1
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
2
|
Chen Q, Zhang H, Yang Y, Zhang S, Wang J, Zhang D, Yu H. Metformin Attenuates UVA-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2022; 23:ijms23136960. [PMID: 35805987 PMCID: PMC9266365 DOI: 10.3390/ijms23136960] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.
Collapse
Affiliation(s)
- Qiuyan Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Yimeng Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Shuming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China;
| | - Dawei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
- Correspondence: ; Tel.: +86-0-431-8561-9485
| |
Collapse
|
3
|
Hare JM, Beerman I. Potential of Stem Cell-Based Therapy to Restore Function in Aging Systems: Are We There Yet? J Gerontol A Biol Sci Med Sci 2022; 77:1292-1294. [PMID: 34984451 PMCID: PMC9255684 DOI: 10.1093/gerona/glac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/07/2023] Open
Abstract
While there is extensive interest in geroscience approaches to health and disease, few basic science discoveries have made their way into clinical trials. Herein, we comment on cell-based therapies, in which supplementing robust stem cell capacity to aged systems theoretically could lead to sustained improvement. This exciting approach has undergone translational development, and we highlight studies targeting a single system and others aimed at treating overall aging frailty by restoring the aged stem cell niches that underly diminished endogenous regenerative capacity.
Collapse
Affiliation(s)
- Joshua M Hare
- The Interdisciplinary Stem Cell Institute, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Isabel Beerman
- Address correspondence to: Isabel Beerman, PhD, Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, BRC, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD 21224, USA. E-mail:
| |
Collapse
|
4
|
Li X, Ponandai‐Srinivasan S, Nandakumar KS, Fabre S, Xu Landén N, Mavon A, Khmaladze I. Targeting microRNA for improved skin health. Health Sci Rep 2021; 4:e374. [PMID: 34667882 PMCID: PMC8506131 DOI: 10.1002/hsr2.374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In human skin, miRNAs have important regulatory roles and are involved in the development, morphogenesis, and maintenance by influencing cell proliferation, differentiation, immune regulation, and wound healing. MiRNAs have been investigated for many years in various skin disorders such as atopic dermatitis, psoriasis, as well as malignant tumors. Only during recent times, cosmeceutical use of molecules/natural active ingredients to regulate miRNA expression for significant advances in skin health/care product development was recognized. AIM To review miRNAs with the potential to maintain and boost skin health and avoid premature aging by improving barrier function, preventing photoaging, hyperpigmentation, and chronological aging/senescence. METHODS Most of the cited articles were found through literature search on PubMed. The main search criteria was a keyword "skin" in combination with the following words: miRNA, photoaging, UV, barrier, aging, exposome, acne, wound healing, pigmentation, pollution, and senescence. Most of the articles reviewed for relevancy were published during the past 10 years. RESULTS All results are summarized in Figure 1, and they are based on cited references. CONCLUSIONS Thus, regulating miRNAs expression is a promising approach for novel therapy not only for targeting skin diseases but also for cosmeceutical interventions aiming to boost skin health.
Collapse
Affiliation(s)
- Xi Li
- Oriflame Cosmetics AB; Skin Research InstituteStockholmSweden
| | - Sakthi Ponandai‐Srinivasan
- Division of Obstetrics and Gynecology, Department of Women's and Children's HealthKarolinska Institute, and Karolinska University HospitalStockholmSweden
| | - Kutty Selva Nandakumar
- Southern Medical University, School of Pharmaceutical SciencesGuangzhouChina
- Medical Inflammation Research, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Susanne Fabre
- Oriflame Cosmetics AB; Skin Research InstituteStockholmSweden
| | - Ning Xu Landén
- Department of Medicine, Solna, Dermatology and Venereology, Centre of Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Alain Mavon
- Oriflame Cosmetics AB; Skin Research InstituteStockholmSweden
| | - Ia Khmaladze
- Oriflame Cosmetics AB; Skin Research InstituteStockholmSweden
| |
Collapse
|
5
|
Antioxidant Activity of Spiranthes sinensis and Its Protective Effect against UVB-Induced Skin Fibroblast Damage. Processes (Basel) 2021. [DOI: 10.3390/pr9091564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spiranthes sinensis (S. sinensis), a species of orchid, is a well-known herb medicine used to treat disorders such as stomachache, diabetes, shingles, and certain inflammatory diseases. Presently, the antioxidant activity of S. sinensis as well as its protective effect on UVB-induced skin injury are unclear. In this study, S. sinensis was extracted with boiling water or 75% (v/v) ethanol, and then its antioxidant composition and antioxidant activity were determined. The protective effects of S. sinensis against UVB-induced damage in human skin fibroblasts (CCD-966SK) were also investigated. Our data showed that the extraction yield of boiling water was higher than that of 75% ethanol. However, compared to the aqueous extracts, the ethanol extracts not only had higher phenolic, flavonoid, and condensed tannin contents, but also exhibited higher free radical scavenging activity, higher reducing power, and higher ferrous ion-chelating capacity. When fibroblasts were pre-cultured with the water or ethanol extracts of S. sinensis (1500 μg/mL) for 24 h before applying UVB irradiation, the S. sinensis extracts restored 17% to 27% of cell viability compared to a control only irradiated with UVB. Overall, our study suggests that S. sinensis extracts can be used as effective antioxidants and have the potential to protect skin fibroblasts from UVB irradiation.
Collapse
|
6
|
Wilkinson MJ, Selman C, McLaughlin L, Horan L, Hamilton L, Gilbert C, Chadwick C, Flynn JN. Progressing the care, husbandry and management of ageing mice used in scientific studies. Lab Anim 2019; 54:225-238. [PMID: 31403890 PMCID: PMC7301645 DOI: 10.1177/0023677219865291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Driven by the longer lifespans of humans, particularly in Westernised societies, and the need to know more about ‘healthy ageing’, ageing mice are being used increasingly in scientific research. Many departments and institutes involved with ageing research have developed their own systems to determine intervention points for potential refinements and to identify humane end points. Several good systems are in use, but variations between them could contribute to poor reproducibility of the science achieved. Working with scientific and regulatory communities in the UK, we have reviewed the clinical signs observed in ageing mice and developed recommendations for enhanced monitoring, behaviour assessment, husbandry and veterinary interventions. We advocate that the default time point for enhanced monitoring should be 15 months of age, unless prior information is available. Importantly, the enhanced monitoring should cause no additional harms to the animals. Where a mouse strain is well characterised, the onset of age-related enhanced monitoring may be modified based on knowledge of the onset of an expected age-related clinical sign. In progeroid models where ageing is accelerated, enhanced monitoring may need to be brought forward. Information on the background strain must be considered, as it influences the onset of age-related clinical signs. The range of ageing models currently used means that there will be no ‘one-size fits all’ solution. Increased awareness of the issues will lead to more refined and consistent husbandry of ageing mice, and application of humane end points will help to reduce the numbers of animals maintained for longer than is scientifically justified.
Collapse
Affiliation(s)
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, UK
| | | | - Linda Horan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | | | | | | | - J Norman Flynn
- Animals in Science Regulation Unit (ASRU), Home Office, UK
| |
Collapse
|
7
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Xian D, Gao X, Xiong X, Xu J, Yang L, Pan L, Zhong J. Photoprotection against UV-induced damage by skin-derived precursors in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:73-82. [PMID: 28865317 DOI: 10.1016/j.jphotobiol.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/20/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin photodamage is associated with UV-induced overproduction of reactive oxygen species (ROS) and the inactivation of NF-E2-related factor 2 (Nrf2). Skin-derived precursor cells (SKPs), a population of dermal stem cells, are considered to be involved in wound repair and skin regeneration through the activation of Nrf2. However, no reports concentrate on the treatment of skin photodamage with SKPs. OBJECTIVE To investigate the photoprotective role of SKPs against UV-induced damage in mice. METHODS Fifty Balb/c hairless mice were divided into five groups (n=10), namely, normal (no intervention), model, prevention, treatment, and control groups. The latter four groups were dorsally exposed to UVA+UVB irradiation over a 2-week period. Mice in the prevention group received weekly SKP injections for 2weeks the day before irradiation. Mice in the treatment and Hanks groups received a two-time injection of SKPs and Hanks, respectively, after irradiation. One week after final intervention, skin appearance, pathological alterations, and oxidative indicators were evaluated by enzyme-linked immunosorbent assay, immunohistochemical analysis, and western blotting. RESULTS After irradiation, lesions were observed on the dorsal skin of mice, including erythema, edema, scales, and wrinkles; however, these were significantly ameliorated by subcutaneous SKP injection. Hyperkeratosis, acanthosis, and spongiosis in the epidermis, as well as dermal papillae edema and inflammatory cell infiltration, were observed in both model and control groups; however, these conditions resolved with either pretreatment or posttreatment with SKPs. In addition, SKPs increased Nrf2, heme oxygenase-1, glutathione peroxidase, superoxide dismutase, catalase, and gluthathione expression, while decreasing levels of ROS, MDA, and H2O2. CONCLUSIONS These findings suggest that SKPs have a photoprotective role against UV-induced damage in mice, which may be associated with their ability to scavenge photo-oxidative insults and activate Nrf2.
Collapse
Affiliation(s)
- Dehai Xian
- Department of Neurobiology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoqing Gao
- Department of Neurobiology, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jixiang Xu
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lingyu Yang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lun Pan
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianqiao Zhong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Fang JY, Wang PW, Huang CH, Chen MH, Wu YR, Pan TL. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 2016; 16:2718-2731. [PMID: 27459910 DOI: 10.1002/pmic.201600141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB-elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase-14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14-3-3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large-scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsun Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Wu
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells Int 2016; 2016:7370642. [PMID: 27148370 PMCID: PMC4842382 DOI: 10.1155/2016/7370642] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells.
Collapse
|
11
|
Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3859721. [PMID: 27042261 PMCID: PMC4799823 DOI: 10.1155/2016/3859721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 12/21/2022]
Abstract
E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.
Collapse
|
12
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|
13
|
Gragnani A, Cornick SM, Chominski V, Ribeiro de Noronha SM, Alves Corrêa de Noronha SA, Ferreira LM. Review of Major Theories of Skin Aging. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aar.2014.34036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Hajem N, Chapelle A, Bignon J, Pinault A, Liu JM, Salah-Mohellibi N, Lati E, Wdzieczak-Bakala J. The regulatory role of the tetrapeptide AcSDKP in skin and hair physiology and the prevention of ageing effects in these tissues--a potential cosmetic role. Int J Cosmet Sci 2013; 35:286-98. [PMID: 23488645 DOI: 10.1111/ics.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 01/25/2023]
Abstract
The naturally occurring tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) recognized as a potent angiogenic factor was shown recently to contribute to the repair of cutaneous injuries. In the current article, we report the ability of AcSDKP to exert a beneficial effect on normal healthy skin and scalp and to compensate for the ageing process. In vitro AcSDKP at 10⁻¹¹-10⁻⁷ M significantly stimulates the growth of human keratinocytes, fibroblasts and follicle dermal papilla cells. Moreover, it enhances the growth of human epidermal keratinocyte progenitor and stem cells as shown in a clonogenic survival assay. Topical treatment of ex vivo cultured skin explants with 10⁻⁵ M AcSDKP increases the thickness of the epidermis and upregulates the synthesis of keratins 14 and 19, fibronectin, collagen III and IV as well as the glycoaminoglycans (GAGs). In the ex vivo-cultured hair follicles, AcSDKP promotes hair shaft elongation and induces morphological and molecular modifications matching the criteria of hair growth. Furthermore, AcSDKP at 10⁻¹¹-10⁻⁷ M was shown to improve epidermal barrier, stimulating expression of three protein components of tight junctions (claudin-1, occludin, ZO-1) playing an important role in connecting neighbouring cells. This tetrapeptide exercises also activation of SIRT1 implicated in the control of cell longevity. Indeed, a two-fold increase in the synthesis of SIRT1 by cultured keratinocytes was observed in the presence of 10⁻¹¹-10⁻⁷ M AcSDKP. In conclusion, these findings provide convincing evidence of the regulatory role of AcSDKP in skin and hair physiology and suggest a cosmetic use of this natural tetrapeptide to prevent skin ageing and hair loss and to promote the cutaneous regeneration and hair growth.
Collapse
Affiliation(s)
- N Hajem
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
16
|
Dereure O. [Stem cells in dermatology: concept and medical interest]. Ann Dermatol Venereol 2012; 139:568-78. [PMID: 22963970 DOI: 10.1016/j.annder.2012.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- O Dereure
- Service de dermatologie, Inserm U1058, université Montpellier-I, hôpital St-Éloi, 80, avenue A.-Fliche, 34295 Montpellier cedex 5, France.
| |
Collapse
|
17
|
Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol 2012; 3:32-42. [PMID: 22442756 PMCID: PMC3309891 DOI: 10.5306/wjco.v3.i3.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
Cutaneous malignant melanoma is the most aggressive form of skin cancer with an extremely poor survival rate for the patients diagnosed with locally invasive and metastatic disease states. Intensive research has led in last few years to an improvement of the early detection and curative treatment of primary cutaneous melanomas that are confined to the skin by tumor surgical resection. However, locally advanced and disseminated melanomas are generally resistant to conventional treatments, including ionizing radiation, systemic chemotherapy, immunotherapy and/or adjuvant stem cell-based therapies, and result in the death of patients. The rapid progression of primary melanomas to locally invasive and/or metastatic disease states remains a major obstacle for an early effective diagnosis and a curative therapeutic intervention for melanoma patients. Importantly, recent advances in the melanoma research have led to the identification of different gene products that are often implicated in the malignant transformation of melanocytic cells into melanoma cells, including melanoma stem/progenitor cells, during melanoma initiation and progression to locally advanced and metastatic disease states. The frequent deregulated genes products encompass the oncogenic B-RafV600E and N-RasQ61R mutants, different receptor tyrosine kinases and developmental pathways such as epidermal growth factor receptor (EGFR), stem cell-like factor (SCF) receptor KIT, hedgehog, Wnt/β-catenin, Notch, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF)/VEGFR receptor. These growth factors can cooperate to activate distinct tumorigenic downstream signaling elements and epithelial-mesenchymal transition (EMT)-associated molecules, including phosphatidylinositol 3’-kinase (PI3K)/Akt/ molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), macrophage inhibitory cytokine-1 (MIC-1), vimentin, snail and twist. Of therapeutic relevance, these deregulated signal transduction components constitute new potential biomarkers and therapeutic targets of great clinical interest for improving the efficacy of current diagnostic and prognostic methods and management of patients diagnosed with locally advanced, metastatic and/or relapsed melanomas.
Collapse
Affiliation(s)
- Murielle Mimeault
- Murielle Mimeault, Surinder K Batra, Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States
| | | |
Collapse
|
18
|
Araki J, Jona M, Eto H, Aoi N, Kato H, Suga H, Doi K, Yatomi Y, Yoshimura K. Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods 2011; 18:176-85. [PMID: 21951067 DOI: 10.1089/ten.tec.2011.0308] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-rich plasma (PRP) has been clinically used as an easily prepared growth factor cocktail that can promote wound healing, angiogenesis, and tissue remodeling. However, the therapeutic effects of PRP are still controversial, due partly to the lack of optimized and standardized preparation protocols. We used whole blood (WB) samples to optimize the preparation protocols for PRP, white blood cell-containing (W-PRP), platelet-concentrated plasma (PCP), and noncoagulating platelet-derived factor concentrate (PFC). PRP and W-PRP were most efficiently collected by 10 min centrifugation in a 15-mL conical tube at 230-270 g and 70 g, respectively. To prepare PCP, platelets were precipitated by centrifugation of PRP at >2300 g, 90% of supernatant plasma was removed, and the platelets were resuspended. For preparation of noncoagulating PFC, the supernatant was replaced with one-tenth volume of saline, followed by platelet activation with thrombin. Platelet (before activation) and platelet-derived growth factor (PDGF)-BB (after activation) concentrations in PCP were approximately 20 times greater than those in WB, whereas PFC contained a 20-times greater concentration of platelets before platelet activation and a 50-times greater concentration of PDGF-BB without formation of a fibrin gel after platelet activation than WB. Surprisingly, total PDGF-BB content in the PFC was twice that of activated WB, which suggested that a substantial portion of the PDGF-BB became trapped in the fibrin glue, and replacement of plasma with saline is crucial for maximization of platelet-derived factors. As an anticoagulant, ethylene di-amine tetra-acetic acid disodium inhibited platelet aggregation more efficiently than acid citrate dextrose solution, resulting in higher nonaggregated platelet yield and final PDGF-BB content. These results increase our understanding of how to optimize and standardize preparation of platelet-derived factors at maximum concentrations.
Collapse
Affiliation(s)
- Jun Araki
- Department of Plastic Surgery, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Simm A. [Vessel aging. The role of oxidative stress and protein glycation]. Z Gerontol Geriatr 2011; 44:146-52. [PMID: 21678131 DOI: 10.1007/s00391-011-0200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The slow procession of the primary mechanisms of aging leads, at first, to unnoticed changes in the vascular system. Endothelial dysfunction is one of the earliest markers in aging vessels, caused by oxidative stress via the reduction of the availability of NO, on the one hand, and the nitrosylation of proteins, on the other hand. At the same time, glycation of the proteins of the extracellular matrix leads to stiffening of the vessel wall. Together with the loss of elastic fibers, e.g., elastin, this leads to the age-related changes of the vessels. Knowledge of these primary mechanisms of aging may lead to the development of new drugs.
Collapse
Affiliation(s)
- A Simm
- Klinik für Herz- und Thoraxchirurgie, Interdisziplinäres Zentrum Altern in Halle, Universitätsklinikum Halle (Saale), Ernst-Grube Strasse 40, Halle, Germany.
| |
Collapse
|
20
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Gunin AG, Kornilova NK, Vasilieva OV, Petrov VV. Age-related changes in proliferation, the numbers of mast cells, eosinophils, and cd45-positive cells in human dermis. J Gerontol A Biol Sci Med Sci 2010; 66:385-92. [PMID: 21106704 DOI: 10.1093/gerona/glq205] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Skin aging is an extremely important medical and social problem in the modern world. Therefore, a goal of the present work was to estimate changes in the numbers of fibroblast-like cells, proliferating cells nuclear antigen-positive cells, CD45-positive cells, mast cells, and eosinophils in human dermis at different ages. Skin specimens from human fetuses that died antenatally from 20 to 40 weeks of pregnancy and humans who died from different causes from 1 day to 85 years of life were used for the study. Results showed a decrease in a total number and the number of proliferating cells nuclear antigen-positive fibroblast-like cells in dermis with progression of age. The numbers of CD45-positive cells and mast cells are gradually increased with aging. Eosinophils are almost absent in dermis independently on age. Mast cells are probably a main factor that potentially can be involved in tissue damage and aging changes in skin. Mast cells should be regarded as an important target for anti-aging therapy.
Collapse
Affiliation(s)
- Andrei G Gunin
- Department of Obstetrics and Gynecology, Medical School, Chuvash State University, PO Box 86, Cheboksary 428034, Russia.
| | | | | | | |
Collapse
|
22
|
Mimeault M, Batra SK. New promising drug targets in cancer- and metastasis-initiating cells. Drug Discov Today 2010; 15:354-64. [PMID: 20338259 DOI: 10.1016/j.drudis.2010.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 02/03/2010] [Accepted: 03/17/2010] [Indexed: 02/08/2023]
Abstract
The unique properties of cancer- and metastasis-initiating cells endowed with a high self-renewal and aberrant differentiation potential (including their elevated expression levels of anti-apoptotic factors, multidrug transporters, and DNA repair and detoxifying enzymes) might be associated with their resistance to current clinical cancer therapies and disease recurrence. The eradication of cancer- and metastasis-initiating cells by molecular targeting of distinct deregulated signaling elements that might contribute to their sustained growth, survival, and treatment resistance, therefore, is of immense therapeutic interest. These novel targeted approaches should improve the efficacy of current therapeutic treatments against highly aggressive, metastatic, recurrent, and lethal cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
23
|
Quent VMC, Loessner D, Friis T, Reichert JC, Hutmacher DW. Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 2010; 14:1003-13. [PMID: 20082656 PMCID: PMC3823131 DOI: 10.1111/j.1582-4934.2010.01013.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, water-soluble tetrazolium salt and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, which were originally developed to determine cell toxicity, are used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, these assays were applied in 945 publications over the past 14 years to examine the proliferative behaviour of diverse cell types. In these studies, however, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared the metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and the fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.
Collapse
Affiliation(s)
- Verena M C Quent
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|