellous bone versus the "geometric induction of bone formation," that is, the induction of bone by "smart" concavities assembled in biomimetic matrices of macroporous calcium phosphate-based constructs. The basic multicellular unit of the corticocancellous bone excavates a trench across the bone surface, leaving in its wake a hemiosteon rather than an osteon, that is, a trench with cross-sectional geometric cues of concavities after cyclic episodes of osteoclastogenesis, eventually leading to osteogenesis. The concavities per se are geometric regulators of growth-inducing angiogenesis and osteogenesis as in the remodeling processes of the corticocancellous bone. The concavities act as a powerful geometric attractant for myoblastic/myoendothelial and/or endothelial/pericytic stem cells, which differentiate into bone-forming cells. The lacunae, pits, and concavities cut by osteoclastogenesis within the biomimetic matrices are the driving morphogenetic cues that induce bone formation in a continuum of sequential phases of resorption/dissolution and formation. To induce the cascade of bone differentiation, the soluble osteogenic molecular signals of the transforming growth factor β supergene family must be reconstituted with an insoluble signal or substratum that triggers the bone differentiation cascade. By carving a series of repetitive concavities into solid and/or macroporous biomimetic matrices of highly crystalline hydroxyapatite or biphasic hydroxyapatite/β-tricalcium phosphate, we were able to embed smart biologic functions within intelligent scaffolds for tissue engineering of bone. The concavities assembled in the bioceramic constructs biomimetize the remodeling cycle of the corticocancellous bone and are endowed with multifunctional pleiotropic self-assembly capacities, initiating angiogenesis and bone formation by induction without the exogenous applications of the osteogenic-soluble molecular signals of the transforming growth factor β supergene family. The incorporation of specific biologic activities into biomimetic matrices by manipulating the geometry of the substratum, defined as geometric induction of bone formation, is now helping to engineer therapeutic osteogenesis in clinical contexts.
Collapse
|
32
|
Raoul G, Myon L, Chai F, Blanchemain N, Ferri J. [Engineering a bone free flap for maxillofacial reconstruction: technical restrictions]. ACTA ACUST UNITED AC 2011; 112:249-61. [PMID: 21820689 DOI: 10.1016/j.stomax.2011.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vascularisation is a key for success in bone tissue engineering. Creating a functional vascular network is an important concern so as to ensure vitality in regenerated tissues. Many strategies were developed to achieve this goal. One of these is cellular growth technique by perfusion bioreactor chamber. These new technical requirements came along with improved media and chamber receptacles: bioreactors (chapter 2). Some bone tissue engineering processes already have clinical applications but for volumes limited by the lack of vascularisation. Resorbable or non-resorbable membranes are an example. They are used separately or in association with bone grafts and they protect the graft during the revascularization process. Potentiated osseous regeneration uses molecular or cellular adjuvants (BMPs and autologous stem cells) to improve osseous healing. Significant improvements were made: integration of specific sequences, which may guide and enhance cells differentiation in scaffold; nano- or micro-patterned cell containing scaffolds. Finally, some authors consider the patient body as an ideal bioreactor to induce vascularisation in large volumes of grafted tissues. "Endocultivation", i.e., cellular culture inside the human body was proven to be feasible and safe. The properties of regenerated bone in the long run remain to be assessed. The objective to reach remains the engineering of an "in vitro" osseous free flap without morbidity.
Collapse
Affiliation(s)
- G Raoul
- Université Lille Nord-de-France, UDSL, 59000 Lille, France.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The new strategy to initiate the induction of bone formation is to carve smart, self-inducing geometric cues assembled within biomimetic medical devices. These are endowed with the striking prerogative of differentiating myoblastic and/or pericytic stem cells into osteoblastic-like cells attached to the morphogenetic concavities; osteoblastic-like cells secrete osteogenic gene products of the TGF-beta supergene family, further differentiating invading stem cells into osteoblastic-like cells, and initiating bone formation by induction as a secondary response.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Medical Research Council/University of the Witwatersrand, Johannesburg, 2193 Parktown, South Africa.
| | | |
Collapse
|
34
|
Ripamonti U, Roden LC. Induction of bone formation by transforming growth factor-beta2 in the non-human primate Papio ursinus and its modulation by skeletal muscle responding stem cells. Cell Prolif 2010; 43:207-18. [PMID: 20546239 DOI: 10.1111/j.1365-2184.2010.00675.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Four adult non-human primates Papio ursinus were used to study induction of bone formation by recombinant human transforming growth factor-beta(2) (hTGF-beta(2)) together with muscle-derived stem cells. MATERIALS AND METHODS The hTGF-beta(2) was implanted in rectus abdominis muscles and in calvarial defects with and without addition of morcellized fragments of striated muscle, harvested from the rectus abdominis or temporalis muscles. Expression of osteogenic markers including osteogenic protein-1, bone morphogenetic protein-3 and type IV collagen mRNAs from generated specimens was examined by Northern blot analysis. RESULTS Heterotopic intramuscular implantation of 5 and 25 microg hTGF-beta(2) combined with 100 mg of insoluble collagenous bone matrix yielded large corticalized mineralized ossicles by day 30 with remodelling and induction of haematopoietic marrow by day 90. Addition of morcellized rectus abdominis muscle to calvarial implants enhanced induction of bone formation significantly by day 90. CONCLUSIONS In Papio ursinus, in marked contrast to rodents and lagomorphs, hTGF-beta(2) induced large corticalized and vascularized ossicles by day 30 after implantation into the rectus abdominis muscle. This striated muscle contains responding stem cells that enhance the bone induction cascade of hTGF-beta(2). Induction of bone formation by hTGF-beta(2) in the non-human primate Papio ursinus may occur as a result of expression of bone morphogenetic proteins on heterotopic implantation of hTGF-beta(2); the bone induction cascade initiated by mammalian TGF-beta proteins in Papio ursinus needs to be re-evaluated for novel molecular therapeutics for induction of bone formation in clinical contexts.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
35
|
Ripamonti U. Soluble and insoluble signals sculpt osteogenesis in angiogenesis. World J Biol Chem 2010; 1:109-32. [PMID: 21540997 PMCID: PMC3083961 DOI: 10.4331/wjbc.v1.i5.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023] Open
Abstract
The basic tissue engineering paradigm is tissue induction and morphogenesis by combinatorial molecular protocols whereby soluble molecular signals are combined with insoluble signals or substrata. The insoluble signal acts as a three-dimensional scaffold for the initiation of de novo tissue induction and morphogenesis. The osteogenic soluble molecular signals of the transforming growth factor-β (TGF-β) supergene family, the bone morphogenetic/osteogenic proteins (BMPs/OPs) and, uniquely in the non-human primate Papio ursinus (P. ursinus), the three mammalian TGF-β isoforms induce bone formation as a recapitulation of embryonic development. In this paper, I discuss the pleiotropic activity of the BMPs/OPs in the non-human primate P. ursinus, the induction of bone by transitional uroepithelium, and the apparent redundancy of molecular signals initiating bone formation by induction including the three mammalian TGF-β isoforms. Amongst all mammals tested so far, the three mammalian TGF-β isoforms induce endochondral bone formation in the non-human primate P. ursinus only. Bone tissue engineering starts by erecting scaffolds of biomimetic biomaterial matrices that mimic the supramolecular assembly of the extracellular matrix of bone. The molecular scaffolding lies at the hearth of all tissue engineering strategies including the induction of bone formation. The novel concept of tissue engineering is the generation of newly formed bone by the implantation of "smart" intelligent biomimetic matrices that per se initiate the ripple-like cascade of bone differentiation by induction without exogenously applied BMPs/OPs of the TGF-β supergene family. A comprehensive digital iconographic material presents the modified tissue engineering paradigm whereby the induction of bone formation is initiated by intelligent smart biomimetic matrices that per se initiate the induction of bone formation without the exogenous application of the soluble osteogenic molecular signals. The driving force of the intrinsic induction of bone formation by bioactive biomimetic matrices is the shape of the implanted substratum. The language of shape is the language of geometry; the language of geometry is the language of a sequence of repetitive concavities, which biomimetizes the remodelling cycle of the primate osteonic bone.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Ugo Ripamonti, Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, Medical School, 7 York Road, 2193 Parktown, South Africa
| |
Collapse
|
36
|
Ripamonti U, Richter PW, Nilen RWN, Renton L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus. J Cell Mol Med 2008; 12:2609-21. [PMID: 18363843 PMCID: PMC3828877 DOI: 10.1111/j.1582-4934.2008.00312.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Long-term studies in the non-human primate Chacma baboon Papio ursinus were set to investigate the induction of bone formation by biphasic hydroxyapatite/p-tricalcium phosphate (HA/beta-TCP) biomimetic matrices. HA/beta-TCP biomimetic matrices in a pre-sinter ratio (wt%) of 40/60 and 20/80, respectively, were sintered and implanted in the rectus abdominis and in calvarial defects of four adult baboons. The post-sinter phase content ratios were 19/81 and 4/96, respectively. Morphological analyses on day 90 and 365 showed significant induction of bone formation within concavities of the biomimetic matrices with substantial bone formation by induction and resorption/dissolution of the implanted matrices. One year after implantation in calvarial defects, 4/96 biphasic biomimetic constructs showed prominent induction of bone formation with significant dissolution of the implanted scaffolds. The implanted smart biomimetic matrices induce de novo bone formation even in the absence of exogenously applied osteogenic proteins of the transforming growth factor-beta(TGF-beta) superfamily. The induction of bone formation biomimetizes the remodelling cycle of the cortico-cancellous bone of primates whereby resorption lacunae, pits and concavities cut by osteoclastogenesis are regulators of bone formation by induction. The concavities assembled in HA/beta-TCP biomimetic bioceramics are endowed with multifunctional pleiotropic self-assembly capacities initiating and promoting angiogenesis and bone formation by induction. Resident mesenchymal cells differentiate into osteoblastic cell lines expressing, secreting and embedding osteogenic soluble molecular signals of the TGF-beta superfamily within the concavities of the biomimetic matrices initiating bone formation as a secondary response.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Unit, Medical Research Council/ University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|