1
|
Pérez-Ropero G, Dolcemascolo R, Pérez-Ràfols A, Andersson K, Danielson UH, Rodrigo G, Buijs J. Regulatory Effects of RNA-Protein Interactions Revealed by Reporter Assays of Bacteria Grown on Solid Media. BIOSENSORS 2025; 15:175. [PMID: 40136972 PMCID: PMC11940492 DOI: 10.3390/bios15030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Reporter systems are widely used to study biomolecular interactions and processes in vivo, representing one of the basic tools used to characterize synthetic regulatory circuits. Here, we developed a method that enables the monitoring of RNA-protein interactions through a reporter system in bacteria with high temporal resolution. For this, we used a Real-Time Protein Expression Assay (RT-PEA) technology for real-time monitoring of a fluorescent reporter protein, while having bacteria growing on solid media. Experimental results were analyzed by fitting a three-variable Gompertz growth model. To validate the method, the interactions between a set of RNA sequences and the RNA-binding protein (RBP) Musashi-1 (MSI1) were evaluated, as well as the allosteric modulation of the interaction by a small molecule (oleic acid). This new approach proved to be suitable to quantitatively characterize RNA-RBP interactions, thereby expanding the toolbox to study molecular interactions in living bacteria, including allosteric modulation, with special relevance for systems that are not suitable to be studied in liquid media.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), Centro Superior de Investigaciones Científicas (CSIC)—University of Valencia, 46980 Paterna, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRL, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Karl Andersson
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, 75123 Uppsala, Sweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), Centro Superior de Investigaciones Científicas (CSIC)—University of Valencia, 46980 Paterna, Spain
| | - Jos Buijs
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
2
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
3
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
4
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Haiduk TS, Sicking M, Brücksken KA, Espinoza-Sánchez NA, Eder KM, Kemper B, Eich HT, Götte M, Greve B, Troschel FM. Dysregulated Stem Cell Markers Musashi-1 and Musashi-2 are Associated with Therapy Resistance in Inflammatory Breast Cancer. Arch Med Res 2023; 54:102855. [PMID: 37481823 DOI: 10.1016/j.arcmed.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND AIM While preliminary evidence points to pro-tumorigenic roles for the Musashi (MSI) RNA-binding proteins Musashi-1 (MSI1) and Musashi-2 (MSI2) in some breast cancer subtypes, no data exist for inflammatory breast cancer (IBC). METHODS MSI gene expression was quantified in IBC SUM149PT cells. We then used small interfering RNA-based MSI1 and MSI2 double knockdown (DKD) to understand gene expression and functional changes upon MSI depletion. We characterized cancer stem cell characteristics, cell apoptosis and cell cycle progression via flow cytometry, mammospheres via spheroid assays, migration and proliferation via digital holographic microscopy, and cell viability using BrdU assays. Chemoresistance was determined for paclitaxel and cisplatin with MTT assays and radioresistance was assessed with clonogenic analyses. In parallel, we supported our in vitro data by analyzing publicly available patient IBC gene expression datasets. RESULTS MSI1 and MSI2 are upregulated in breast cancer generally and IBC specifically. MSI2 is more commonly expressed compared to MSI1. MSI DKD attenuated proliferation, cell cycle progression, migration, and cell viability while increasing apoptosis. Stem cell characteristics CD44(+)/CD24(-), TERT and Oct4 were associated with MSI expression in vivo and were decreased in vitro after MSI DKD as was ALDH expression and mammosphere formation. In vivo, chemoresistant tumors were characterized by MSI upregulation upon chemotherapy application. In vitro, MSI DKD was able to alleviate chemo- and radioresistance. CONCLUSIONS The Musashi RNA binding proteins are dysregulated in IBC and associated with tumor proliferation, cancer stem cell phenotype, chemo- and radioresistance. MSI downregulation alleviates therapy resistance and attenuates tumor proliferation in vitro.
Collapse
Affiliation(s)
- Tiffany S Haiduk
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Kathrin A Brücksken
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany; Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
7
|
The RNA-Binding Protein Musashi1 Regulates a Network of Cell Cycle Genes in Group 4 Medulloblastoma. Cells 2021; 11:cells11010056. [PMID: 35011618 PMCID: PMC8750343 DOI: 10.3390/cells11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.
Collapse
|
8
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Bley N, Hmedat A, Müller S, Rolnik R, Rausch A, Lederer M, Hüttelmaier S. Musashi-1-A Stemness RBP for Cancer Therapy? BIOLOGY 2021; 10:407. [PMID: 34062997 PMCID: PMC8148009 DOI: 10.3390/biology10050407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein Musashi-1 (MSI1) promotes stemness during development and cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we summarize previous findings on MSI1's implications in developmental processes of other organisms. We revisit MSI1's expression in a set of solid cancers, describe mechanistic details and implications in MSI1 associated cancer hallmark pathways and highlight current research in drug development identifying the first MSI1-directed inhibitors with anti-tumor activity.
Collapse
Affiliation(s)
- Nadine Bley
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Ali Hmedat
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Simon Müller
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Robin Rolnik
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Alexander Rausch
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Marcell Lederer
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Stefan Hüttelmaier
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| |
Collapse
|
10
|
Baroni M, Yi C, Choudhary S, Lei X, Kosti A, Grieshober D, Velasco M, Qiao M, Burns SS, Araujo PR, DeLambre T, Son MY, Plateroti M, Ferreira MAR, Hasty EP, Penalva LOF. Musashi1 Contribution to Glioblastoma Development via Regulation of a Network of DNA Replication, Cell Cycle and Division Genes. Cancers (Basel) 2021; 13:1494. [PMID: 33804958 PMCID: PMC8036803 DOI: 10.3390/cancers13071494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.
Collapse
Affiliation(s)
- Mirella Baroni
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Saket Choudhary
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA;
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Denise Grieshober
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mitzli Velasco
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Patricia R. Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Talia DeLambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mi Young Son
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Michelina Plateroti
- Team: Development, Cancer and Stem Cells, Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 67200 Strasbourg, France;
| | | | - E. Paul Hasty
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Liu X, Zhang Y, Zheng P, Cui N. Msi1 inhibits cervical cancer cell apoptosis by downregulating BAK through AKT signaling. J Cancer 2021; 12:2422-2429. [PMID: 33758618 PMCID: PMC7974892 DOI: 10.7150/jca.52950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Musashi-1 (Msi1) is an RNA binding protein that functions as a regulator in multiple carcinomas. Our previous study demonstrated that Msi1 could promote the proliferation of cervical cancer cells by targeting the cell cycle proteins P21, P27 and P53. However, the mechanisms by which Msi1 affects the survival of cervical cancer cells, such as apoptosis, are still unclear. In this study, we found that the expression of Msi1 inhibited cervical cancer cell apoptosis in vitro and in vivo. Furthermore, the expression of Msi1 downregulated the expression of PTEN, while AKT signaling was activated, which resulted in a reduction in the proapoptotic protein BAK. In addition, rescue the expression of BAK in Msi1 expressing cervical cancer cells induced the increase of apoptosis cells. These findings indicate that Msi1 regulates cervical cancer cell apoptosis by inhibiting PTEN and activating AKT signaling, which leads to the downregulation of BAK.
Collapse
Affiliation(s)
- Xian Liu
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - Yanru Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - PengSheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, PR China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061 Xi'an, Shaanxi, PR China
| |
Collapse
|
12
|
Zhan Y, Wang H, Ning Y, Zheng H, Liu S, Yang Y, Zhou M, Fan S. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res 2020; 10:2226-2241. [PMID: 32905441 PMCID: PMC7471355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023] Open
Abstract
The assembly of stress granules (SGs) is a conserved mechanism to regulate protein synthesis under cell stress, where the translation of global protein is silenced and selective protein synthesis for survival maintains. SG formation confers survival advantages and chemotherapeutic resistance to malignant cells. Targeting SG assembly may represent a potential treatment strategy to overcome the primary and acquired chemotherapeutic resistance and enhance curative effect. We conduct a comprehensive review of the published literatures focusing on the drugs that potentially induce SGs and the related mechanism, retrospect the relationship between SGs and drug resistance related proteins, illuminate the regulated pathways and potential targets for SG assembly, and discuss future directions of overcoming the resistance to chemotherapy.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Ming Zhou
- Cancer Research Institute Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
13
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
14
|
Wang T, Liu Q, Duan L. MBNL1 regulates resistance of HeLa cells to cisplatin via Nrf2. Biochem Biophys Res Commun 2019; 522:763-769. [PMID: 31791583 DOI: 10.1016/j.bbrc.2019.11.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
Chemotherapy is an important method in the treatment of cervical cancer, but some patients will face drug resistance, which often indicates a poor prognosis. Moreover, there is no complete solution at present. Therefore, it is urgent to study the drug resistance mechanism of cervical cancer. Based on sequencing data mining, we predicted that MBNL1 might be involved in the occurrence and poor prognosis of cervical cancer, and verifed that MBNL1 could regulate the resistance of HeLa cells to cisplatin via Nrf2. In addition, we demonstrated that MBNL1 up regulated the degradation of Nrf2 protein by increasing the mRNA stability of Cul3. These results can provide theoretical basis for clinical development of new diagnosis and treatment targets for cisplatin resistance.
Collapse
Affiliation(s)
- Ting Wang
- Obstetrics and Gynecology Department, Yuncheng County People's Hospital, Shandong Province, China
| | - Qiong Liu
- Clinical Laboratory, Hubei University Hospital, Hubei Province, China
| | - Lian Duan
- Surgery, Hubei University Hospital, Hubei Province, China.
| |
Collapse
|
15
|
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children with contrasting outcomes. Precise risk assessment contributes to prognosis prediction, which is critical for treatment strategy decisions. In this study, we developed a 3-protein predictor model, including the neural stem cell marker Msi1, neural differentiation marker ID1, and proliferation marker proliferating cell nuclear antigen (PCNA), to improve clinical risk assessment of patients with NB. Kaplan-Meier analysis in the microarray data (GSE16476) revealed that low expression of ID1 and high expression of Msi1 and PCNA were associated with poor prognosis in NB patients. Combined application of these 3 markers to constitute a signature further stratified NB patients into different risk subgroups can help obtain more accurate prediction performance. Survival prognostic power of age and Msi1_ID1_PCNA signature by receiver operating characteristics analysis showed that this signature predicted more effectively and sensitively compared with classic risk stratification system, compensating for the deficiency of the prediction function of the age. Furthermore, we validated the expressions of these 3 proteins in neuroblastic tumor spectrum tissues by immunohistochemistry revealed that Msi1 and PCNA exhibited increased expression in NB compared with intermedial ganglioneuroblastoma and benign ganglioneuroma, whereas ID1 levels were reduced in NB. In conclusion, we established a robust risk assessment predictor model based on simple immunohistochemistry for therapeutic decisions of NB patients.
Collapse
|
16
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Si W, Ye S, Ren Z, Liu X, Wu Z, Li Y, Zhou J, Zhang S, Li Y, Deng R, Chen D. miR‑335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int J Mol Med 2019; 43:1452-1466. [PMID: 30747210 PMCID: PMC6365079 DOI: 10.3892/ijmm.2019.4073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Under harmful environmental conditions, stress granules (SGs), macromolecular aggregates that are associated with cell survival and death, are produced in the eukaryotic cytoplasm. However, whether and how microRNAs (miRNAs/miRs) modulate SG formation induced by acute ischemic stroke has not been investigated. In the present study, a rat model of middle cerebral artery occlusion (MCAO) was utilized and miRNA array profiling and reverse transcription‑quantitative polymerase chain reaction were performed. The results revealed that miR‑335 was downregulated during acute ischemic stroke, which was concomitant with reduced SG formation, enhanced apoptosis levels and increased Rho associated protein kinase 2 (ROCK2) expression. In the MCAO rat and serum‑free cell models, miR‑335 treatment upregulated SG formation, alleviated the ischemia‑induced infarction, and decreased ROCK2 protein expression and apoptosis levels. By contrast, when compared with miR‑335 treatment, the inhibition of miR‑335 resulted in reduced SG formation and higher ROCK2 expression and apoptosis levels. Target prediction analysis and luciferase 3'‑untranslated region reporter assay identified ROCK2 as the direct target of miR‑335. Furthermore, ROCK2 silencing enhanced SG formation and attenuated the level of apoptosis in the serum‑free cell model. In addition, ROCK2 silencing markedly inhibited the effect of miR‑335 on SG formation and apoptosis levels. Unexpectedly, the phosphorylation of T‑cell intracellular antigen‑1 was significantly inhibited by miR‑335 in the MCAO rat model, which provides a reasonable explanation for the promotional effect of miR‑335 on SG formation by specifically targeting ROCK2. In conclusion, these results demonstrate that miR‑335 promotes SG formation and inhibits apoptosis by reducing ROCK2 expression in acute ischemic stroke, which provides a possible therapeutic target for brain injury.
Collapse
Affiliation(s)
- Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yi Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yiwei Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
18
|
Xiao R, Yu Y, Shen S, Liu F, Kuang R. Musashi1 promotes tumor metastasis and is a prognostic marker for renal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:313-319. [PMID: 31933747 PMCID: PMC6944027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/14/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Musashi1 (MSI1) has been reported to be involved in cancer development and progression. The biologic role of MSI1 in renal cell carcinoma (RCC), however, remains unknown. METHODS Expression of MSI1 in normal kidney cells and kidney cancer cells were measured by real-time PCR. In addition, MSI1 expression in 20 paired kidney cancer and non-cancerous tissues were quantified using real-time PCR. Furthermore, the expression of MSI1 in 115 kidney cancer samples was detected to analyze the correlations between MSI1 expression and the clinicopathological features of RCC patients. The biological function of MSI1 on tumor cell invasion and migration were explored through wound healing and transwell migration assays. RESULTS MSI1 was significantly upregulated in renal cancer cells and tissues compared with normal kidney cells and tissues. High levels of MSI1 were positively associated with tumor stage (P=0.002) and distant metastasis (P=0.013) of RCC patients. Patients with higher MSI1 expression had a significantly poorer overall and recurrence-free survival time (P=0.019 and P=0.012, respectively) than patients with low MSI1 expression. Multivariate analysis showed that MSI1 overexpression was an independent prognostic indicator (P=0.009 and P=0.015, respectively) for the survival of RCC patients. Ablation of MSI1 inhibited the invasion and metastasis of renal cancer cells. CONCLUSION Our results suggest that MSI1 expression is upregulated in RCC, and that MSI1 plays an important role in promoting cell invasion and metastasis of RCC.
Collapse
Affiliation(s)
- Ruihai Xiao
- Department of Urology, The Second Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, People's Republic of China
| | - Yi Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, People's Republic of China
| | - Shaochen Shen
- Department of Urology, The Second Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, People's Republic of China
| | - Fei Liu
- Department of Urology, The Second Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, People's Republic of China
| | - Renrui Kuang
- Department of Urology, The Second Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
19
|
Abbaszadegan MR, Riahi A, Forghanifard MM, Moghbeli M. WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cell Mol Biol Lett 2018; 23:42. [PMID: 30202417 PMCID: PMC6122622 DOI: 10.1186/s11658-018-0109-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer, with a poor prognosis. Deregulation of WNT and NOTCH signaling pathways is important in ESCC progression, which can be due to either malfunction of their components or crosstalk with other pathways. Therefore, identification of new crosstalk between such pathways may be effective to introduce new strategies for targeted therapy of cancer. A correlation study was performed to assess the probable interaction between growth factor receptors and WNT/NOTCH pathways via the epidermal growth factor receptor (EGFR) and Musashi1 (MSI1), respectively. Methods Levels of MSI1/EGFR mRNA expression in tumor tissues from 48 ESCC patients were compared to their corresponding normal tissues using real-time polymerase chain reaction. Results There was a significant correlation between EGFR and MSI1 expression (p = 0.05). Moreover, there was a significant correlation between EGFR/MSI1 expression and grade of tumor differentiation (p = 0.02). Conclusion This study confirms a direct correlation between MSI1 and EGFR and may support the important role of MSI1 in activation of EGFR through NOTCH/WNT pathways in ESCC.
Collapse
Affiliation(s)
- Mohammad Reza Abbaszadegan
- 1Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anali Riahi
- 2Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- 4Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Chen HY, Lin LT, Wang ML, Tsai KL, Huang PI, Yang YP, Lee YY, Chen YW, Lo WL, Lan YT, Chiou SH, Lin CM, Ma HI, Chen MT. Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1850-1861. [PMID: 29486283 DOI: 10.1016/j.bbadis.2018.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Musashi-1 (MSI1), one of the RNA-binding proteins, is abundantly found not only in neural stem cells but also in several cancer tissues and has been reported to act as a positive regulator of cancer progression. Growing evidence indicates that PKR and eIF2α play pivotal roles in the stimulation of stress granule formation as well as in the subsequent translation modulation in response to stressful conditions; however, little is known about whether MSI1 is involved in this PKR/eIF2α cancer stem cell-enhancing machinery. In this study, we demonstrated that MSI1 promotes human glioblastoma multiforme (GBM) stem cells and enhances chemoresistance when exposed to sublethal stress. The overexpression of MSI1 leads to a protective effect in mitigating drug-induced cell death, thus facilitating the formation of chemoresistant stress granules (SGs) in response to arsenic trioxide (ATO) treatment. SG components, such as PKR and eIF2α, were dominantly activated and assembled, while ATO was engaged. The activated PKR and eIF2α contribute to the downstream enhancement of stem cell genes, thereby promoting the progression of GBM. The silencing of MSI1 or PKR both obviously withdrew the phenomena. Taken together, our findings indicate that MSI1 plays a leading role in stress granule formation that grants cancer stem cell properties and chemoresistant stress granules in GBM, in response to stressful conditions via the PKR/eIF2α signalling cascade.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Yen Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Min Lin
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Mukohyama J, Shimono Y, Minami H, Kakeji Y, Suzuki A. Roles of microRNAs and RNA-Binding Proteins in the Regulation of Colorectal Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9100143. [PMID: 29064439 PMCID: PMC5664082 DOI: 10.3390/cancers9100143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer stem cells (CSCs) are responsible for the initiation, progression and metastasis of human colorectal cancers, and have been characterized by the expression of cell surface markers, such as CD44, CD133, CD166 and LGR5. MicroRNAs (miRNAs) are differentially expressed between CSCs and non-tumorigenic cancer cells, and play important roles in the maintenance and regulation of stem cell properties of CSCs. RNA binding proteins (RBPs) are emerging epigenetic regulators of various RNA processing events, such as splicing, localization, stabilization and translation, and can regulate various types of stem cells. In this review, we summarize current evidences on the roles of miRNA and RBPs in the regulation of colorectal CSCs. Understanding the epigenetic regulation of human colorectal CSCs will help to develop biomarkers for colorectal cancers and to identify targets for CSC-targeting therapies.
Collapse
Affiliation(s)
- Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Department of Pathology and Cell Biology, Department of Medicine (Division of Digestive and Liver Diseases) and Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA.
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 6500017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 6500017, Japan.
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
22
|
Niu J, Zhao X, Liu Q, Yang J. Knockdown of MSI1 inhibited the cell proliferation of human osteosarcoma cells by targeting p21 and p27. Oncol Lett 2017; 14:5271-5278. [PMID: 29113163 PMCID: PMC5661380 DOI: 10.3892/ol.2017.6870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common type of primary bone cancer in children and adolescents, but its mechanism remains unclear. Musashi RNA-binding protein 1 (MSI1) is highly expressed in certain cancer types and functions as a putative progenitor/stem cell marker. In the present study, it was demonstrated that MSI1 expression in osteosarcoma tissue was higher compared with in the paraneoplastic tissue samples. Knockdown of MSI1 using shRNA in MG-63 and HOS cells inhibited cell proliferation in vitro and tumor formation in vivo, suggesting that MSI1 serves an essential role in osteosarcomagenesis. Further investigations demonstrated that the knockdown of MSI1 leads to the cell cycle arrest at G0/G1 phase, and the upregulation of p21 and p27 protein expression in osteosarcoma cells. Additionally, luciferase assays demonstrated that MSI1 can bind to the 3′ untranslated regions of p21 and p27 mRNA. In conclusion, the results of the present study suggest that the knockdown of MSI11 can suppress cell proliferation of osteosarcoma by targeting p21 and p27 and subsequently inhibiting cell cycle progression.
Collapse
Affiliation(s)
- Jianbing Niu
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xiulian Zhao
- Department of Kidney and Chinese Medicine, Shandong Jinxiang County People's Hospital, Jinxiang, Shandong 272200, P.R. China
| | - Qingsheng Liu
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jinsan Yang
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
23
|
Roudi R, Ebrahimi M, Shariftabrizi A, Madjd Z. Cancer stem cell research in Iran: potentials and challenges. Future Oncol 2017; 13:1809-1826. [PMID: 28776391 DOI: 10.2217/fon-2017-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treatment modalities can reduce cancer-related mortality; however, a majority of patients develop drug resistance, metastasis and relapse. It has been proposed that tumorigenic characteristics of tumors are related to a proportion of cancer cells, termed cancer stem cells (CSCs). Following the first evidence regarding the existence of CSC population in acute myeloid leukemia in 1997, publications in CSCs field showed an explosive trend in all cancer types around the world. First research paper in the field of CSCs in Iran was published in 2004 on prostate cancer. Subsequently, an annual number of publications in the field of CSCs displayed a rapidly growing trend. Therefore, in the current review, we have presented a comprehensive evaluation of the CSCs research in Iran.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine & Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Choi YM, Kim KB, Lee JH, Chun YK, An IS, An S, Bae S. DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene 2016; 36:2802-2812. [PMID: 27941885 PMCID: PMC5442418 DOI: 10.1038/onc.2016.441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/10/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022]
Abstract
The gene encoding ‘deleted in breast cancer 2' (DBC2), also referred to as RHOBTB2 (Rho-related BTB domain-containing protein 2), is classified as a tumor suppressor gene. DBC2 is a substrate-specific adaptor protein for a novel class of Cullin-3 (CUL3)-based E3 ubiquitin ligases; however, it is unclear if the substrate adaptor function of DBC2 is required for its tumor suppressor activity. Furthermore, the key substrates of DBC2-mediated ubiquitination have yet to be identified. In the present study, we established a genome-wide human cDNA library-based in vitro ubiquitination target screening assay and identified Musashi-2 (MSI2) as a novel ubiquitination target protein of DBC2. MSI2 directly interacted with DBC2, and this interaction promoted MSI2 polyubiquitination and proteasomal degradation in breast cancer cells. Overexpression and knockdown experiments demonstrated that DBC2 suppressed MSI2-associated oncogenic functions and induced apoptosis. Immunohistochemistry analysis of a breast cancer tissue microarray revealed that DBC2 and MSI2 protein levels are inversely correlated in both normal breast tissues and breast cancer tissues. Taken together, these findings provide evidence that DBC2 suppresses tumorigenesis in breast cancer by ubiquitinating MSI2.
Collapse
Affiliation(s)
- Y M Choi
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea.,Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - K B Kim
- Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - J H Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine, Seoul, South Korea
| | - Y K Chun
- Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine, Seoul, South Korea
| | - I S An
- Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - S An
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea
| | - S Bae
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
25
|
Guan A, Wang H, Li X, Xie H, Wang R, Zhu Y, Li R. MiR-330-3p inhibits gastric cancer progression through targeting MSI1. Am J Transl Res 2016; 8:4802-4811. [PMID: 27904681 PMCID: PMC5126323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Increasing evidences demonstrated that microRNAs (miRNAs) play critical roles in the human tumor development and progression. In our study, we found that miR-330-3p expression was downregulated in gastric cancer cell lines and tissues. Ectopic expression of miR-330-3p suppressed the gastric cancer cell proliferation, colony formation and migration. Overexpression of miR-330-3p promoted E-cadherin expression and inhibited the expression of N-cadherin, vimentin and snail. We identified Musashi-1 (MSI1) as a direct target gene of miR-330-3p in gastric cancer cell. In addition, MSI1 was upregulated in gastric cancer cell lines and tissues and the MSI1 expression was inversely correlated with miR-330-3p expression in gastric cancer tissues. MiR-330-3p expression was increased in gastric cancer cells after treated with histone deacetylase inhibitor trichostatin A (TSA) and DNA methylation inhibitor 5-aza-CdR (AZA). These indicated that downregulated expression of miR-330-3p was partly mediated by gene promoter region hypermethylation. These results suggested that miR-330-3p acted as a tumor suppressor gene in GC.
Collapse
Affiliation(s)
- Aoran Guan
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Xun Li
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Hui Xie
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Ruotian Wang
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Yankun Zhu
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Ruhong Li
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| |
Collapse
|
26
|
Chen X, Gu P, Xie R, Han J, Liu H, Wang B, Xie W, Xie W, Zhong G, Chen C, Xie S, Jiang N, Lin T, Huang J. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med 2016; 21:1266-1279. [PMID: 27862976 PMCID: PMC5487918 DOI: 10.1111/jcmm.12999] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/27/2016] [Indexed: 12/01/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an essential RNA- and DNA-binding protein that regulates diverse biological events, especially DNA transcription. hnRNPK overexpression is related to tumorigenesis in several cancers. However, both the expression patterns and biological mechanisms of hnRNPK in bladder cancer are unclear. We investigated hnRNPK expression by immunohistochemistry in 188 patients with bladder cancer, and found that hnRNPK expression levels were significantly increased in bladder cancer tissues and that high-hnRNPK expression was closely correlated with poor prognosis. Loss- and gain-of-function assays demonstrated that hnRNPK promoted proliferation, anti-apoptosis, and chemoresistance in bladder cancer cells in vitro, and hnRNPK knockdown suppressed tumorigenicity in vivo. Mechanistically, hnRNPK regulated various functions in bladder cancer by directly mediating cyclin D1, G0/G1 switch 2 (G0S2), XIAP-associated factor 1, and ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) transcription. In conclusion, we discovered that hnRNPK plays an important role in bladder cancer, suggesting that it is a potential prognostic marker and a promising target for treating bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Guo K, Cui J, Quan M, Xie D, Jia Z, Wei D, Wang L, Gao Y, Ma Q, Xie K. The Novel KLF4/MSI2 Signaling Pathway Regulates Growth and Metastasis of Pancreatic Cancer. Clin Cancer Res 2016; 23:687-696. [PMID: 27449499 DOI: 10.1158/1078-0432.ccr-16-1064] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Musashi 2 (MSI2) is reported to be a potential oncoprotein in cases of leukemia and several solid tumors. However, its expression, function, and regulation in pancreatic ductal adenocarcinoma (PDAC) cases have yet to be demonstrated. Therefore, in the current study, we investigated the clinical significance and biologic effects of MSI2 expression in PDAC cases and sought to delineate the clinical significance of the newly identified Krüppel-like factor 4 (KLF4)/MSI2 regulatory pathway. EXPERIMENTAL DESIGN MSI2 expression and its association with multiple clinicopathologic characteristics in human PDAC specimens were analyzed immunohistochemically. The biological functions of MSI2 regarding PDAC cell growth, migration, invasion, and metastasis were studied using gain- and loss-of-function assays both in vitro and in vivo Regulation of MSI2 expression by KLF4 was examined in several cancer cell lines, and the underlying mechanisms were studied using molecular biologic methods. RESULTS MSI2 expression was markedly increased in both PDAC cell lines and human PDAC specimens, and high MSI2 expression was associated with poor prognosis for PDAC. Forced MSI2 expression promoted PDAC proliferation, migration, and invasion in vitro and growth and metastasis in vivo, whereas knockdown of MSI2 expression did the opposite. Transcriptional inhibition of MSI2 expression by KLF4 occurred in multiple PDAC cell lines as well as mouse models of PDAC. CONCLUSIONS Lost expression of KLF4, a transcriptional repressor of MSI2 results in overexpression of MSI2 in PDACs, which may be a biomarker for accurate prognosis. A dysregulated KLF4/MSI2 signaling pathway promotes PDAC progression and metastasis. Clin Cancer Res; 23(3); 687-96. ©2016 AACR.
Collapse
Affiliation(s)
- Kun Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiujie Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Quan
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oncology, Shanghai East Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Dacheng Xie
- Department of Oncology, Shanghai East Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Shanghai Tongji University, Shanghai, P.R. China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Jadhav S, Ajay AK, Trivedi P, Seematti J, Pellegrini K, Craciun F, Vaidya VS. RNA-binding Protein Musashi Homologue 1 Regulates Kidney Fibrosis by Translational Inhibition of p21 and Numb mRNA. J Biol Chem 2016; 291:14085-14094. [PMID: 27129280 DOI: 10.1074/jbc.m115.713289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 11/06/2022] Open
Abstract
RNA-binding proteins (RBPs) are recognized as key posttranscriptional regulators that not only modulate the spatiotemporal expression of genes during organism development but also regulate disease pathogenesis. Very limited information exists on the potential role of RBPs in modulating kidney fibrosis, which is a major hallmark of chronic kidney disease. Here, we report a novel mechanism in kidney fibrosis involving a RBP, Musashi homologue 1 (Msi1), which is expressed in tubular epithelial cells. Using two mechanistically distinct mouse models of kidney fibrosis, we show that Msi1 protein levels are significantly down-regulated in the kidneys following fibrosis. We found that Msi1 functions by negatively regulating the translation of its target mRNAs, p21 and Numb, whose protein levels are markedly increased in kidney fibrosis. Also, Msi1 overexpression and knockdown in kidney epithelial cells cause p21- and Numb-mediated cell cycle arrest. Furthermore, we observed that Numb looses its characteristic membrane localization in fibrotic kidneys and therefore is likely unable to inhibit Notch resulting in tubular cell death. Oleic acid is a known inhibitor of Msi1 and injecting oleic acid followed by unilateral ureteral obstruction surgery in mice resulted in enhanced fibrosis compared with the control group, indicating that inhibiting Msi1 activity renders the mice more susceptible to fibrosis. Given that deregulated fatty acid metabolism plays a key role in kidney fibrosis, these results demonstrate a novel connection between fatty acid and Msi1, an RNA-binding protein, in kidney fibrosis.
Collapse
Affiliation(s)
- Shreyas Jadhav
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Amrendra K Ajay
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Priyanka Trivedi
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jenifer Seematti
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Kathryn Pellegrini
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Florin Craciun
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Vishal S Vaidya
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115,; Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts 02115; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115.
| |
Collapse
|
29
|
Zong Z, Zhou T, Rao L, Jiang Z, Li Y, Hou Z, Yang B, Han F, Chen S. Musashi2 as a novel predictive biomarker for liver metastasis and poor prognosis in colorectal cancer. Cancer Med 2016; 5:623-30. [PMID: 26775684 PMCID: PMC4831280 DOI: 10.1002/cam4.624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant expression of musashi2 (MSI-2) has been detected in several malignancies. However, its role in the progression of colorectal cancer (CRC) remains unknown. Our study was designed to investigate the expression and prognostic significance of MSI-2 protein in patients with colorectal cancer. The expression of MSI-2 was detected in 164 patients' colorectal cancer and control specimens by the tissue microarray technique and immunohistochemical staining. The correlations between MSI-2 expression and clinicopathological variables including overall survival were analyzed. The prognostic value of liver metastasis is evaluated by logistic regression and receiver operating characteristic (ROC) analysis. MSI-2 was highly expressed in 32.9% (54/164) of the colorectal cancer. Overexpression of MSI-2 was associated with depth of invasion, lymph node metastasis, distant metastasis, liver metastasis, Tumor Node Metastasis (TNM) clinical stage, and Carcinoembryonicantigen (CEA) level (P = 0.040, 0.014, <0.001, <0.001, 0.003, and 0.002, respectively). In the Cox multivariate test, MSI-2 overexpression, lymph node metastasis, and distant metastasis were found to be the independent prognostic factors (P = 0.027, 0.010, and 0.001, respectively). Further logistic regression suggested that TNM stage and MSI-2 high expression were related to liver metastasis in colorectal cancer patients. Conclusively, our study indicates that MSI-2 overexpression is associated with an unfavorable prognosis and may be a potential biomarker for liver metastasis in colorectal cancer patients.
Collapse
Affiliation(s)
- Zhen Zong
- Department of Gastroenterological Surgery, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Taicheng Zhou
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterological Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Digestive Disease Center, Guangzhou, China
| | - Liangjun Rao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Jiang
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingru Li
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehui Hou
- Department of Gastroenterological Surgery, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Yang
- Department of Gastroenterological Surgery, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanghai Han
- Department of Gastroenterological Surgery, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Fox RG, Park FD, Koechlein CS, Kritzik M, Reya T. Musashi Signaling in Stem Cells and Cancer. Annu Rev Cell Dev Biol 2015; 31:249-67. [DOI: 10.1146/annurev-cellbio-100814-125446] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raymond G. Fox
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Frederick D. Park
- Department of Pharmacology,
- Moores Cancer Center, and
- Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla, California 92093;
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Claire S. Koechlein
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Marcie Kritzik
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Tannishtha Reya
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| |
Collapse
|
31
|
Nahas GR, Murthy RG, Patel SA, Ganta T, Greco SJ, Rameshwar P. The RNA-binding protein Musashi 1 stabilizes the oncotachykinin 1 mRNA in breast cancer cells to promote cell growth. FASEB J 2015; 30:149-59. [PMID: 26373800 DOI: 10.1096/fj.15-278770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Substance P and its truncated receptor exert oncogenic effects. The high production of substance P in breast cancer cells (BCCs) is caused by the enhancement of tachykinin (TAC)1 translation by cytosolic factor. In vitro translational studies and mRNA stabilization analyses indicate that BCCs contain the factor needed to increase TAC1 translation and to stabilize the mRNA. Prediction of protein folding, RNA-shift analysis, and proteomic analysis identified a 40 kDa molecule that interacts with the noncoding exon 7. Western blot analysis and RNA supershift identified Musashi 1 (Msi1) as the binding protein. Ectopic expression of TAC1 in nontumorigenic breast cells (BCs) indicates that TAC1 regulates its stability by increasing Msi1. Using a reporter gene system, we showed that Msi1 competes with microRNA (miR)130a and -206 for the 3' UTR of exon 7/TAC1. In the absence of Msi1 and miR130a and -206, reporter gene activity decreased, indicating that Msi1 expression limits TAC1 expression. Tumor growth was significantly decreased when nude BALB/c mice were injected with Msi1-knockdown BCCs. In summary, the RNA-binding protein Msi1 competes with miR130a and -206 for interaction with TAC1 mRNA, to stabilize and increase its translation. Consequently, these interactions increase tumor growth.
Collapse
Affiliation(s)
- George R Nahas
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Raghav G Murthy
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shyam A Patel
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Teja Ganta
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven J Greco
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
32
|
Altered expression of LINC-ROR in cancer cell lines and tissues. Tumour Biol 2015; 37:1763-9. [PMID: 26314857 DOI: 10.1007/s13277-015-3933-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022] Open
Abstract
According to GLOBOCAN 2012, the worldwide burden of cancer increased and is expected to worsen within the next decades. Therefore, universal combat against cancer will not succeed with treatment solely; effective prevention and early detection are urgently needed to tackle the cancer crisis. Emerging data demonstrate that long non-coding RNAs are involved in numerous biological and pathological processes like development and differentiation and in a variety of human diseases including cancer. Located at 18q21, LINC-ROR (regulator of reprogramming) is a modulator of ESCs maintenance and hypoxia-signaling pathways in hepatocellular cancer cells. The aim of this study was to examine the expression of LINC-ROR in various cell lines and representative samples of human cancers by quantitative real-time RT-PCR to provide a snapshot on how LINC-ROR expression may be deregulated in cancer. More than 30 cell lines and 112 patient specimens from various tissues were assessed for relative expression of LINC-ROR. Our results revealed that the expression of LINC-ROR was lower in all somatic cancer cell lines compared to stem cells or cells with stem cell-like capabilities, like the embryonic carcinoma cell line, NTERA-2. In tissues, expression patterns vary, but some cancerous tissues displayed increased LINC-ROR expression compared to corresponding normal tissues. Thus, we hypothesize that LINC-ROR may have a key function in a subpopulation of cells from the tumor bulk, i.e., the cancer stem cells associated with specific properties including resistance to adverse environmental conditions.
Collapse
|
33
|
Emadi-Baygi M, Nikpour P, Emadi-Andani E. SIX1 overexpression in diffuse-type and grade III gastric tumors: Features that are associated with poor prognosis. Adv Biomed Res 2015; 4:139. [PMID: 26322287 PMCID: PMC4544127 DOI: 10.4103/2277-9175.161540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer is the second most common cancer worldwide. In Iran, the incidence of gastric cancer is well above the world average, and is the first common cancer in Iranian men and the third one in women. Located at chromosome 14q23, SIX1 is a homolog of the Drosophila ‘sine oculis’ (so) gene and is highly conserved in numerous species. In addition to the role of SIX1 in the development, its expression is frequently dysregulated in multiple cancers. This study aimed to evaluate the clinicopathological features of the expression of SIX1 gene in gastric adenocarcinoma. Materials and Methods: Thirty pairs of gastric tissue samples from patients with gastric adenocarcinoma were evaluated for SIX1 gene expression using quantitative real-time polymerase chain reaction. A paired t-test or one-way ANOVA with post hoc multiple comparisons were used to analyze the differences between groups. Statistical significance was defined as P ≤ 0.05. Results: SIX1 expression was decreased in tumoral samples. However, its expression increased significantly in diffuse-type gastric cancer. Furthermore, there was a trend toward statistical significance in increasing SIX1 gene expression with higher grades. Of note, the difference was significant between grades I and III. Conclusions: The results suggest that SIX1 gene expression might be used in the future as a potential biomarker to predict the outcome of the disease as diffuse-type and grade III of gastric tumors are associated with poor prognosis.
Collapse
Affiliation(s)
- Modjtaba Emadi-Baygi
- Department of Genetics, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran ; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Emadi-Andani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Wang MH, Qin SY, Zhang SG, Li GX, Yu ZH, Wang K, Wang B, Teng MJ, Peng ZH. Musashi-2 promotes hepatitis Bvirus related hepatocellular carcinoma progression via the Wnt/β-catenin pathway. Am J Cancer Res 2015; 5:1089-1100. [PMID: 26045988 PMCID: PMC4449437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023] Open
Abstract
Our recent study observed that the expression of Musashi-2 (MSI2), a member of the Musashi family, was up-regulated in hepatitis B virus (HBV) related hepatocellular carcinoma parenchymal cells. Using quantitative PCR, tissue microarray (TMA) and immunohistochemical staining, we evaluated MSI2 mRNA and protein levels in tumor tissues from patients with different stages of hepatocellular carcinoma with paired adjacent noncancerous sample sets. The following techniques were used to further investigate MSI2 function and its potential molecular mechanism: RNAi, wound healing assay, Transwell assay, quantitative PCR and western blot analysis. Immunohistochemical detection of MSI2 on a TMA containing 106 paired specimens showed that increased cytoplasmic and nuclear MSI2 staining was significantly associated with tumor size, tumor differentiation, recurrence, TNM stage, vessel invasion and Ki-67 proliferative index. Patients with MSI2-positive tumors had a significantly higher disease recurrence rate and poorer survival than patients with MSI2-negative tumors after radical surgery. Based on univariate analysis, MSI2 expression showed an unfavorable influence on both disease-free survival and overall survival. Multivariate analysis revealed that higher MSI2 expression, together with tumor size, tumor differentiation, tumor thrombus, and Ki-67 expression were independent predictors of overall survival. With MSI2 knockdown, hepatoma cell migration and invasion were inhibited and the expression of β-catenin, T cell factor (TCF) and lymphoid enhancer factor (LEF) were dysregulated. Thus, we propose that MSI2 may predict unfavorable outcomes in hepatitis B virus related hepatocellular carcinoma and promote cancer progression via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Shi-Yong Qin
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Shu-Guang Zhang
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Guang-Xin Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Zhen-Hai Yu
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Kun Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Bin Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Mu-Jian Teng
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| | - Zhi-Hai Peng
- Department of General Surgery, Qianfoshan Hospital, Shandong University Jinan 250014, The People's Republic of China
| |
Collapse
|
35
|
Greife A, Tukova J, Steinhoff C, Scott SD, Schulz WA, Hatina J. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumour Biol 2015; 36:3293-300. [DOI: 10.1007/s13277-014-2959-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
|
36
|
Gao C, Han C, Yu Q, Guan Y, Li N, Zhou J, Tian Y, Zhang Y. Downregulation of Msi1 suppresses the growth of human colon cancer by targeting p21cip1. Int J Oncol 2014; 46:732-40. [PMID: 25394506 DOI: 10.3892/ijo.2014.2749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/17/2014] [Indexed: 11/06/2022] Open
Abstract
Musashi1 (Msi1), a member of the RNA-binding protein (RBP) family, is highly expressed in neural progenitor or stem cells for the maintenance of stemness as well as in various cancers. Emerging studies have demonstrated that it regulates cell processes by translational activation or suppresses specifically bound mRNA. In the present study, we initially reported remarkably increased expression of Msi1 in colon cancer tissues compared with adjacent non-tumor tissues. Knockdown of Msi1 significantly suppressed the proliferation, colony formation, tumorsphere formation and the progression of implanted colon cancers, and induced cell cycle attest at G0/G1 phase, along with the upregulated expression of p21(cip1). Reporter assays using a chimeric mRNA that combined luciferase and the 3'-UTR of p21(cip1) revealed that Msi1 decreased the reporter activity through the specific motif. Thus, the current results suggested that downregulation of Msi1 could inhibit the growth of colon cancers and Msi1 may be a promising therapeutic target molecule for human colon cancers.
Collapse
Affiliation(s)
- Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chun Han
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Qiyao Yu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Na Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingjing Zhou
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
37
|
Greife A, Jankowiak S, Steinbring J, Nikpour P, Niegisch G, Hoffmann MJ, Schulz WA. Canonical Notch signalling is inactive in urothelial carcinoma. BMC Cancer 2014; 14:628. [PMID: 25167871 PMCID: PMC4242495 DOI: 10.1186/1471-2407-14-628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Notch signalling regulates cell fate in most tissues, promoting precursor cell proliferation in some, but differentiation in others. Accordingly, downregulation or overactivity variously contributes to cancer development. So far, little is known about Notch pathway activity and function in the normal urothelium and in urothelial carcinoma (UC). We have therefore investigated expression of Notch pathway components in UC tissues and cell lines and studied the function of one receptor, NOTCH1, in detail. METHODS Expression of canonical Notch pathway components were studied in UC and normal bladder tissues by immunohistochemistry and quantitative RT-PCR and in UC cell lines and normal cultured urothelial cells by qRT-PCR, immunocytochemistry and Western blotting. Pathway activity was measured by reporter gene assays. Its influence on cell proliferation was investigated by γ-secretase inhibition. Effects of NOTCH1 restoration were followed by measuring cell cycle distribution, proliferation, clonogenicity and nuclear morphology. RESULTS NOTCH1 and its ligand, DLL1, were expressed at plasma membranes and in the cytoplasm of cells in the upper normal urothelium layer, but became downregulated in UC tissues, especially in high-stage tumours. In addition, the proteins were often delocalized intracellularly. According differences were observed in UC cell lines compared to normal urothelial cells. Canonical Notch pathway activity in reporter assays was repressed in UC cell lines compared to normal cells and a mammary carcinoma cell line, but was induced by transfected NOTCH1. Inhibitors of Notch signalling acting at the γ-secretase step did not affect UC cell proliferation at concentrations efficacious against a cell line with known Notch activity. Surprisingly, overexpression of NOTCH1 into UC cell lines did not significantly affect short-term cell proliferation, but induced nuclear abnormalities and diminished clonogenicity. CONCLUSION Our data indicate that canonical Notch signalling is suppressed in urothelial carcinoma mainly through downregulation of NOTCH1. These findings can be explained by proposing that canonical Notch signalling may promote differentiation in the urothelium, like in many squamous epithelia, and its suppression may therefore be advantageous for tumour progression. As an important corollary, inhibition of canonical Notch signalling is unlikely to be efficacious and might be counter-productive in the treatment of urothelial carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
38
|
Emadi-Andani E, Nikpour P, Emadi-Baygi M, Bidmeshkipour A. Association of HOTAIR expression in gastric carcinoma with invasion and distant metastasis. Adv Biomed Res 2014; 3:135. [PMID: 24949306 PMCID: PMC4063112 DOI: 10.4103/2277-9175.133278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/14/2013] [Indexed: 12/17/2022] Open
Abstract
Background: Gastric cancer is the second and fourth most common cancer in Iranian men and women, respectively, but it is the first leading cause of cancer deaths in Iran. Most Iranian patients with gastric cancer are diagnosed at an advanced stage of disease when the conventional treatments have no effect on improving the survival. So, early gastric cancer detection is of high priority in order to decrease its high mortality rate in Iran. HOTAIR is a long non-coding RNA which its overexpression has been documented in different types of human cancer and can be considered as a potential cancer biomarker. The aim of this study was to evaluate the clinicopathological relevance of the expression of HOTAIR gene in gastric carcinoma. Materials and Methods: A total of 60 tumoral and non-tumoral gastric specimens were evaluated for HOTAIR gene expression using quantitative real-time PCR. Results: The expression of HOTAIR was markedly increased in gastric cancer tissues compared with adjacent non-tumoral tissues. We further showed that there was a positive significant correlation between the HOTAIR gene expression, TNM staging, perineural invasion, and distant metastasis, but not with other clinicopathological features of gastric tumors. Conclusions: These results suggest that HOTAIR expression is modulated during gastric cancer progression and therefore may participate in molecular processes relevant to malignant transformation and metastasis in gastric carcinoma.
Collapse
Affiliation(s)
- Elaheh Emadi-Andani
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Pediatric Inherited Diseases Research Center, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
39
|
He L, Zhou X, Qu C, Hu L, Tang Y, Zhang Q, Liang M, Hong J. Musashi2 predicts poor prognosis and invasion in hepatocellular carcinoma by driving epithelial-mesenchymal transition. J Cell Mol Med 2013; 18:49-58. [PMID: 24305552 PMCID: PMC3916117 DOI: 10.1111/jcmm.12158] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
The high incidence of recurrence and the poor prognosis of hepatocellular carcinoma (HCC) necessitate the discovery of new predictive markers of HCC invasion and prognosis. In this study, we evaluated the expression pattern of two members of a novel oncogene family, Musashi1 (MSI1) and Musashi2 (MSI2) in 40 normal hepatic tissue specimens, 149 HCC specimens and their adjacent non-tumourous tissues. We observed that MSI1 and MSI2 were significantly up-regulated in HCC tissues. High expression levels of MSI1 and MSI2 were detectable in 37.6% (56/149) and 49.0% (73/149) of the HCC specimens, respectively, but were rarely detected in adjacent non-tumourous tissues and were never detected in normal hepatic tissue specimens. Nevertheless, only high expression of MSI2 correlated with poor prognosis. In addition, MSI2 up-regulation correlated with clinicopathological parameters representative of highly invasive HCC. Further study indicated that MSI2 might enhance invasion of HCC by inducing epithelial–mesenchymal transition (EMT). Knockdown of MSI2 significantly decreased the invasion of HCC cells and changed the expression pattern of EMT markers. Moreover, immunohistochemistry assays of 149 HCC tissue specimens further confirmed this correlation. Taken together, the results of our study demonstrated that MSI2 correlates with EMT and has the potential to be a new predictive biomarker of HCC prognosis and invasion to help guide diagnosis and treatment of post-operative HCC patients.
Collapse
Affiliation(s)
- Lu He
- Department of Hepatobiliary Oncology, Affiliated Tumour Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Clinicopathological sex- related relevance of musashi1 mRNA expression in esophageal squamous cell carcinoma patients. Pathol Oncol Res 2013; 20:427-33. [PMID: 24163304 DOI: 10.1007/s12253-013-9712-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The cancer stem cell theory is considered as the spotlight of cancer biology, in which a subpopulation of tumor cells show unlimited proliferative and self renewal capacities. Post-transcriptional regulation is involved in different cellular functions such as cell differentiation and proliferation which results in cellular diversity. Musashi1 (Msi1) is one of the most important RNA-binding proteins (RBPs) which are involved in translational inhibition. Although, Msi1 targets are largely unknown, p21WAF-1, a cell cycle regulator, and Numb, inhibitor of notch signaling pathway, are well-known factors which are suppressed by the Msi1 in normal and cancer stem cells. Msi1 expression in tumor tissues from 53 ESCC patients was compared to normal tissues using real-time polymerase chain reaction (PCR). Msi1 was significantely overexpressed in 41.5 % of tumor samples and we observed a significant correlation between Msi1 expression and sex, in which the males had shown a higher level of Msi1 expression in comparison with the females (2.00 Vs 0.78 fold changes, p = 0.05). In this study, we assessed whether Msi1 is expressed in ESCC samples suggesting this protein as a novel cancer stem cell marker which requires further studies.
Collapse
|
41
|
Kuang RG, Kuang Y, Luo QF, Zhou CJ, Ji R, Wang JW. Expression and significance of Musashi-1 in gastric cancer and precancerous lesions. World J Gastroenterol 2013; 19:6637-6644. [PMID: 24151393 PMCID: PMC3801380 DOI: 10.3748/wjg.v19.i39.6637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate expression of stem cell marker Musashi-1 (Msi-1) in relationship to tumorigenesis and progression of intestinal-type gastric cancer (GC).
METHODS: Endoscopic biopsy specimens and surgical specimens were obtained, including 54 cases of intestinal-type GC, 41 high-grade intraepithelial neoplasia, 57 low-grade intraepithelial neoplasia, 31 intestinal metaplasia, and 36 normal gastric mucosa. Specimens were fixed in 10% paraformaldehyde, conventionally dehydrated, embedded in paraffin, and sliced in 4-μm-thick serial sections. Two-step immunohistochemical staining was used to detect Msi-1 and proliferating cell nuclear antigen (PCNA) expression. Correlation analysis was conducted between Msi-1 and PCNA expression. The relationship between Msi-1 expression and clinicopathological parameters of GC was analyzed statistically.
RESULTS: There were significant differences in Msi-1 and PCNA expression in different pathological tissues (χ2 = 15.37, P < 0.01; χ2 = 115.36, P < 0.01). Msi-1 and PCNA-positive cells were restricted to the isthmus of normal gastric glands. Expression levels of Msi-1 and PCNA in intestinal metaplasia were significantly higher than in normal mucosa (U = 392.0, P < 0.05; U = 40.50, P < 0.01), whereas there was no significant difference compared to low or high-grade intraepithelial neoplasia. Msi-1 and PCNA expression in intestinal-type GC was higher than in high-grade intraepithelial neoplasia (U = 798.0, P < 0.05; U = 688.0, P < 0.01). There was a significantly positive correlation between Msi-1 and PCNA expression (rs = 0.20, P < 0.01). Msi-1 expression in GC tissues was correlated with their lymph node metastasis and tumor node metastasis stage (χ2 = 12.62, P < 0.01; χ2 = 11.24, P < 0.05), but not with depth of invasion and the presence of distant metastasis.
CONCLUSION: Msi-1-positive cells may play a key role in the early events of gastric carcinogenesis and may be involved in invasion and metastasis of GC.
Collapse
|
42
|
Sutherland JM, McLaughlin EA, Hime GR, Siddall NA. The Musashi family of RNA binding proteins: master regulators of multiple stem cell populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:233-45. [PMID: 23696360 DOI: 10.1007/978-94-007-6621-1_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at the initial discovery and characterisation of Musashi in the model organism Drosophila, and its subsequent emergence as a master regulator in a number of stem cell populations. Furthermore the unique roles for mammalian Musashi-1 and Musashi-2 in different stem cell types are correlated with the perceived diagnostic power of Musashi expression in specific stem cell derived oncologies. In particular the potential role for Musashi in the identification and treatment of human cancer is considered, with a focus on the role of Musashi-2 in leukaemia. Finally, the manipulation of Musashi expression is proposed as a potential avenue towards the targeted treatment of specific aggressive stem cell cancers.
Collapse
Affiliation(s)
- Jessie M Sutherland
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
43
|
Emadi-Baygi M, Nikpour P, Mohammad-Hashem F, Maracy MR, Haghjooy-Javanmard S. MSI2 expression is decreased in grade II of gastric carcinoma. Pathol Res Pract 2013; 209:689-91. [PMID: 24002004 DOI: 10.1016/j.prp.2013.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022]
Abstract
Gastric cancer is the second most frequent cause of cancer death worldwide. In Iran, gastric cancer is the first cause of national cancer-related mortality in men and the second one in women. In mammals, the Musashi family of RNA binding proteins comprises the Musashi1 and Musashi2 proteins, encoded by the MSI1 and MSI2 genes. Mammalian Musashi contributes to the self-renewal of various types of stem cells. Furthermore, there is mounting evidence that stem cells exist in many tissues. Due to this, Msi appears to be associated with tumorigenesis. In the present study, 30 paired gastric tissue samples were examined for MSI2 gene expression by quantitative real-time RT-PCR. Our results demonstrated that the relative expression of the gene did not significantly alter between tumoral and non-tumoral tissues and different tumor types; but there was a statistical difference between the MSI2 gene expression in different tumor grades, of note between grade I and grade II.
Collapse
Affiliation(s)
- Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran; Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | | | | | | | | |
Collapse
|
44
|
Freeman JA, Espinosa JM. The impact of post-transcriptional regulation in the p53 network. Brief Funct Genomics 2012; 12:46-57. [PMID: 23242178 PMCID: PMC3548162 DOI: 10.1093/bfgp/els058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The p53 transcription factor regulates the synthesis of mRNAs encoding proteins involved in diverse cellular stress responses such as cell-cycle arrest, apoptosis, autophagy and senescence. In this review, we discuss how these mRNAs are concurrently regulated at the post-transcriptional level by microRNAs (miRNAs) and RNA-binding proteins (RBPs), which consequently modify the p53 transcriptional program in a cell type- and stimulus-specific manner. We also discuss the action of specific miRNAs and RBPs that are direct transcriptional targets of p53 and how they act coordinately with protein-coding p53 target genes to orchestrate p53-dependent cellular responses.
Collapse
Affiliation(s)
- Justin A Freeman
- HHMI - University of Colorado at Boulder, 347 UCB, Boulder, CO 80309, USA
| | | |
Collapse
|
45
|
Nikpour P, Emadi-Baygi M, Mohhamad-Hashem F, Maracy MR, Haghjooy-Javanmard S. MSI1 overexpression in diffuse type of gastric cancer. Pathol Res Pract 2012; 209:10-3. [PMID: 23164718 DOI: 10.1016/j.prp.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
Abstract
Being the third most frequent cause of cancer mortality in the world, gastric cancer is the major cause of cancer-related mortality in Iran. Musashi1 recognizes a motif in the 3'UTR of target mRNAs - involved in cell cycle regulation, proliferation and apoptosis - and represses the translation of the mRNAs. As tissue stem cells exist in many adult tissues other than the CNS, Musashi is considered to be associated with many malignancies. In the current study, we aimed to assess Musashi1 gene expression in human stomach cancer. In total, 30 paired gastric tumoral and adjacent non-tumoral tissue specimens were examined for gene expression by qReal-Time RT-PCR. Our results demonstrated that the expression of the gene did not significantly change between tumor/non-tumor tissues (p value: 16×10(-2)) and different grades (p value: 36×10(-2)). However, there was a statistical difference between the MSI1 gene expression in different tumor types, i.e., intestinal versus diffuse type (p value: 3×10(-2)). All together, further investigations should be done to elucidate the precise molecular mechanisms by which MSI1 contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Parvaneh Nikpour
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | |
Collapse
|
46
|
Plateroti M, de Araujo PR, da Silva AE, Penalva LOF. The RNA-Binding Protein Musashi1: A Major Player in Intestinal Epithelium Renewal and Colon Cancer Development. CURRENT COLORECTAL CANCER REPORTS 2012; 8:290-297. [PMID: 23914149 DOI: 10.1007/s11888-012-0141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant gene expression is the cause and the consequence of tumorigenesis. A major component of gene expression is translation regulation; a process whose main players are RNA-binding-proteins (RBPs). More than 800 RBPs have been identified in the human genome and several of them have been shown to control gene networks associated with relevant cancer processes. A more systematic characterization of RBPs starts to reveal that similar to transcription factors, they can function as tumor suppressors or oncogenes. A relevant example is Musashi1 (Msi1), which is emerging as a critical regulator of tumorigenesis in multiple cancer types, including colon cancer. Msi1 is a stem marker in several tissues and is critical in maintaining the balance between self-renewal and differentiation. However, a boost in Msi1 expression can most likely lead cells towards an oncogenic pathway. In this article, we discuss the parallels between Msi1 function in normal renewal of intestinal epithelium and in colon cancer.
Collapse
Affiliation(s)
- Michelina Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, France. 16 Rue Raphael Dubois, 69622 Villeurbanne, Cedex France
| | | | | | | |
Collapse
|
47
|
Vo DT, Subramaniam D, Remke M, Burton TL, Uren PJ, Gelfond JA, de Sousa Abreu R, Burns SC, Qiao M, Suresh U, Korshunov A, Dubuc AM, Northcott PA, Smith AD, Pfister SM, Taylor MD, Janga SC, Anant S, Vogel C, Penalva LOF. The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1762-72. [PMID: 22985791 DOI: 10.1016/j.ajpath.2012.07.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/01/2012] [Accepted: 07/11/2012] [Indexed: 12/23/2022]
Abstract
Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.
Collapse
Affiliation(s)
- Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kishore S, Luber S, Zavolan M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct Genomics 2010; 9:391-404. [PMID: 21127008 DOI: 10.1093/bfgp/elq028] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells express a large variety of ribonucleic acid-(RNA)-binding proteins (RBPs) with diverse affinity and specificity towards target RNAs that play a crucial role in almost every aspect of RNA metabolism. In addition, specific domains in RBPs impart catalytic activity or mediate protein-protein interactions, making RBPs versatile regulators of gene expression. In this review, we elaborate on recent experimental and computational approaches that have increased our understanding of RNA-protein interactions and their role in cellular function. We review aspects of gene expression that are modulated post-transcriptionally by RBPs, namely the stability of polymerase II-derived mRNA transcripts and their rate of translation into proteins. We further highlight the extensive regulatory networks of RBPs that implement a combinatorial control of gene expression. Taking cues from the recent development in the field, we argue that understanding spatio-temporal RNA-protein association on a transcriptome level will provide invaluable and unexpected insights into the regulatory codes that define growth, differentiation and disease.
Collapse
|
49
|
Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, Morgan K, Tam W, Paktinat M, Okabe R, Gozo M, Einhorn W, Lane SW, Scholl C, Fröhling S, Fleming M, Ebert BL, Gilliland DG, Jaenisch R, Daley GQ. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 2010; 16:903-8. [PMID: 20616797 DOI: 10.1038/nm.2187] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/30/2010] [Indexed: 12/14/2022]
Abstract
RNA-binding proteins of the Musashi (Msi) family are expressed in stem cell compartments and in aggressive tumors, but they have not yet been widely explored in the blood. Here we demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia-associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease, thereby defining MSI2 expression as a new prognostic marker and as a new target for therapy in acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Michael G Kharas
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|