1
|
Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Zhang J, Patino LR, Strawn JR, Fleck DE, Klein CC, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial. J Affect Disord 2025; 371:324-332. [PMID: 39577502 DOI: 10.1016/j.jad.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Response to pharmacotherapy varies considerably among youths with bipolar disorder (BD) and is poorly predicted by clinical or demographic features. It can take several weeks to determine whether medication for BD is clinically effective. Although neuroimaging biomarkers are promising predictors, few studies examined the predictive value of the brain connectomic topology. METHODS BD-I youth (N = 121) with no prior psychopharmacotherapy were randomized to 6-weeks of double-blind quetiapine or lithium. Structural magnetic resonance imaging (MRI) was performed before medication and at one week after medication initiation. Brain structural connectome was established from the MRI scans, and topological metrics were calculated for each patient. Deep learning-based prediction model was built using baseline and one-week connectome topology to predict medication response at week 6. RESULTS Both baseline topological metrics and one-week topological changes could predict treatment response with significant accuracy (73.8 % - 86.8 %). A longitudinally joint model combining baseline and one-week topology provided the highest accuracy (91.3 %). The transferability between models for quetiapine and lithium was relatively poor. In addition, predictions for the two drugs were driven by similar baseline but distinct one-week salient topological patterns. LIMITATIONS Independent replication is needed to validate our preliminary findings. CONCLUSION Brain structural connectomic topology at baseline and its acute changes within the first week enable accurate BD medication response prediction. The most contributive brain regions differed between prediction models for quetiapine and lithium after one week. These findings provide preliminary evidence for the development of neuroimaging-based biomarkers for guiding therapeutic interventions in youth with BD.
Collapse
Affiliation(s)
- Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, Westminster Bridge Road, London, UK
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| |
Collapse
|
2
|
Lee MY, Zhu JD, Tsai HJ, Tsai SJ, Yang AC. Investigating sex-related differences in brain structure and function in bipolar I disorder using multimodal MRI. BMC Psychiatry 2024; 24:855. [PMID: 39604920 PMCID: PMC11603873 DOI: 10.1186/s12888-024-06228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Past research has highlighted that bipolar I disorder is associated with significant changes in brain structure and function. Notably, the manifestation and progression of bipolar I disorder have been known to differ between males and females. However, the relationship between sex-related differences and bipolar I disorder diagnosis affecting these changes was not fully understood. This study aimed to investigate the sex-by-diagnosis interactions concerning the structural and functional features of the brain in individuals with bipolar I disorder. METHODS Both structural and functional MRI data were obtained from 105 individuals with bipolar I disorder (36 males and 69 females) and 210 healthy controls (72 males and 138 females). Voxel-wise analyses of gray matter volume and functional connectivity were conducted using a general linear regression model. This model included age, sex, diagnosis, and a sex-by-diagnosis interaction as predictors to explore potential sex-related differences in the brain features of participants with bipolar I disorder. RESULTS The gray matter volume analysis revealed significant sex-by-diagnosis interactions in six brain regions: the left caudate (p < 0.001), left thalamus (p < 0.001), right caudate (p = 0.003), right thalamus (p < 0.001), left anterior cingulate gyrus (p = 0.022), and left middle/posterior cingulate gyrus (p = 0.015). Using these regions as seeds, we detected a significant sex-by-diagnosis interaction in the functional connectivity alteration between the left thalamus and right angular gyrus (p = 0.019). CONCLUSIONS Our findings revealed a noteworthy sex-by-diagnosis interaction, with male individuals with bipolar I disorder displaying larger gray matter volume and altered functional connectivity in the limbic system compared to female individuals with bipolar I disorder and healthy participants. These results hint at potential sex-related differences in the pathophysiology of the limbic system in bipolar I disorder, which may have significant implications for understanding the underlying mechanisms in bipolar I disorder. Our findings could contribute to developing more personalized treatment approaches for individuals with bipolar I disorder.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Department of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
- Occupational Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Jung Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Solleti A, Naeem A. What is the effect of lithium use on the amygdalar volume of adult patients diagnosed with bipolar disorder: a scoping review. Ann Gen Psychiatry 2024; 23:38. [PMID: 39449057 PMCID: PMC11515426 DOI: 10.1186/s12991-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Bipolar disorder is a psychiatric condition commonly treated with lithium. This treatment has various biological effects on the brain; however, variability in the areas and types of changes as a result of lithium treatment has resulted in discourse over lithium's effect. As a result, a comprehensive synthesis is needed to understand lithium's true neurological effect. This review aims to identify a common result of lithium use in the neurobiology of bipolar patients, specifically in the amygdala, to determine whether volumetric changes in the amygdala are a common effect. METHODS We conducted a preliminary search to identify key search terms across electronic databases, including Google Scholar and PubMed. After screening and application of inclusion and exclusion criteria, 9 cross-sectional studies were identified. RESULTS The evidence from these cross-sectional studies showed either an increase or no change in amygdalar volume. While this fails to identify a definite pattern in amygdalar volume changes, it highlights a need for further research to identify sources of heterogeneity and minimize them to ascertain accurate results. CONCLUSIONS The present review may be used to influence future work concerning neurobiological changes in the amygdala as a result of lithium treatment for bipolar patients by summarizing patterns in the current literature.
Collapse
Affiliation(s)
| | - Aleena Naeem
- , 1501 W. Southlake Blvd, Southlake, TX, 76092, USA.
| |
Collapse
|
4
|
Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Patino LR, Strawn JR, Fleck D, Klein CC, Lui S, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain morphometric features predict medication response in youth with bipolar disorder: a prospective randomized clinical trial. Psychol Med 2023; 53:4083-4093. [PMID: 35392995 PMCID: PMC10317810 DOI: 10.1017/s0033291722000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Identification of treatment-specific predictors of drug therapies for bipolar disorder (BD) is important because only about half of individuals respond to any specific medication. However, medication response in pediatric BD is variable and not well predicted by clinical characteristics. METHODS A total of 121 youth with early course BD (acute manic/mixed episode) were prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine (n = 71) or lithium (n = 50). Participants completed structural magnetic resonance imaging (MRI) at baseline before treatment and 1 week after treatment initiation, and brain morphometric features were extracted for each individual based on MRI scans. Positive antimanic treatment response at week 6 was defined as an over 50% reduction of Young Mania Rating Scale scores from baseline. Two-stage deep learning prediction model was established to distinguish responders and non-responders based on different feature sets. RESULTS Pre-treatment morphometry and morphometric changes occurring during the first week can both independently predict treatment outcome of quetiapine and lithium with balanced accuracy over 75% (all p < 0.05). Combining brain morphometry at baseline and week 1 allows prediction with the highest balanced accuracy (quetiapine: 83.2% and lithium: 83.5%). Predictions in the quetiapine and lithium group were found to be driven by different morphometric patterns. CONCLUSIONS These findings demonstrate that pre-treatment morphometric measures and acute brain morphometric changes can serve as medication response predictors in pediatric BD. Brain morphometric features may provide promising biomarkers for developing biologically-informed treatment outcome prediction and patient stratification tools for BD treatment development.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Walter H. L. Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, Westminster Bridge Road, London, UK
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - L. Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - David Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Christina C. Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Caleb M. Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| |
Collapse
|
5
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
6
|
Rybakowski JK, Ferensztajn-Rochowiak E. Mini-review: Anomalous association between lithium data and lithium use. Neurosci Lett 2022; 777:136590. [PMID: 35346779 DOI: 10.1016/j.neulet.2022.136590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023]
Abstract
This mini-review aims to show a discrepancy between favorable data of lithium's therapeutic activity and the decreased use of the drug worldwide. The data point to lithium as the best mood stabilizer in the maintenance treatment of bipolar disorder for the prevention of manic and depressive recurrences. The second most encouraging psychiatric use of lithium is the augmentation of antidepressants in treatment-resistant depression. In addition to its mood-stabilizing properties, lithium is the most efficacious antisuicidal drug among all mood stabilizers. The drug also exerts antiviral, immunomodulatory, and neuroprotective effects which may be of major clinical value. On the other hand, the data of lithium use show that its therapeutic application in many countries has declined. A reason for this can be the introduction and heavy promotion of other mood-stabilizers, while lithium is an "orphan" drug with the minimal interest of any drug company. Probably, very important is also a perception of lithium as a "toxic drug", pointing to its side effects, mainly thyroid, renal and cognitive ones. In recent years, several proposals to turn back this anomalous association appeared, challenging a negative perception of lithium and optimizing its long-term administration. They show the data on lithium superiority over other mood stabilizers and point to the proper management of the lithium-induced side effects. This endeavor aims to allow a larger number of mood disorder patients to become beneficiaries of lithium use.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, ul. Szpitalna 27/33, Poland.
| | - Ewa Ferensztajn-Rochowiak
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, ul. Szpitalna 27/33, Poland
| |
Collapse
|
7
|
Ochoa ELM. Lithium as a Neuroprotective Agent for Bipolar Disorder: An Overview. Cell Mol Neurobiol 2022; 42:85-97. [PMID: 34357564 PMCID: PMC11441275 DOI: 10.1007/s10571-021-01129-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Lithium (Li+) is a first option treatment for adult acute episodes of Bipolar Disorder (BD) and for the prophylaxis of new depressed or manic episodes. It is also the preferred choice as maintenance treatment. Numerous studies have shown morphological abnormalities in the brains of BD patients, suggesting that this highly heritable disorder may exhibit progressive and deleterious changes in brain structure. Since treatment with Li+ ameliorates these abnormalities, it has been postulated that Li+ is a neuroprotective agent in the same way atypical antipsychotics are neuroprotective in patients diagnosed with schizophrenia spectrum disorders. Li+'s neuroprotective properties are related to its modulation of nerve growth factors, inflammation, mitochondrial function, oxidative stress, and programmed cell death mechanisms such as autophagy and apoptosis. Notwithstanding, it is not known whether Li+-induced neuroprotection is related to the inhibition of its putative molecular targets in a BD episode: the enzymes inositol-monophosphatase, (IMPase), glycogen-synthase-kinase 3β (GSK3), and Protein kinase C (PKC). Furthermore, it is uncertain whether these neuroprotective mechanisms are correlated with Li+'s clinical efficacy in maintaining mood stability. It is expected that in a nearby future, precision medicine approaches will improve diagnosis and expand treatment options. This will certainly contribute to ameliorating the medical and economic burden created by this devastating mood disorder.
Collapse
Affiliation(s)
- Enrique L M Ochoa
- Department of Psychiatry and Behavioral Sciences, Volunteer Clinical Faculty, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Espanhol JCL, Vieira-Coelho MA. Effects of lithium use on the white matter of patients with bipolar disorder - a systematic review. Nord J Psychiatry 2022; 76:1-11. [PMID: 33969798 DOI: 10.1080/08039488.2021.1921264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Several studies revealed changes in the microstructure of white matter in bipolar disorder patients. Lithium has been reported as having neuroprotective effects. However, its effect on the white matter remains unclear. This systematic review aims to identify the existing clinical evidence of lithium's effect on the white matter from bipolar disorder patients. METHODS PRISMA guidelines were followed for a systematic literature review to assess the effect of lithium on the white matter of patients with bipolar disorder. From a total of 204 studies screened, 16 were included in the final systematic review. The quality assessment of the included records was assessed by the Newcastle-Ottawa scale. RESULTS Most studies included (13 out of 16) evaluated diffusion tensor imaging measures to assess white matter integrity. Of these, eleven reported a positive effect of lithium on the integrity of white matter of bipolar disorder patients. Two reported no effect. Two studies evaluated white matter volume. The first reported that lithium attenuates the reduction of white matter volume over time, and the second reported significantly smaller white matter volume in non-lithium-using patients. The last evaluated ventricular brain ratio and reported that patients treated with lithium did not have a significantly greater ventricular size than their normal control counterparts. CONCLUSIONS Lithium appears to positively influence the evolution of the white matter abnormalities described in bipolar disorder patients. Should this information be confirmed in future research, and given its important mood stabilizer effect, it could further reinforce the use of lithium in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- José Carlos L Espanhol
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, Porto, Portugal.,Department of Psychiatry and Mental Health, São João University Hospital Centre, Alameda Professor Hernani Monteiro, Porto, Portugal.,MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Ferensztajn-Rochowiak E, Chłopocka-Woźniak M, Rybakowski JK. Ultra-long-term lithium therapy: all-important matters and a case of successful 50-year lithium treatment. ACTA ACUST UNITED AC 2021; 43:407-413. [PMID: 32965432 PMCID: PMC8352724 DOI: 10.1590/1516-4446-2020-1111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
This paper discusses essential issues related to long-term lithium therapy and presents a case of successful 50-year lithium treatment. Lithium is currently regarded as the drug of choice for preventing manic and depressive recurrences in bipolar disorder. In 1/3 of patients with bipolar disorder, long-term monotherapy with lithium can completely prevent recurrences of abnormal mood. Numerous clinical and psychosocial factors associated with a good response to lithium have been described. Lithium is more efficacious than other mood stabilizers, and its long-term treatment significantly exceeds them. Lithium also exerts antisuicidal, immunomodulatory, and neuroprotective effects. The main problems associated with long-term lithium treatment include kidney, thyroid, and probably cognitive issues. In this paper, a case of successful continuous lithium treatment for 50 years in a 79-year-old female patient is presented. In this patient, apart from maintaining a euthymic state, long-term lithium treatment also exerted a favorable effect on general health, especially the elimination of viral and other respiratory infections. It is concluded that ultra-long term lithium therapy can enable good professional and psychosocial functioning for many patients, and the possible somatic side effects are manageable.
Collapse
Affiliation(s)
| | | | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Kerr WT, Lee JK, Karimi AH, Tatekawa H, Hickman LB, Connerney M, Sreenivasan SS, Dubey I, Allas CH, Smith JM, Savic I, Silverman DHS, Hadjiiski LM, Beimer NJ, Stacey WC, Cohen MS, Engel J, Feusner JD, Salamon N, Stern JM. A minority of patients with functional seizures have abnormalities on neuroimaging. J Neurol Sci 2021; 427:117548. [PMID: 34216975 DOI: 10.1016/j.jns.2021.117548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Functional seizures often are managed incorrectly as a diagnosis of exclusion. However, a significant minority of patients with functional seizures may have abnormalities on neuroimaging that typically are associated with epilepsy, leading to diagnostic confusion. We evaluated the rate of epilepsy-associated findings on MRI, FDG-PET, and CT in patients with functional seizures. METHODS We studied radiologists' reports from neuroimages at our comprehensive epilepsy center from a consecutive series of patients diagnosed with functional seizures without comorbid epilepsy from 2006 to 2019. We summarized the MRI, FDG-PET, and CT results as follows: within normal limits, incidental findings, unrelated findings, non-specific abnormalities, post-operative study, epilepsy risk factors (ERF), borderline epilepsy-associated findings (EAF), and definitive EAF. RESULTS Of the 256 MRIs, 23% demonstrated ERF (5%), borderline EAF (8%), or definitive EAF (10%). The most common EAF was hippocampal sclerosis, with the majority of borderline EAF comprising hippocampal atrophy without T2 hyperintensity or vice versa. Of the 87 FDG-PETs, 26% demonstrated borderline EAF (17%) or definitive EAF (8%). Epilepsy-associated findings primarily included focal hypometabolism, especially of the temporal lobes, with borderline findings including subtle or questionable hypometabolism. Of the 51 CTs, only 2% had definitive EAF. SIGNIFICANCE This large case series provides further evidence that, while uncommon, EAF are seen in patients with functional seizures. A significant portion of these abnormal findings are borderline. The moderately high rate of these abnormalities may represent framing bias from the indication of the study being "seizures," the relative subtlety of EAF, or effects of antiseizure medications.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Internal Medicine, University of California at Irvine, Irvine, CA, USA
| | - Michael Connerney
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Bioengineering, Psychology and Biomedical Physics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Noriko Salamon
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cazes J, Dimick MK, Kennedy KG, Fiksenbaum L, Zai CC, Patel R, Islam AH, Tampakeras M, Freeman N, Kennedy JL, MacIntosh BJ, Goldstein BI. Structural neuroimaging phenotypes of a novel multi-gene risk score in youth bipolar disorder. J Affect Disord 2021; 289:135-143. [PMID: 33979723 DOI: 10.1016/j.jad.2021.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is among the most heritable psychiatric disorders, particularly in early-onset cases, owing to multiple genes of small effect. Here we examine a multi-gene risk score (MGRS), to address the gap in multi-gene research in early-onset BD. METHODS MGRS was derived from 34 genetic variants relevant to neuropsychiatric diseases and related systemic processes. Multiple MGRS were calculated across a spectrum of inclusion p-value thresholds, based on allelic associations with BD. Youth participants (123 BD, 103 healthy control [HC]) of European descent were included, of which 101 participants (58 BD, 43 HC) underwent MRI T1-weighted structural neuroimaging. Hierarchical regressions examined for main effects and MGRS-by-diagnosis interaction effects on 6 regions-of-interest (ROIs). Vertex-wise analysis also examined MGRS-by-diagnosis interactions. RESULTS MGRS based on allelic association p≤0.60 was most robust, explaining 6.8% of variance (t(226)=3.46, p=.001). There was an MGRS-by-diagnosis interaction effect on ventrolateral prefrontal cortex surface area (vlPFC; β=.21, p=.0007). Higher MGRS was associated with larger vlPFC surface area in BD vs. HC. There were 8 significant clusters in vertex-wise analyses, primarily in fronto-temporal regions, including vlPFC. LIMITATIONS Cross-sectional design, modest sample size. CONCLUSIONS There was a diagnosis-by-MGRS interaction effect on vlPFC surface area, a region involved in emotional processing, emotional regulation, and reward response. Vertex-wise analysis also identified several clusters overlapping this region. This preliminary study provides an example of an approach to imaging-genetics that is intermediate between candidate gene and genome-wide association studies, enriched for genetic variants with established relevance to neuropsychiatric diseases.
Collapse
Affiliation(s)
| | - Mikaela K Dimick
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kody G Kennedy
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Clement C Zai
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Harvard T.H. Chan School of Public Health, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Ronak Patel
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alvi H Islam
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria Tampakeras
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie Freeman
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- University of Toronto, Toronto, ON, Canada; Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benjamin I Goldstein
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
12
|
Lu F, Cui Q, He Z, Tang Q, Chen Y, Sheng W, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Hu S, Chen H. Superficial white-matter functional networks changes in bipolar disorder patients during depressive episodes. J Affect Disord 2021; 289:151-159. [PMID: 33984685 DOI: 10.1016/j.jad.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder is a common psychiatric disorder characterized by insufficient or ineffective connections associated with white-matter (WM) abnormalities. Previous studies have detected the structural attributes of WM using magnetic resonance imaging (MRI) or diffusion tensor imaging, however, they failed to disentangle the dysfunctional organization within the WM. METHODS This study aimed to uncover the WM functional connectivity (FC) in 45 bipolar disorder patients during depressive episodes (BDD) and 45 healthy controls based on resting-state functional MRI. Eight WM functional networks were identified by using a clustering analysis of voxel-based correlation profiles, which were further classified into superficial, middle and deep layers of networks. RESULTS Group comparisons on the FCs among 8 WM networks showed that the superficial tempofrontal network (TFN) in BDD patients had increased FC with the superficial cerebellar network (CN) and with the superficial pre/post-central network (PCN). Further, support vector regression prediction analysis results revealed that the increased FCs of CN-TFN and PCN-TFN could be served as features to predict the numbers of depressive episode in BDD patients. CONCLUSIONS The current study extended our knowledge about the impaired WM functional connections associated with emotional and sensory-motor perception processing in BDD, which may facilitate the interpretation of the pathophysiology mechanisms underlying BDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Hu
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P R China.
| |
Collapse
|
13
|
Lei D, Li W, Tallman MJ, Patino LR, McNamara RK, Strawn JR, Klein CC, Nery FG, Fleck DE, Qin K, Ai Y, Yang J, Zhang W, Lui S, Gong Q, Adler CM, Sweeney JA, DelBello MP. Changes in the brain structural connectome after a prospective randomized clinical trial of lithium and quetiapine treatment in youth with bipolar disorder. Neuropsychopharmacology 2021; 46:1315-1323. [PMID: 33753882 PMCID: PMC8134458 DOI: 10.1038/s41386-021-00989-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The goals of the current study were to determine whether topological organization of brain structural networks is altered in youth with bipolar disorder, whether such alterations predict treatment outcomes, and whether they are normalized by treatment. Youth with bipolar disorder were randomized to double-blind treatment with quetiapine or lithium and assessed weekly. High-resolution MRI images were collected from children and adolescents with bipolar disorder who were experiencing a mixed or manic episode (n = 100) and healthy youth (n = 63). Brain networks were constructed based on the similarity of morphological features across regions and analyzed using graph theory approaches. We tested for pretreatment anatomical differences between bipolar and healthy youth and for changes in neuroanatomic network metrics following treatment in the youth with bipolar disorder. Youth with bipolar disorder showed significantly increased clustering coefficient (Cp) (p = 0.009) and characteristic path length (Lp) (p = 0.04) at baseline, and altered nodal centralities in insula, inferior frontal gyrus, and supplementary motor area. Cp, Lp, and nodal centrality of the insula exhibited normalization in patients following treatment. Changes in these neuroanatomic parameters were correlated with improvement in manic symptoms but did not differ between the two drug therapies. Baseline structural network matrices significantly differentiated medication responders and non-responders with 80% accuracy. These findings demonstrate that both global and nodal structural network features are altered in early course bipolar disorder, and that pretreatment alterations in neuroanatomic features predicted treatment outcome and were reduced by treatment. Similar connectome normalization with lithium and quetiapine suggests that the connectome changes are a downstream effect of both therapies that is related to their clinical efficacy.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yuan Ai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Jing Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China.
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
14
|
Abstract
OBJECTIVES A narrative review of past, present, and future of lithium use in psychiatry. METHODS The most important references on the topic were reviewed with special emphasis on the author's works. RESULTS The history of medical and psychiatric use of lithium dates back to more than one and a half-century ago. However, modern psychiatric history began with the publication of John Cade, in 1949, showing a therapeutic effect of lithium in mania. Currently, lithium is a drug of choice as a mood-stabilizer for the maintenance treatment of the bipolar disorder. The second most important use of lithium is probably augmentation of antidepressants in treatment-resistant depression. In addition to its mood-stabilizing properties, lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action. The drug may protect against dementia and some promising effects of lithium in neurodegenerative disorders have been observed. CONCLUSION Given the clinical and biological properties of lithium, this drug is presently greatly underutilized in mood disorders. Therefore, the efforts should be undertaken for challenging a skepticism about the use of lithium and optimizing its long-term administration. In such a way, more patients with mood disorders can become the beneficiaries of lithium's therapeutic action. KEY POINTS Lithium is a drug of choice as a mood-stabiliser for the maintenance treatment of bipolar disorder. Augmentation of antidepressants by lithium is one of the best strategies in treatment-resistant depression. Lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action and may protect against dementia. Despite the evidence for the efficacy and added favourable properties, lithium is greatly underutilised in mood disorders. Challenging a scepticism about the use of lithium and optimising its long-term administration can make more patients with mood disorders the beneficiaries of lithium's therapeutic action.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Gavín A, Garcia-Martin E, Garcia-Campayo J, Viladés E, Orduna E, Satué M. The use of optical coherence tomography in the evaluation of patients with bipolar disorder. ACTA ACUST UNITED AC 2020; 96:141-151. [PMID: 32912807 DOI: 10.1016/j.oftal.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022]
Abstract
Bipolar disorder (BD) is a mental disorder characterised by episodes of extremal mood changes. In recent years, some researchers found neurodegeneration in patients with BD using Magnetic Resonance Imaging. Evaluation of the optic nerve and the retinal layers using optical coherence tomography (OCT) has proved to be a useful, non-invasive tool for diagnosis and monitoring of neurodegenerative diseases. Accordingly, a decrease in the retinal nerve fibre layer and the ganglion cell complex measured by OCT was found in patients with BD in different studies, suggesting that BD is a neurodegenerative process in addition to a psychiatric disorder. Therefore, the neuro-ophthalmological evaluation of these patients could be used as a marker for diagnosis of this disease. This work analyses literature on retinal degeneration in bipolar disorder patients, and evaluates the ability of OCT devices in the detection of neuronal degeneration affecting the different retinal layers in these patients, and its possible role in the diagnosis and monitoring of the disease.
Collapse
Affiliation(s)
- A Gavín
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España.
| | - E Garcia-Martin
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - J Garcia-Campayo
- Servicio de Psiquiatría, Hospital Universitario Miguel Servet, Zaragoza, España; Departamento de Psicología y Sociología, facultad de ciencias sociales y humanas, Universidad de Zaragoza, Zaragoza, España
| | - E Viladés
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - E Orduna
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - M Satué
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| |
Collapse
|
16
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Di Sero A, Jørgensen KN, Nerland S, Melle I, Andreassen OA, Jovicich J, Agartz I. Antipsychotic treatment and basal ganglia volumes: Exploring the role of receptor occupancy, dosage and remission status. Schizophr Res 2019; 208:114-123. [PMID: 31006616 DOI: 10.1016/j.schres.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Antipsychotic treatment may affect brain morphology, and enlargement of the basal ganglia (BG) is a replicated finding. Here we investigated associations between antipsychotic treatment and BG volumes in patients with psychotic and bipolar disorders. We hypothesized that current treatment and, among those medicated, higher dosage, estimated D2R occupancy and being in remission would predict larger BG volumes. Structural covariance analysis was performed to examine if correlations between BG volumes and cortical thickness differed by treatment status. 224 patients treated with antipsychotics; 26 previously treated, 29 never treated and 301 healthy controls (HC) were included from the TOP study cohort (NORMENT, Norway). T1-weighted MR images were processed using FreeSurfer. D2R occupancy was estimated based on serum concentration measurements for patients receiving stable monotherapy. Statistical analyses were adjusted for age, gender and estimated intracranial volume (ICV). We found larger right (p < 0.003) and left putamen (p < 0.02) and right globus pallidus (GP) (p < 0.03) in currently medicated patients compared to HC. Bilateral regional cortical thinning was also observed in currently and previously medicated patients compared to HC. In medicated patients, higher chlorpromazine equivalent dose (CPZ) was associated with larger left GP (p < 0.04). There was no association with estimated D2R occupancy (n = 47) or remission status. Lower positive correlation between left putamen volume and cortical thickness of the left lateral occipital cortex was found in medicated patients compared to HC. We replicated the BG enlargement in medicated patients, but found no association with estimated D2R occupancy. Further studies are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Alessia Di Sero
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Center for Mind and Brain Sciences, University of Trento, Trento, Italy; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jorge Jovicich
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, He M, Wang H, Duan M, Jia Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 2019; 44:89-101. [PMID: 30354038 PMCID: PMC6397036 DOI: 10.1503/jpn.180002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The literature on grey-matter volume alterations in bipolar disorder is heterogeneous in its findings. METHODS Using effect-size differential mapping, we conducted a meta-analysis of grey-matter volume alterations in patients with bipolar disorder compared with healthy controls. RESULTS We analyzed data from 50 studies that included 1843 patients with bipolar disorder and 2289 controls. Findings revealed lower grey-matter volumes in the bilateral superior frontal gyri, left anterior cingulate cortex and right insula in patients with bipolar disorder and in patients with bipolar disorder type I. Patients with bipolar disorder in the euthymic and depressive phases had spatially distinct regions of altered grey-matter volume. Meta-regression revealed that the proportion of female patients with bipolar disorder or bipolar disorder type I was negatively correlated with regional grey-matter alteration in the right insula; the proportion of patients with bipolar disorder or bipolar disorder type I taking lithium was positively correlated with regional grey-matter alterations in the left anterior cingulate/paracingulate gyri; and the proportion of patients taking antipsychotic medications was negatively correlated with alterations in the anterior cingulate/paracingulate gyri. LIMITATIONS This study was cross-sectional; analysis techniques, patient characteristics and clinical variables in the included studies were heterogeneous. CONCLUSION Structural grey-matter abnormalities in patients with bipolar disorder and bipolar disorder type I were mainly in the prefrontal cortex and insula. Patients' mood state might affect grey-matter alterations. Abnormalities in regional grey-matter volume could be correlated with patients' specific demographic and clinical features.
Collapse
Affiliation(s)
- Xiuli Wang
- From the Department of Psychiatry, the Fourth People’s Hospital of Chengdu, Chengdu, China (Duan, He, H. Wang, S. Wang, X. Wang); the Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China (Luo, Jia); the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China (Tian, Jia); the Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China (Cheng); and the Department of Radiology, the Second People’s Hospital of Yibin, Yibin, China (Qiu)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Minuzzi L, Syan SK, Smith M, Hall A, Hall GB, Frey BN. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder. Aust N Z J Psychiatry 2018; 52:1075-1083. [PMID: 29232965 DOI: 10.1177/0004867417746001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. METHODS In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. RESULTS We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. CONCLUSION This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Luciano Minuzzi
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,3 Mood Disorders Program, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Sabrina K Syan
- 2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Mara Smith
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- 4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Bc Hall
- 2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,5 Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- 1 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,2 MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,3 Mood Disorders Program, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,4 Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
20
|
Rybakowski JK. Challenging the Negative Perception of Lithium and Optimizing Its Long-Term Administration. Front Mol Neurosci 2018; 11:349. [PMID: 30333722 PMCID: PMC6175994 DOI: 10.3389/fnmol.2018.00349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
The use of lithium for the prevention of recurrences in mood disorders has a 55-year history. Nowadays, lithium is universally accepted as the first-choice mood-stabilizer (MS) for maintenance treatment of bipolar disorder. In addition to its mood-stabilizing properties, lithium exerts anti-suicidal, immunomodulatory and neuroprotective action which may further substantiate its clinical usefulness. Despite these facts, the use of lithium in mood disorders has been greatly underutilized. The reasons include the introduction and promoting other MS as well as a perception of lithium as a “toxic drug” due to its side effects, mainly thyroid, renal and cognitive disturbances. The trends in lithium prescription in recent decades show relative stability or a decline at the expense of other mood-stabilizing drugs, both first generation (valproate) and second generation (olanzapine, quetiapine, lamotrigine). In this review article, the negative perception of lithium by some clinicians will be challenged. First, the data showing lithium superiority over other MS will be presented. Second, the lithium-induced side effects which can make a challenge for a more frequent application of this drug will be delineated, and their proper management described. Finally, an issue of benefits of long-term administration of lithium will be discussed, including the phenomenon of the “excellent lithium responders” (ER) as well as a subject of starting lithium prophylaxis early in the course of the illness. This review article is based on the 47-year experience with lithium therapy by the author of the article.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Abramovic L, Boks MPM, Vreeker A, Verkooijen S, van Bergen AH, Ophoff RA, Kahn RS, van Haren NEM. White matter disruptions in patients with bipolar disorder. Eur Neuropsychopharmacol 2018; 28:743-751. [PMID: 29779901 PMCID: PMC6008233 DOI: 10.1016/j.euroneuro.2018.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/27/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
Bipolar disorder (BD) patients show aberrant white matter microstructure compared to healthy controls but little is known about the relation with clinical characteristics. We therefore investigated the relation of white matter microstructure with the main pharmacological treatments as well its relation with IQ. Patients with BD (N = 257) and controls (N = 167) underwent diffusion tensor imaging (DTI) and comprehensive clinically assessments including IQ estimates. DTI images were analyzed using tract-based spatial statistics. Fractional anisotropy (FA) and Mean Diffusivity (MD) were determined. Patients had significantly lower FA and higher MD values throughout the white matter skeleton compared to controls. Within the BD patients, lithium use was associated with higher FA and lower MD. Antipsychotic medication use in the BD patients was not associated with FA but, in contrast to lithium, was associated with higher MD. IQ was significantly positively correlated with FA and negatively with MD in patients as well as in controls. In this large DTI study we found evidence for marked differences in FA and MD particularly in (but not restricted to) corpus callosum, between BD patients and controls. This effect was most pronounced in lithium-free patients, implicating that lithium affects white matter microstructure and attenuates differences associated with bipolar disorder. Effects of antipsychotic medication intake were absent in FA and only subtle in MD relative to those of lithium. The abnormal white matter microstructure was associated with IQ but not specifically for either group.
Collapse
Affiliation(s)
- Lucija Abramovic
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands
| | - Marco P M Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands
| | - Annabel Vreeker
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands
| | - Sanne Verkooijen
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands
| | - Annet H van Bergen
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - René S Kahn
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Neeltje E M van Haren
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Department of Psychiatry, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Tannous J, Amaral-Silva H, Cao B, Wu MJ, Zunta-Soares GB, Kazimi I, Zeni C, Mwangi B, Soares JC. Hippocampal subfield volumes in children and adolescents with mood disorders. J Psychiatr Res 2018; 101:57-62. [PMID: 29550609 DOI: 10.1016/j.jpsychires.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
The hippocampus has been implicated in various mood disorders, with global volume deficits consistently found in patient populations. The hippocampus, however, consists of anatomically distinct subfields, and examination of specific subfield differences may elucidate the possible molecular mechanisms behind psychiatric pathologies. Indeed, adult studies have reported smaller hippocampal subfield volumes in regions within the cornu ammonis (CA1 and CA4), dentate gyrus (DG), and hippocampal tails in both patients with Major Depressive Disorder (MDD) and Bipolar Disorder (BD) compared to healthy controls. Subfield differences in pediatric patients with mood disorders, on the other hand, have not been extensively investigated. In the current study, magnetic resonance imaging scans were acquired for 141 children and adolescents between the ages of eight and eighteen (57 with BD, 30 with MDD, and 54 healthy controls). An automated segmentation method was then used to assess differences in hippocampal subfield volumes. Children and adolescents with BD were found to have significantly smaller volumes in the right CA1, CA4, and right subiculum, as well as the bilateral granule cell layer (GCL), molecular layer (ML), and hippocampal tails. The volume of the right subiculum in BD patients was also found to be negatively correlated with illness duration. Overall, the findings from this cross-sectional study provide evidence for specific hippocampal subfield volume differences in children and adolescents with BD compared to healthy controls and suggest progressive reductions with increased illness duration.
Collapse
Affiliation(s)
- Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA.
| | - Henrique Amaral-Silva
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Iram Kazimi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Cristian Zeni
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Sani G, Simonetti A, Janiri D, Banaj N, Ambrosi E, De Rossi P, Ciullo V, Arciniegas DB, Piras F, Spalletta G. Association between duration of lithium exposure and hippocampus/amygdala volumes in type I bipolar disorder. J Affect Disord 2018; 232:341-348. [PMID: 29510351 DOI: 10.1016/j.jad.2018.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior studies on the effects of lithium on limbic and subcortical gray matter volumes are mixed. It is possible that discrepant findings may be explained by the duration of lithium exposure. We investigated this issue in individuals with type I bipolar disorder (BP-I). METHODS Limbic and subcortical gray matter volume was measured using FreeSurfer in 60 subjects: 15 with BP-I without prior lithium exposure [no-exposure group (NE)]; 15 with BP-I and lithium exposure < 24 months [short-exposure group (SE)]; 15 with BP-I and lithium exposure > 24 months [long-exposure group (LE)]; and 15 healthy controls (HC). RESULTS No differences in limbic and subcortical gray matter volumes were found between LE and HC. Hippocampal and amygdalar volumes were larger bilaterally in both LE and HC when compared to NE. Amygdalar volumes were larger bilaterally in SE when compared to NE but did not differ from LE. Hippocampal volumes were smaller bilaterally in SE when compared to LE and HC but did not differ from NE. No between-group differences on subcortical gray matter or other limbic structure volumes were observed. LIMITATIONS Cross-sectional design and concurrent treatment with other medications limit attribution of between-group differences to lithium exposure alone. CONCLUSIONS The effect of lithium exposure on limbic and subcortical gray matter volumes appears to be time-dependent and relatively specific to the hippocampus and the amygdala, with short-term effects on the amygdala and long-term effects on both structures. These results support the clinical importance of long-term lithium treatment in BP-I.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Centro Lucio Bini, Rome, Italy; School of Medicine, Mood Disorder Program, Tufts University, Boston, MA, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Delfina Janiri
- Psychiatry Residency Training Program, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Elisa Ambrosi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy; Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Italy
| | - David B Arciniegas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy.
| |
Collapse
|
24
|
Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord 2018; 225:599-606. [PMID: 28886501 DOI: 10.1016/j.jad.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. METHODS A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. RESULTS There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). LIMITATIONS Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. CONCLUSIONS Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure.
Collapse
|
25
|
Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry 2018; 212:19-26. [PMID: 29433612 DOI: 10.1192/bjp.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, although the underlying mechanisms remain unclear. Animal studies have shown that electroconvulsive shock induced neuroplastic changes in the hippocampus. Aims To summarise volumetric magnetic resonance imaging studies investigating the effects of ECT on limbic brain structures. METHOD A systematic review and meta-analysis was conducted to assess volumetric changes of each side of the hippocampus and amygdala before and after ECT. Standardised mean difference (SMD) was calculated. RESULTS A total of 8 studies (n = 193) were selected for our analyses. Both right and left hippocampal and amygdala volumes increased after ECT. Meta-regression analyses revealed that age, percentage of those responding and percentage of those in remission were negatively associated with volume increases in the left hippocampus. CONCLUSIONS ECT increased brain volume in the limbic structures. The clinical relevance of volume increase needs further investigation. Declaration of interest None.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry,Keio University School of Medicine and Komagino Hospital,Tokyo,Japan
| | - Jun Ku Chung
- Institute of Medical Science,Faculty of Medicine,University of Toronto, and Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Canada
| | - Kuo-Ching Liang
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Ariel Graff-Guerrero
- Institute of Medical Science,Faculty of Medicine,University of Toronto, Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Department of Psychiatry,University of Toronto,and Geriatric Mental Health Division,Centre for Addiction and Mental Health,Toronto,Canada
| | - Masaru Mimura
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo, Japan, andHofstra Northwell School of Medicine, Hempstead, New York,USA
| |
Collapse
|
26
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
27
|
López-Jaramillo C, Vargas C, Díaz-Zuluaga AM, Palacio JD, Castrillón G, Bearden C, Vieta E. Increased hippocampal, thalamus and amygdala volume in long-term lithium-treated bipolar I disorder patients compared with unmedicated patients and healthy subjects. Bipolar Disord 2017; 19:41-49. [PMID: 28239952 DOI: 10.1111/bdi.12467] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/12/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) studies in bipolar I disorder (BD-I) suggest that lithium is associated with increased volumes of cortico-limbic structures. However, more rigorous control of confounding factors is needed to obtain further support for this hypothesis. The aim of the present study was to assess differences in brain volumes among long-term lithium-treated BD-I patients, unmedicated BD-I patients, and healthy controls. METHODS This was a cross-sectional study with 32 euthymic BD-I patients (16 on lithium monotherapy for a mean of 180 months, and 16 receiving no medication for at least the 2 months prior to the study) and 20 healthy controls. Patients were euthymic (Hamilton Depression Rating Scale [HDRS] <6 and Young Mania Rating Scale [YMRS] <7) and had not taken psychotropic medications other than lithium for at least 6 months. Brain images were acquired on a 1.5 Tesla MRI (Phillips, Amsterdam, The Netherlands) and segmented to generate volumetric measures of cortical and subcortical brain areas, ventricles and global brain. RESULTS Significant differences were found in the volumes of the left amygdala (P=.0003), right amygdala (P=.030), left hippocampus (P=.022), left thalamus (P=.022), and right thalamus (P=.019) in long-term lithium-treated BD-I patients, compared to unmedicated patients and controls, after multivariable adjustment. No differences were observed in global brain volume or in ventricular size among the three groups. Likewise, there was no correlation between serum lithium levels and the increase in size in the described brain areas. CONCLUSIONS The structural differences found among the three groups, and specifically those between long-term lithium-treated and unmedicated BD-I patients, indicate increased limbic structure volumes in lithium-treated patients.
Collapse
Affiliation(s)
- Carlos López-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Ana M Díaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Juan David Palacio
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Castrillón
- Research Group, Instituto de Alta Tecnología Médica IATM, Medellin, Colombia
| | - Carrie Bearden
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Eduard Vieta
- Department of Psychiatry, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| |
Collapse
|
28
|
Neuroprotection after a first episode of mania: a randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume. Transl Psychiatry 2017; 7:e1011. [PMID: 28117843 PMCID: PMC5545739 DOI: 10.1038/tp.2016.281] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 01/13/2023] Open
Abstract
Lithium and quetiapine are effective treatments for bipolar disorder, but their potential neuroprotective effects in humans remain unclear. A single blinded equivalence randomized controlled maintenance trial was conducted in a prospective cohort of first-episode mania (FEM) patients (n=26) to longitudinally compare the putative protective effects of lithium and quetapine on grey and white matter volume. A healthy control sample was also collected (n=20). Using structural MRI scans, voxel-wise grey and white matter volumes at baseline and changes over time in response to treatment were investigated. Patients were assessed at three time points (baseline, 3 and 12-month follow-up), whereas healthy controls were assessed at two time points (baseline and 12-month follow-up). Patients were randomized to lithium (serum level 0.6 mmol l-1, n=20) or quetiapine (flexibly dosed up to 800 mg per day, n=19) monotherapy. At baseline, compared with healthy control subjects, patients with FEM showed reduced grey matter in the orbitofrontal cortex, anterior cingulate, inferior frontal gyrus and cerebellum. In addition, patients had reduced internal capsule white matter volume bilaterally (t1,66>3.20, P<0.01). Longitudinally, there was a significant treatment × time effect only in the white matter of the left internal capsule (F2,112=8.54, P<0.01). Post hoc testing showed that, compared with baseline, lithium was more effective than quetiapine in slowing the progression of white matter volume reduction after 12 months (t1,24=3.76, P<0.01). Our data support the role of lithium but not quetiapine therapy in limiting white matter reduction early in the illness course after FEM.
Collapse
|
29
|
Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016; 18:612-623. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. METHODS We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. RESULTS Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. CONCLUSIONS For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects.
Collapse
Affiliation(s)
- Maria M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience, Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - André F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Psychiatry, Mood and Anxiety Disorders, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
31
|
Abstract
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral
ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed
white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging
studies to date and differential psychotropic medication use is potentially a substantial contributor to
this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers
evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are
associated with neuroanatomical variation. Most studies are negative and suffer from methodological
weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly
comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient
groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium
and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic
structures. These findings are further supported by the more methodologically robust studies which include large numbers of
patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative
effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or
antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological
difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure
in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by
preclinical studies.
Collapse
Affiliation(s)
- Colm McDonald
- National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
32
|
Zung S, Souza-Duran FL, Soeiro-de-Souza MG, Uchida R, Bottino CM, Busatto GF, Vallada H. The influence of lithium on hippocampal volume in elderly bipolar patients: a study using voxel-based morphometry. Transl Psychiatry 2016; 6:e846. [PMID: 27351600 PMCID: PMC4931614 DOI: 10.1038/tp.2016.97] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/12/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated that lithium (Li) exerts neuronal protective and regenerative effects both in vitro and in vivo. However, the effects of long-term Li treatment in the brain areas associated with memory impairment of elderly bipolar patients are still unknown. The aim of this study was to compare the hippocampal volumes of elderly bipolar patients using Li, elderly bipolar patients not using Li and healthy controls. Sociodemographic, clinical and magnetic resonance imaging data from 30 elderly euthymic bipolar patients who had been using Li for an average of >61 months; 27 elderly euthymic bipolar patients not taking Li for an average of 45 months; and 22 elderly healthy controls were analyzed. Volumetric differences in the hippocampus between groups were investigated with voxel-based morphometry (VBM) based on the Statistical Parametric Mapping technique. No statistical differences in sociodemographic and clinical characteristics and course of bipolar disorder between the two bipolar groups were observed. Using small volume correction in the VBM analysis (analysis of variance (ANOVA)), one voxel cluster of statistical significance was detected in the left hippocampus (P<0.05 corrected for multiple comparisons, extent threshold >10 voxels). Post hoc unpaired t-tests revealed increased left hippocampal volume in the Li-treated group compared with the non-Li-treated group, and decreased left hippocampal volume in the non-Li group relative to controls. Additional exploratory two-group comparisons indicated trends toward reduced right-hippocampal volumes in the non-Li-treated group relative to both the Li-treated group and controls. The findings suggested that the use of Li may influence the volume of the hippocampus, possibly due to its neuroprotective effects.
Collapse
Affiliation(s)
- S Zung
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - F L Souza-Duran
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - M G Soeiro-de-Souza
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - R Uchida
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - C M Bottino
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - G F Busatto
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil
| | - H Vallada
- Department of Psychiatry, University of Sao Paulo Medical School (LIM-21 and LIM-23), Sao Paulo, Brazil,Institute of Psychiatry, Rua Doutor Ovidio Pires de Campos 785, Sao Paulo, Brazil. E-mail:
| |
Collapse
|
33
|
Inal-Emiroglu FN, Resmi H, Karabay N, Guleryuz H, Baykara B, Cevher N, Akay A. Decreased right hippocampal volumes and neuroprogression markers in adolescents with bipolar disorder. Neuropsychobiology 2016; 71:140-8. [PMID: 25925781 DOI: 10.1159/000375311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of the present study was to assess differences and correlations between the hippocampal volumes (HCVs), serum nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) levels in adolescents with bipolar disorder (BP) compared to healthy controls. METHODS Using structural magnetic resonance imaging, we compared HCVs of 30 patients with euthymic BP who were already enrolled in a naturalistic clinical follow-up. For comparison, we enrolled 23 healthy controls between the ages of 13 and 19. The boundaries of the hippocampus were outlined manually. The BDNF and NGF serum levels were measured with the sandwich ELISA. RESULTS The groups did not differ in the right or left HCVs or in the NGF or BDNF serum levels. However, negative correlations were found between the right HCVs and the duration of the disorder and medication and positive correlations were found between the duration of the medications and the NGF and BDNF levels in the patient group. Additionally, positive correlations were found between the follow-up period and left normalized HCVs in both the BP and lithium-treated groups. CONCLUSIONS The right HCVs may vary with illness duration and the medication used to treat BP; NGF and BDNF levels may be affected by long-term usage. Further research is needed to determine whether these variables and their structural correlates are associated with clinical or functional differences between adolescents with BP and healthy controls.
Collapse
Affiliation(s)
- F Neslihan Inal-Emiroglu
- Child and Adolescent Psychiatry Department, Dokuz Eylül University Medical School, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
34
|
Bijttebier S, Caeyenberghs K, van den Ameele H, Achten E, Rujescu D, Titeca K, van Heeringen C. The Vulnerability to Suicidal Behavior is Associated with Reduced Connectivity Strength. Front Hum Neurosci 2015; 9:632. [PMID: 26648857 PMCID: PMC4663245 DOI: 10.3389/fnhum.2015.00632] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
Suicidal behavior constitutes a major public health problem. Based on the stress–diathesis model, biological correlates of a diathesis might help to predict risk after stressor-exposure. Structural changes in cortical and subcortical areas and their connections have increasingly been linked with the diathesis. The current study identified structural network changes associated with a diathesis using a whole-brain approach by examining the structural connectivity between regions in euthymic suicide attempters (SA). In addition, the association between connectivity measures, clinical and genetic characteristics was investigated. We hypothesized that SA showed lower connectivity strength, associated with an increased severity of general clinical characteristics and an elevated expression of short alleles in serotonin polymorphisms. Thirteen euthymic SA were compared with fifteen euthymic non-attempters and seventeen healthy controls (HC). Clinical characteristics and three serotonin-related genetic polymorphisms were assessed. Diffusion MRI together with anatomical scans were administered. Preprocessing was performed using Explore DTI. Whole brain tractography of the diffusion-weighted images was followed by a number of streamlines-weighted network analysis using NBS. The network analysis revealed decreased connectivity strength in SA in the connections between the left olfactory cortex and left anterior cingulate gyrus. Furthermore, SA had increased suicidal ideation, hopelessness and self-reported depression, but did not show any differences for the genetic polymorphisms. Finally, lower connectivity strength between the right calcarine fissure and the left middle occipital gyrus was associated with increased trait anxiety severity (rs = −0.78, p < 0.01) and hopelessness (rs = −0.76, p < 0.01). SA showed differences in white matter network connectivity strength associated with clinical characteristics. Together, these variables could play an important role in predicting suicidal behavior.
Collapse
Affiliation(s)
- Stijn Bijttebier
- Unit for Suicide Research, Department of Psychiatry and Medical Psychology, Ghent University Ghent, Belgium
| | - Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University Melbourne, VIC, Australia
| | | | - Eric Achten
- Department of Radiology and Nuclear Medicine, Ghent University Ghent, Belgium ; Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University Ghent, Belgium
| | - Dan Rujescu
- Universitätsklinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg Halle/Saale, Germany
| | - Koen Titeca
- Department of Psychiatry, AZ Groeninge Kortrijk, Belgium
| | - Cornelis van Heeringen
- Unit for Suicide Research, Department of Psychiatry and Medical Psychology, Ghent University Ghent, Belgium
| |
Collapse
|
35
|
Sajatovic M, Strejilevich SA, Gildengers AG, Dols A, Al Jurdi RK, Forester BP, Kessing LV, Beyer J, Manes F, Rej S, Rosa AR, Schouws SNTM, Tsai SY, Young RC, Shulman KI. A report on older-age bipolar disorder from the International Society for Bipolar Disorders Task Force. Bipolar Disord 2015; 17:689-704. [PMID: 26384588 PMCID: PMC4623878 DOI: 10.1111/bdi.12331] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In the coming generation, older adults with bipolar disorder (BD) will increase in absolute numbers as well as proportion of the general population. This is the first report of the International Society for Bipolar Disorder (ISBD) Task Force on Older-Age Bipolar Disorder (OABD). METHODS This task force report addresses the unique aspects of OABD including epidemiology and clinical features, neuropathology and biomarkers, physical health, cognition, and care approaches. RESULTS The report describes an expert consensus summary on OABD that is intended to advance the care of patients, and shed light on issues of relevance to BD research across the lifespan. Although there is still a dearth of research and health efforts focused on older adults with BD, emerging data have brought some answers, innovative questions, and novel perspectives related to the notion of late onset, medical comorbidity, and the vexing issue of cognitive impairment and decline. CONCLUSIONS Improving our understanding of the biological, clinical, and social underpinnings relevant to OABD is an indispensable step in building a complete map of BD across the lifespan.
Collapse
Affiliation(s)
- Martha Sajatovic
- Department of Psychiatry, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Sergio A Strejilevich
- Bipolar Disorder Program, Neurosciences Institute, Favaloro University, Buenos Aires, Argentina
| | - Ariel G Gildengers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Annemiek Dols
- GGZinGeest, VU Medical Center, Amsterdam, the Netherlands
| | - Rayan K Al Jurdi
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Brent P Forester
- Geriatric Psychiatry Research Program, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Lars Vedel Kessing
- Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - John Beyer
- Duke University Medical Center, Durham, NC, USA
| | - Facundo Manes
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University, Buenos Aires, Argentina
- UPD-INECO Foundation Core on Neuroscience (UNIFCoN), Chile
- National Scientific and Technical Rsearch Council (CONICET), Argentina
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Australia
| | - Soham Rej
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geri PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada
| | - Adriane R Rosa
- Federal University of Rio Grande do Sul, Brazil
- Department of Pharmacology, Laboratory of Molecular Psychiatry, INCT for Translational Medicine–CNPq, Hospital de Clínicas de Porto Alegre, Brazil
| | - Sigfried NTM Schouws
- GGZ inGeest, Department of Psychiatry, EMGO Institute of Care and Health Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Shang-Ying Tsai
- Department of Psychiatry, Taipei Medical University Hospital
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Robert C Young
- Weill Cornell Medical College and New York Presbyterian Hospital, White Plains, NY, USA
| | - Kenneth I Shulman
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Hartberg CB, Jørgensen KN, Haukvik UK, Westlye LT, Melle I, Andreassen OA, Agartz I. Lithium treatment and hippocampal subfields and amygdala volumes in bipolar disorder. Bipolar Disord 2015; 17:496-506. [PMID: 25809287 DOI: 10.1111/bdi.12295] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/25/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Results from magnetic resonance imaging (MRI) studies are heterogeneous with regard to hippocampal and amygdala volume alterations in bipolar disorder (BD). Lithium treatment may influence both structures. It is unknown if lithium treatment has distinct effects on hippocampal subfield volumes and if subfield volumes change over the course of illness in BD. METHODS MRI scans were obtained for 34 lithium-treated patients with BD (Li+), 147 patients with BD who were not treated with lithium (Non-Li), and 300 healthy controls. Hippocampal total and subfield volumes and amygdala volumes were automatically estimated using Freesurfer. General linear models were used to investigate volume differences between groups and the effects of illness course and lithium treatment. RESULTS The Non-Li BD group displayed significantly smaller bilateral cornu ammonis (CA) 2/3 and CA4/dentate gyrus (DG) subfields, total hippocampal volumes, right CA1 and right subiculum subfields, and left amygdala volume compared to healthy controls. There were no differences between the Li+ BD and either the Non-Li BD or the healthy control groups. In patients with numerous affective episodes, Non-Li BD patients had smaller left CA1 and CA2/3 volumes compared to Li+ BD patients and healthy controls. There were positive associations between lithium treatment duration and left amygdala volume. CONCLUSIONS Hippocampal subfield and amygdala volumes were reduced in Non-Li BD patients compared to healthy controls, whereas the Li+ BD volumes were no different from those in Non-Li BD patients or healthy controls. Over the course of BD, lithium treatment might counteract reductions specifically in the left CA1 and CA2/3 hippocampal subfields and amygdala volumes, in accordance with the suggested neuroprotective effects of lithium.
Collapse
Affiliation(s)
- Cecilie Bhandari Hartberg
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Unn Kristin Haukvik
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars Tjelta Westlye
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Andreas Andreassen
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Gildengers AG, Butters MA, Aizenstein HJ, Marron MM, Emanuel J, Anderson SJ, Weissfeld LA, Becker JT, Lopez OL, Mulsant BH, Reynolds CF. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder. Bipolar Disord 2015; 17:248-56. [PMID: 25257942 PMCID: PMC4374042 DOI: 10.1111/bdi.12260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is associated with cognitive dysfunction and structural brain abnormalities. In human and non-human studies, lithium has been related to neuroprotective and neurotrophic effects. We explored whether lithium treatment is related to better brain integrity and cognitive function in older adults with BD. METHODS We examined cognitive and neuroimaging data in 58 individuals with BD [mean (standard deviation) age = 64.5 (9.8) years] and 21 mentally healthy comparators (controls) of similar age and education. Subjects received comprehensive neurocognitive assessment and structural brain imaging, examining total gray matter volume, overall white matter integrity (fractional anisotropy), and total white matter hyperintensity burden. RESULTS In comparison to controls, subjects with BD had worse overall cognitive performance, lower total gray matter volume, and lower white matter integrity. Among subjects with BD, longer duration of lithium treatment was related to higher white matter integrity after controlling for age and vascular disease burden, but not with better cognitive performance. CONCLUSIONS Lithium treatment appears to be related to better brain integrity in older individuals with BD, in particular, in those who take lithium long-term. While intriguing, these findings need to be confirmed in a larger sample.
Collapse
Affiliation(s)
- Ariel G. Gildengers
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA,Corresponding author: Dr. Gildengers, 3811 O'Hara Street, Pittsburgh, PA 15213, USA. Phone 412-246-6002; Fax 412-246-6030.
| | - Meryl A. Butters
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Howard J. Aizenstein
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Megan M. Marron
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - James Emanuel
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Stewart J. Anderson
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - Lisa A. Weissfeld
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - James T. Becker
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- University of Pittsburgh School of Medicine, Department of Neurology, Pittsburgh, PA, USA
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health and the University of Toronto, Department of Psychiatry, Toronto, ON, Canada
| | - Charles F. Reynolds
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Rossi R, Lanfredi M, Pievani M, Boccardi M, Rasser PE, Thompson PM, Cavedo E, Cotelli M, Rosini S, Beneduce R, Bignotti S, Magni LR, Rillosi L, Magnaldi S, Cobelli M, Rossi G, Frisoni GB. Abnormalities in cortical gray matter density in borderline personality disorder. Eur Psychiatry 2015; 30:221-7. [PMID: 25561291 DOI: 10.1016/j.eurpsy.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients' affective, cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). METHODS Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38 ± 11; females: 16, 61%). RESULTS BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (P<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. CONCLUSIONS BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data.
Collapse
Affiliation(s)
- R Rossi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy.
| | - M Lanfredi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - M Pievani
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - M Boccardi
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - P E Rasser
- Centre for translational Neuroscience and Mental Health, The University of Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Darlinghurst, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - P M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - E Cavedo
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Cognition, neuroimaging and brain diseases Laboratory, Centre de Recherche de l'Insitut du Cerveau et de la Moelle (CRICM) UMRS_975, Université Pierre-et-Marie-Curie, Paris, France
| | - M Cotelli
- Unit of Neuropsychology, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - S Rosini
- Unit of Neuropsychology, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - R Beneduce
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - S Bignotti
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - L R Magni
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - L Rillosi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - S Magnaldi
- Unit of Neuroradiology, Poliambulanza Hospital, Brescia, Italy
| | - M Cobelli
- Unit of Neuroradiology, Poliambulanza Hospital, Brescia, Italy
| | - G Rossi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - G B Frisoni
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE, Laboratory of Neuroimaging of Aging, University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Lijffijt M, Rourke ED, Swann AC, Zunta-Soares GB, Soares JC. Illness-course modulates suicidality-related prefrontal gray matter reduction in women with bipolar disorder. Acta Psychiatr Scand 2014; 130:374-87. [PMID: 25039251 DOI: 10.1111/acps.12314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Explore interrelationships between suicide attempt history (Objective 1) or suicide attempt severity (Objective 2) with prefrontal cortex gray matter (PFCGM ) volume and illness-course in patients with bipolar disorder (BD). METHOD Ninety-three women with BD-I or -II diagnosis (51 with and 42 without suicide attempt history) underwent structural MRI and filled out questionnaires. Measured were GM volumes of 11 PFC regions, BD illness-course, and attempt history and severity. Effects were examined with repeated measures GLM or logit analyses. RESULTS Objective 1: Attempt history was associated with increased trait impulsivity and aggression, and higher prevalence of BD-I, past drug use disorder, and past psychiatric hospitalization. PFCGM volume was lower in patients with than without attempt history in those with past psychiatric hospitalization. PFCGM volume was higher in patients with than without attempt history in those without hospitalization. Higher trait aggression predicted attempt history. Objective 2: Increased frontal pole volume and younger age at first hospitalization predicted many suicide attempts. CONCLUSION Attempt history in patients with BD related to PFCGM volume reduction or increase. Volume modulation by psychiatric hospitalization could reflect effects of illness-course or care. Attempt severity was not related to volume reduction. Research on suicidality-brain relationships should include illness-course and attempt severity measures.
Collapse
Affiliation(s)
- M Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
40
|
Marlinge E, Bellivier F, Houenou J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16:97-112. [PMID: 24571279 DOI: 10.1111/bdi.12135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Brain white matter (WM) alterations have recently emerged as potentially relevant in bipolar disorder. New techniques such as diffusion tensor imaging allow precise exploration of these WM microstructural alterations in bipolar disorder. Our objective was to critically review WM alterations in bipolar disorder, using neuroimaging and neuropathological studies, in the context of neural models and the potential for drug discovery and development. METHODS We conducted a systematic PubMed and Google Scholar search of the WM and bipolar disorder literature up to and including January 2013. RESULTS Findings relating to WM alterations are consistent in neuroimaging and neuropathology studies of bipolar disorder, especially in regions involved in emotional processing such as the anterior frontal lobe, corpus callosum, cingulate cortex, and in fronto-limbic connections. Some of the structural alterations are related to genetic risk factors for bipolar disorder and may underlie the dysfunctional emotional processing described in recent neurobiological models of bipolar disorder. Medication effects in bipolar disorder, from lithium and other mood stabilizers, might impact myelinating processes, particularly by inhibition of glycogen synthase kinase-3 beta. CONCLUSIONS Pathways leading to WM alterations in bipolar disorder represent potential targets for the development and discovery of new drugs. Myelin damage in bipolar disorder suggests that the effects of existing pro-myelinating drugs should also be evaluated to improve our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Emeline Marlinge
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Paris, France; Inserm, U955, Equipe 15 (Psychiatrie Génétique), Paris, France; Fondation Fondamental, Créteil, France; Neurospin, I2BM, CEA, Gif-Sur-Yvette, France
| | | | | |
Collapse
|
41
|
Hajek T, Bauer M, Simhandl C, Rybakowski J, O'Donovan C, Pfennig A, König B, Suwalska A, Yucel K, Uher R, Young LT, MacQueen G, Alda M. Neuroprotective effect of lithium on hippocampal volumes in bipolar disorder independent of long-term treatment response. Psychol Med 2014; 44:507-517. [PMID: 23721695 DOI: 10.1017/s0033291713001165] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroimaging studies have demonstrated an association between lithium (Li) treatment and brain structure in human subjects. A crucial unresolved question is whether this association reflects direct neurochemical effects of Li or indirect effects secondary to treatment or prevention of episodes of bipolar disorder (BD). METHOD To address this knowledge gap, we compared manually traced hippocampal volumes in 37 BD patients with at least 2 years of Li treatment (Li group), 19 BD patients with <3 months of lifetime Li exposure over 2 years ago (non-Li group) and 50 healthy controls. All BD participants were followed prospectively and had at least 10 years of illness and a minimum of five episodes. We established illness course and long-term treatment response to Li using National Institute of Mental Health (NIMH) life charts. RESULTS The non-Li group had smaller hippocampal volumes than the controls or the Li group (F 2,102 = 4.97, p = 0.009). However, the time spent in a mood episode on the current mood stabilizer was more than three times longer in the Li than in the non-Li group (t(51) = 2.00, p = 0.05). Even Li-treated patients with BD episodes while on Li had hippocampal volumes comparable to healthy controls and significantly larger than non-Li patients (t(43) = 2.62, corrected p = 0.02). CONCLUSIONS Our findings support the neuroprotective effects of Li. The association between Li treatment and hippocampal volume seems to be independent of long-term treatment response and occurred even in subjects with episodes of BD while on Li. Consequently, these effects of Li on brain structure may generalize to patients with neuropsychiatric illnesses other than BD.
Collapse
Affiliation(s)
- T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - C Simhandl
- Psychiatrische Abteilung, Krankenhaus Neunkirchen, Austria
| | - J Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - C O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - B König
- Psychiatrische Abteilung, Krankenhaus Neunkirchen, Austria
| | - A Suwalska
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - K Yucel
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - R Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - L T Young
- Department of Psychiatry, University of Toronto, ON, Canada
| | - G MacQueen
- Department of Psychiatry, University of Calgary, AB, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
42
|
Rocha-Rego V, Jogia J, Marquand AF, Mourao-Miranda J, Simmons A, Frangou S. Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychol Med 2014; 44:519-532. [PMID: 23734914 PMCID: PMC3880067 DOI: 10.1017/s0033291713001013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 10/03/2012] [Accepted: 04/09/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is one of the leading causes of disability worldwide. Patients are further disadvantaged by delays in accurate diagnosis ranging between 5 and 10 years. We applied Gaussian process classifiers (GPCs) to structural magnetic resonance imaging (sMRI) data to evaluate the feasibility of using pattern recognition techniques for the diagnostic classification of patients with BD. METHOD GPCs were applied to gray (GM) and white matter (WM) sMRI data derived from two independent samples of patients with BD (cohort 1: n = 26; cohort 2: n = 14). Within each cohort patients were matched on age, sex and IQ to an equal number of healthy controls. RESULTS The diagnostic accuracy of the GPC for GM was 73% in cohort 1 and 72% in cohort 2; the sensitivity and specificity of the GM classification were respectively 69% and 77% in cohort 1 and 64% and 99% in cohort 2. The diagnostic accuracy of the GPC for WM was 69% in cohort 1 and 78% in cohort 2; the sensitivity and specificity of the WM classification were both 69% in cohort 1 and 71% and 86% respectively in cohort 2. In both samples, GM and WM clusters discriminating between patients and controls were localized within cortical and subcortical structures implicated in BD. CONCLUSIONS Our results demonstrate the predictive value of neuroanatomical data in discriminating patients with BD from healthy individuals. The overlap between discriminative networks and regions implicated in the pathophysiology of BD supports the biological plausibility of the classifiers.
Collapse
Affiliation(s)
- V. Rocha-Rego
- Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
- NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, UK
| | - J. Jogia
- Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
| | - A. F. Marquand
- Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
| | - J. Mourao-Miranda
- Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
- Computer Science Department, Centre for Computational Statistics and Machine Learning, University College London, UK
| | - A. Simmons
- Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
- NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, UK
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, UK
| | - S. Frangou
- Psychosis Research Program, Icahn School of Medicine at Mount Sinai, Icahn Medical Institute, New York, NY, USA
| |
Collapse
|
43
|
Baek JH, Kinrys G, Nierenberg AA. Lithium tremor revisited: pathophysiology and treatment. Acta Psychiatr Scand 2014; 129:17-23. [PMID: 23834617 DOI: 10.1111/acps.12171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Tremor occurs frequently as a side-effect of lithium, and it is, however, easily overlooked in the clinical setting. In this article, we attempt to review the pathophysiology and the clinical approach of lithium tremor. METHOD We searched the Pubmed and Cochrane Library for relevant articles up to the year 2012. Sixty-four articles including 10 review papers, 3 clinical trials, and 12 case reports were reviewed. RESULTS Lithium tremor is classified as a postural tremor and subcategorized as an exaggerated physiologic tremor. Differential diagnosis includes metabolic abnormalities, benign essential tremor, Parkinson's disease, and lithium toxicity. Various methods of evaluating lithium tremor and treatment options are discussed. CONCLUSION When lithium tremor has developed, thorough history taking, physical examination, and blood examination including serum lithium level are needed. Pharmacotherapy is indicated only in patients with disabling tremor.
Collapse
Affiliation(s)
- J H Baek
- Bipolar Clinic and Research Program, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Torgerson CM, Irimia A, Leow AD, Bartzokis G, Moody TD, Jennings RG, Alger JR, Van Horn JD, Altshuler LL. DTI tractography and white matter fiber tract characteristics in euthymic bipolar I patients and healthy control subjects. Brain Imaging Behav 2013; 7:129-39. [PMID: 23070746 DOI: 10.1007/s11682-012-9202-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the introduction of diffusion tensor imaging (DTI), structural differences in white matter (WM) architecture between psychiatric populations and healthy controls can be systematically observed and measured. In particular, DTI-tractography can be used to assess WM characteristics over the entire extent of WM tracts and aggregated fiber bundles. Using 64-direction DTI scanning in 27 participants with bipolar disorder (BD) and 26 age-and-gender-matched healthy control subjects, we compared relative length, density, and fractional anisotrophy (FA) of WM tracts involved in emotion regulation or theorized to be important neural components in BD neuropathology. We interactively isolated 22 known white matter tracts using region-of-interest placement (TrackVis software program) and then computed relative tract length, density, and integrity. BD subjects demonstrated significantly shorter WM tracts in the genu, body and splenium of the corpus callosum compared to healthy controls. Additionally, bipolar subjects exhibited reduced fiber density in the genu and body of the corpus callosum, and in the inferior longitudinal fasciculus bilaterally. In the left uncinate fasciculus, however, BD subjects exhibited significantly greater fiber density than healthy controls. There were no significant differences between groups in WM tract FA for those tracts that began and ended in the brain. The significance of differences in tract length and fiber density in BD is discussed.
Collapse
Affiliation(s)
- Carinna M Torgerson
- Laboratory of Neuro Imaging LONI, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. S, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sajatovic M, Forester BP, Gildengers A, Mulsant BH. Aging changes and medical complexity in late-life bipolar disorder: emerging research findings that may help advance care. ACTA ACUST UNITED AC 2013; 3:621-633. [PMID: 24999372 DOI: 10.2217/npy.13.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Demographic trends globally point in the direction of increasing numbers of older people with serious and chronic mental disorders, such as bipolar disorder (BD). While there has been growing sophistication and understanding in treatments for BD generally, data specific to older people with BD are limited. Recent reviews, secondary analyses and some new research confirm complexity and aging-related issues relevant to later-life BD. Confounding variables that must be considered when studying older BD individuals include clinical heterogeneity, medical comorbidity, cognitive impairment and concomitant psychotropic medication. This article will review current and emerging data on aging- and disease-related issues that complicate assessment and treatment of older individuals with BD. We will discuss common comorbid medical conditions that affect BD elders, how aging may affect cognition and treatment, including the effects of lithium and other psychotropic drugs on the aging brain, and recent research using neuroimaging techniques that may shed light on understanding the mechanisms of illness progression and on treatment response. Finally, we will discuss implications for future work in geriatric BD.
Collapse
Affiliation(s)
- Martha Sajatovic
- Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Brent P Forester
- Geriatric Mood Disorders Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Ariel Gildengers
- University of Pittsburgh School of Medicine, Western Psychiatric Institute & Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Benoit H Mulsant
- Centre for Addiction & Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand 2013; 128:347-61. [PMID: 23617566 PMCID: PMC3743945 DOI: 10.1111/acps.12139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lithium (Li) is often an effective treatment for mood disorders, especially bipolar disorder (BPD), and can mitigate the effects of stress on the brain by modulating several pathways to facilitate neural plasticity. This review seeks to summarize what is known about the molecular mechanisms underlying Li's actions in the brain in response to stress, particularly how Li is able to facilitate plasticity through regulation of the glutamate system and cytoskeletal components. METHOD The authors conducted an extensive search of the published literature using several search terms, including Li, plasticity, and stress. Relevant articles were retrieved, and their bibliographies consulted to expand the number of articles reviewed. The most relevant articles from both the clinical and preclinical literature were examined in detail. RESULTS Chronic stress results in morphological and functional remodeling in specific brain regions where structural differences have been associated with mood disorders, such as BPD. Li has been shown to block stress-induced changes and facilitate neural plasticity. The onset of mood disorders may reflect an inability of the brain to properly respond after stress, where changes in certain regions may become 'locked in' when plasticity is lost. Li can enhance plasticity through several molecular mechanisms, which have been characterized in animal models. Further, the expanding number of clinical imaging studies has provided evidence that these mechanisms may be at work in the human brain. CONCLUSION This work supports the hypothesis that Li is able to improve clinical symptoms by facilitating neural plasticity and thereby helps to 'unlock' the brain from its maladaptive state in patients with mood disorders.
Collapse
Affiliation(s)
- Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| |
Collapse
|
47
|
Selek S, Nicoletti M, Zunta-Soares GB, Hatch JP, Nery FG, Matsuo K, Sanches M, Soares JC. A longitudinal study of fronto-limbic brain structures in patients with bipolar I disorder during lithium treatment. J Affect Disord 2013; 150:629-33. [PMID: 23764385 DOI: 10.1016/j.jad.2013.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022]
Abstract
In order to assess the association between therapeutic response to lithium treatment and fronto-limbic brain structures' volumes in bipolar I patients (BPI) 24 BPI and 11 healthy comparisons underwent MRI scans at baseline and 4 weeks later. The BPIs received lithium during the 4 week period with a goal of achieving therapeutic blood levels of >0.5 mEq/L (mean level 0.67 mEq/L). Mood symptoms were rated with the Hamilton Depression and the Young Mania Rating Scales at baseline and after 4 weeks, and response was defined as >50% decrease on either scale. Hippocampus, amygdala, prefrontal (PFC), dorsolateral prefrontal (DLPFC), and anterior cingulate cortex (ACC) volumes were obtained by Freesurfer image analysis suite. According to baseline symptoms and treatment response, patients were assigned to three groups: euthymics (n=6), responders (n=12) and non-responders (n=6). Taken over both time periods, non-responders had smaller right amygdala than healthy comparisons and euthymic BPI (p=0.035 and p=0.003, respectively). When baseline and after treatment volumes were compared, there was a significant enlargement in left PFC and left DLPFC in BPI who responded to treatment (p=0.002 and p=0.006, respectively). Left hippocampus and right ACC volumes decreased in non-responders (p=0.02 and p=0.0001, respectively). According to the findings decreased left hippocampus and right ACC volumes may be markers of non-response to lithium amongst BPI. Smaller right amygdala may reflect symptomatic remission and be a marker of treatment non-response. Increases in left PFC and left DLPFC as a result of lithium treatment may relate to lithium's neurotrophic effects.
Collapse
Affiliation(s)
- Salih Selek
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rossi R, Pievani M, Lorenzi M, Boccardi M, Beneduce R, Bignotti S, Borsci G, Cotelli M, Giannakopoulos P, Magni LR, Rillosi L, Rosini S, Rossi G, Frisoni GB. Structural brain features of borderline personality and bipolar disorders. Psychiatry Res 2013; 213:83-91. [PMID: 23146251 DOI: 10.1016/j.pscychresns.2012.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
Abstract
A potential overlap between bipolar disorder (BD) and borderline personality disorder (BPD) has been recently proposed. We aimed to assess similarities and differences of brain structural features in BD and BPD. Structural magnetic resonance imaging (MRI) was performed in 26 inpatients with BPD, 14 with BD, and 40 age-and sex-matched healthycontrols (HC). Voxel-based morphometry analysis with Statistical Parametric Mapping (SPM) was used to localize and quantify gray (GM) and white matter (WM) abnormalities in BD and BPD compared to HC and to identify those specifically affected in each patient group. Region of interest (ROI)-based analyses were also performed for confirmation. GM density changes in BD are significantly more diffuse and severe than in BPD, as demonstrated in both SPM- and ROI-based analyses. The topography of GM alterations showed some regions of overlap, but each disorder had specific regions of abnormality (involving both cortical and subcortical structures in BD, confined mainly to fronto-limbic regions in BPD). WM density changes were less pronounced in both conditions and involved completely different regions. Although BPD and BD show a considerable overlap of GM changes, the topography of alterations is more consistent with the separate conditions hypothesis and with the vulnerability of separate neural systems.
Collapse
Affiliation(s)
- Roberta Rossi
- Unit of Psychiatry, IRCCS San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, I-25125, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
White matter microstructural abnormalities in bipolar disorder: A whole brain diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2013; 2:558-68. [PMID: 24179807 PMCID: PMC3777761 DOI: 10.1016/j.nicl.2013.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
Background Bipolar disorder (BD) is a chronic mental illness characterized by severe disruptions in mood and cognition. Diffusion tensor imaging (DTI) studies suggest that white matter (WM) tract abnormalities may contribute to the clinical hallmarks of the disorder. Using DTI and whole brain voxel-based analysis, we mapped the profile of WM anomalies in BD. All patients in our sample were euthymic and lithium free when scanned. Methods Diffusion-weighted and T1-weighted structural brain images were acquired from 23 lithium-free euthymic subjects with bipolar I disorder and 19 age- and sex-matched healthy control subjects on a 1.5 T MRI scanner. Scans were processed to provide measures of fractional anisotropy (FA) and mean and radial diffusivity (MD and RD) at each WM voxel, and processed scans were nonlinearly aligned to a customized brain imaging template for statistical group comparisons. Results Relative to controls, the bipolar group showed widespread regions of lower FA, including the corpus callosum, cortical and thalamic association fibers. MD and RD were abnormally elevated in patients in many of these same regions. Conclusions Our findings agree with prior reports of WM abnormalities in the corpus callosum and further link a bipolar diagnosis with structural abnormalities of the tapetum, fornix and stria terminalis. Future studies assessing the diagnostic specificity and prognostic implications of these abnormalities would be of interest. Using DTI and whole brain voxel-based analysis, we mapped WM anomalies in BD. Relative to controls, the bipolar group showed widespread regions of lower FA. MD and RD were abnormally elevated in patients in many of these same regions.
Collapse
|
50
|
Diniz BS, Machado-Vieira R, Forlenza OV. Lithium and neuroprotection: translational evidence and implications for the treatment of neuropsychiatric disorders. Neuropsychiatr Dis Treat 2013; 9:493-500. [PMID: 23596350 PMCID: PMC3627470 DOI: 10.2147/ndt.s33086] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the last two decades, a growing body of evidence has shown that lithium has several neuroprotective effects. Several neurobiological mechanisms have been proposed to underlie these clinical effects. Evidence from preclinical studies suggests that neuroprotection induced by lithium is mainly related to its potent inhibition of the enzyme glycogen synthase kinase-3β (GSK-3β) and its downstream effects, ie, reduction of both tau protein phosphorylation and amyloid-β42 production. Additional neuroprotective effects include increased neurotrophic support, reduced proinflammatory status, and decreased oxidative stress. More recently, neuroimaging studies in humans have demonstrated that chronic use is associated with cortical thickening, higher volume of the hippocampus and amygdala, and neuronal viability in bipolar patients on lithium treatment. In line with this evidence, observational and case registry studies have shown that chronic lithium intake is associated with a reduced risk of Alzheimer's disease in subjects with bipolar disorder. Evidence from recent clinical trials in patients with mild cognitive impairment suggests that chronic lithium treatment at subtherapeutic doses can reduce cerebral spinal fluid phosphorylated tau protein. Overall, convergent lines of evidence point to the potential of lithium as an agent with disease modifying properties in Alzheimer's disease. However, additional long-term studies are necessary to confirm its efficacy and safety for these patients, particularly as chronic intake is necessary to achieve the best therapeutic results.
Collapse
Affiliation(s)
- Breno Satler Diniz
- Department of Mental Health, National Institute of Science and Technology - Molecular Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|