1
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
2
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
4
|
Mondal P, Ishigami I, Yeh SR, Wijeratne GB. The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angew Chem Int Ed Engl 2022; 61:e202211521. [PMID: 36169890 PMCID: PMC9675724 DOI: 10.1002/anie.202211521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Mammalian nitric oxide synthase (NOS) mediates the two-step O2 -dependent oxidative degradation of arginine, and has been linked to a medley of disease situations in humans. Nonetheless, its exact mechanism of action still remains unclear. This work presents the first NOS model system where biologically proposed heme superoxo and peroxo intermediates are assessed as active oxidants against oxime substrates. Markedly, heme peroxo intermediates engaged in a bioinspired oxime oxidation reaction pathway, converting oximes to ketones and nitroxyl anions (NO- ). Detailed thermodynamic, kinetic, and mechanistic interrogations all evince a rate-limiting step primarily driven by the nucleophilicity of the heme peroxo moiety. Coherent with other findings, 18 O and 15 N isotope substitution experiments herein suffice compelling evidence toward a detailed mechanism, which draw close parallels to one of the enzymatic proposals. Intriguingly, recent enzymatic studies also lend credence to these findings, and several relevant reaction intermediates have been observed during NOS turnover.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
5
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
6
|
Khan U, Chowdhury S, Billah MM, Islam KMD, Thorlacius H, Rahman M. Neutrophil Extracellular Traps in Colorectal Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22147260. [PMID: 34298878 PMCID: PMC8307027 DOI: 10.3390/ijms22147260] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophils form sticky web-like structures known as neutrophil extracellular traps (NETs) as part of innate immune response. NETs are decondensed extracellular chromatin filaments comprising nuclear and cytoplasmic proteins. NETs have been implicated in many gastrointestinal diseases including colorectal cancer (CRC). However, the regulatory mechanisms of NET formation and potential pharmacological inhibitors in the context of CRC have not been thoroughly discussed. In this review, we intend to highlight roles of NETs in CRC progression and metastasis as well as the potential of targeting NETs during colon cancer therapy.
Collapse
Affiliation(s)
- Umama Khan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Sabrina Chowdhury
- Biochemistry and Biotechnology, North South University, Dhaka 1229, Bangladesh;
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden;
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden;
- Correspondence:
| |
Collapse
|
7
|
Acevedo-León D, Monzó-Beltrán L, Gómez-Abril SÁ, Estañ-Capell N, Camarasa-Lillo N, Pérez-Ebri ML, Escandón-Álvarez J, Alonso-Iglesias E, Santaolaria-Ayora ML, Carbonell-Moncho A, Ventura-Gayete J, Pla L, Martínez-Bisbal MC, Martínez-Máñez R, Bagán-Debón L, Viña-Almunia A, Martínez-Santamaría MA, Ruiz-Luque M, Alonso-Fernández J, Bañuls C, Sáez G. The Effectiveness of Glutathione Redox Status as a Possible Tumor Marker in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126183. [PMID: 34201191 PMCID: PMC8226858 DOI: 10.3390/ijms22126183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
The role of oxidative stress (OS) in cancer is a matter of great interest due to the implication of reactive oxygen species (ROS) and their oxidation products in the initiation of tumorigenesis, its progression, and metastatic dissemination. Great efforts have been made to identify the mechanisms of ROS-induced carcinogenesis; however, the validation of OS byproducts as potential tumor markers (TMs) remains to be established. This interventional study included a total of 80 colorectal cancer (CRC) patients and 60 controls. By measuring reduced glutathione (GSH), its oxidized form (GSSG), and the glutathione redox state in terms of the GSSG/GSH ratio in the serum of CRC patients, we identified significant changes as compared to healthy subjects. These findings are compatible with the effectiveness of glutathione as a TM. The thiol redox state showed a significant increase towards oxidation in the CRC group and correlated significantly with both the tumor state and the clinical evolution. The sensitivity and specificity of serum glutathione levels are far above those of the classical TMs CEA and CA19.9. We conclude that the GSSG/GSH ratio is a simple assay which could be validated as a novel clinical TM for the diagnosis and monitoring of CRC.
Collapse
Affiliation(s)
- Delia Acevedo-León
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Lidia Monzó-Beltrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontotología-INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.M.-B.); (E.A.-I.)
| | - Segundo Ángel Gómez-Abril
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain;
| | - Nuria Estañ-Capell
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Natalia Camarasa-Lillo
- Servicio de Anatomía Patológica, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (N.C.-L.); (M.L.P.-E.); (J.E.-Á.)
| | - Marisa Luisa Pérez-Ebri
- Servicio de Anatomía Patológica, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (N.C.-L.); (M.L.P.-E.); (J.E.-Á.)
| | - Jorge Escandón-Álvarez
- Servicio de Anatomía Patológica, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (N.C.-L.); (M.L.P.-E.); (J.E.-Á.)
| | - Eulalia Alonso-Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontotología-INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.M.-B.); (E.A.-I.)
| | - Marisa Luisa Santaolaria-Ayora
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Araceli Carbonell-Moncho
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Josep Ventura-Gayete
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València—Universitat de València, 46022 Valencia, Spain; (L.P.); (M.C.M.-B.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Maria Carmen Martínez-Bisbal
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València—Universitat de València, 46022 Valencia, Spain; (L.P.); (M.C.M.-B.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València—Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
- Departamento de Química Física, Universitat de València, Burjasot, 46100 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València—Universitat de València, 46022 Valencia, Spain; (L.P.); (M.C.M.-B.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València—Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
- Departamento de Química Física, Universitat de València, Burjasot, 46100 Valencia, Spain
| | - Leticia Bagán-Debón
- Departamento de Estomatología, Facultad de Medicina y Odontología-INCLIVA, 46010 Valencia, Spain;
| | - Aurora Viña-Almunia
- Centro de Salud San Isidro, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - M. Amparo Martínez-Santamaría
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - María Ruiz-Luque
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Jorge Alonso-Fernández
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
| | - Celia Bañuls
- Servicio de Endocrinología y Nutrición, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain
- Correspondence: (C.B.); (G.S.); Tel.: +34-96-318-9132 (C.B.); +34-96-386-4160 (G.S.)
| | - Guillermo Sáez
- Servicio de Análisis Clínicos, Hospital Universitario Dr. Peset-FISABIO, 46017 Valencia, Spain; (D.A.-L.); (N.E.-C.); (M.L.S.-A.); (A.C.-M.); (J.V.-G.); (M.A.M.-S.); (M.R.-L.); (J.A.-F.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontotología-INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.M.-B.); (E.A.-I.)
- Correspondence: (C.B.); (G.S.); Tel.: +34-96-318-9132 (C.B.); +34-96-386-4160 (G.S.)
| |
Collapse
|
8
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Yarla NS, Madka V, Pathuri G, Rao CV. Molecular Targets in Precision Chemoprevention of Colorectal Cancer: An Update from Pre-Clinical to Clinical Trials. Int J Mol Sci 2020; 21:ijms21249609. [PMID: 33348563 PMCID: PMC7765969 DOI: 10.3390/ijms21249609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, β-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, β-Hydroxy β-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.
Collapse
Affiliation(s)
- Nagendra S. Yarla
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
- VA Medical Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-405-271-3224; Fax: +1-405-271-3225
| |
Collapse
|
10
|
Oplawski M, Dziobek K, Zmarzły N, Grabarek BO, Kiełbasiński R, Kieszkowski P, Januszyk P, Talkowski K, Schweizer M, Kras P, Plewka A, Boroń D. Variances in the Level of COX-2 and iNOS in Different Grades of Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:52-59. [PMID: 31533599 DOI: 10.2174/1389201020666190918104105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many experimental studies have demonstrated the importance of COX-2 in the tumor angiogenesis. Inducible iNOS is responsible for a high and stable level of nitric oxide and is expressed in response to pro-inflammatory factors. OBJECTIVE The aim of this study was to evaluate the expression of COX-2 and iNOS at the protein level and to assess their potential prognostic significance in patients with endometrial cancer. METHODS The study group consisted of 45 women with endometrial cancer divided according to the degree of histological differentiation i.e. G1, 17; G2, 15; G3, 13. The control group consisted of 15 women without neoplastic changes. The expression of studied proteins was determined immunohistochemically with specific polyclonal antibodies. RESULTS Analysis of the COX-2 expression showed that the optical density of the reaction product in G1 reached 186% in the control group, while the values in G2 and G3 reached 243% and 293%, respectively. In the case of iNOS, the optical density of the reaction product reached the following percentages in the control group: 147% in G1, 243% in G2, and 241% in G3. CONCLUSION Our findings suggest that changes in the expression of COX-2 and iNOS may be potentially useful in predicting the progression of endometrial cancer and treatment effectiveness.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland
| | - Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Nikola Zmarzły
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Beniamin O Grabarek
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Kiełbasiński
- Department of Obstetrics & Gynaecology Ward, Health Center in Mikołów, Mikołów, Poland
| | | | - Piotr Januszyk
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland
| | - Karol Talkowski
- University of Warmia and Mazury in Olsztyn, Department of Psychiatry, Olsztyn, Poland
| | - Michał Schweizer
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Andrzej Plewka
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
11
|
Prognostic Value of Inducible Nitric Oxide Synthase (iNOS) in Human Cancer: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6304851. [PMID: 31275981 PMCID: PMC6582868 DOI: 10.1155/2019/6304851] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Background Inducible nitric oxide synthase (iNOS) is confirmed to regulate the production of nitric oxide (NO) when cells are exposed to external stimulus. Recent publications revealed that overexpression of iNOS predicted poor clinical outcomes for patients with malignant cancers, e.g., gastric, bladder, and colorectal cancers; however, several studies reported no obvious relationship between iNOS expression and prognosis of solid tumors. The aim of our study was to investigate the pooled effect of the prognostic value of iNOS expression. Materials and Methods We performed a systematic search of PubMed, Web of Science, and Embase databases up to January 15, 2019. The concerned outcomes of interest included overall survival (OS), cancer-special survival (CSS), and recurrence-free survival (RFS). Results Fourteen studies with 1,758 patients were included in this meta-analysis, and we reached the conclusion that increased iNOS expression was significantly associated with worse OS (HR: 1.89, 95% CI: 1.57 - 2.28, p ≤ 0.001), worse CSS (HR: 3.13, 95% CI: 1.88 - 5.20, p ≤ 0.001), and worse RFS (HR: 2.16, 95% CI: 1.29 - 3.62, p = 0.003) in solid tumors. Furthermore, the subgroup analysis identified the significant relationship of high iNOS expression with poor OS in gastric cancer. No obvious publication bias was detected by Begg's tests. Conclusion In summary, the results drawn in our meta-analysis demonstrated that elevated expression of iNOS had a significant association with poor survival in human cancer. iNOS might serve as a promising predictive biomarker of prognosis in cancer patients, and well-designed prospective studies are further needed to substantiate the prognostic value of iNOS.
Collapse
|
12
|
Porshneva K, Papiernik D, Psurski M, Łupicka-Słowik A, Matkowski R, Ekiert M, Nowak M, Jarosz J, Banach J, Milczarek M, Goszczyński TM, Sieńczyk M, Wietrzyk J. Temporal inhibition of mouse mammary gland cancer metastasis by CORM-A1 and DETA/NO combination therapy. Theranostics 2019; 9:3918-3939. [PMID: 31281522 PMCID: PMC6587338 DOI: 10.7150/thno.31461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide and nitric oxide are two of the most important vasoprotective mediators. Their downregulation observed during vascular dysfunction, which is associated with cancer progression, leads to uncontrolled platelet activation. Therefore, the aim of our studies was to improve vasoprotection and to decrease platelet activation during progression of mouse mammary gland cancer by concurrent use of CO and NO donors (CORM-A1 and DETA/NO, respectively). Methods: Mice injected intravenously with 4T1-luc2-tdTomato or orthotopically with 4T1 mouse mammary gland cancer cells were treated with CORM-A1 and DETA/NO. Ex vivo aggregation and activation of platelets were assessed in the blood of healthy donors and breast cancer patients. Moreover, we analyzed the compounds' direct effect on 4T1 mouse and MDA-MB-231 human breast cancer cells proliferation, adhesion and migration in vitro. Results: We have observed antimetastatic effect of combination therapy, which was only transient in orthotopic model. During early stages of tumor progression concurrent use of CORM-A1 and DETA/NO demonstrated vasoprotective ability (decreased endothelin-1, sICAM and sE-selectin plasma level) and downregulated platelets activation (decreased bound of fibrinogen and vWf to platelets) as well as inhibited EMT process. Combined treatment with CO and NO donors diminished adhesion and migration of breast cancer cells in vitro and inhibited aggregation as well as TGF-β release from breast cancer patients' platelets ex vivo. However, antimetastatic effect was not observed at a later stage of tumor progression which was accompanied by increased platelets activation and endothelial dysfunction related to a decrease of VASP level. Conclusion: The therapy was shown to have antimetastatic action and resulted in normalization of endothelial metabolism, diminution of platelet activation and inhibition of EMT process. The effect was more prominent during early stages of tumor dissemination. Such treatment could be applied to inhibit metastasis during the first stages of this process.
Collapse
Affiliation(s)
- Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Łupicka-Słowik
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ekiert
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz M. Goszczyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
13
|
Missiaen R, Mazzone M, Bergers G. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Semin Cancer Biol 2018; 52:107-116. [PMID: 29935312 PMCID: PMC6548870 DOI: 10.1016/j.semcancer.2018.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Tumor angiogenesis and escape of immunosurveillance are two cancer hallmarks that are tightly linked and reciprocally regulated by paracrine signaling cues of cell constituents from both compartments. Formation and remodeling of new blood vessels in tumors is abnormal and facilitates immune evasion. In turn, immune cells in the tumor, specifically in context with an acidic and hypoxic environment, can promote neovascularization. Immunotherapy has emerged as a major therapeutic modality in cancer but is often hampered by the low influx of activated cytotoxic T-cells. On the other hand, anti-angiogenic therapy has been shown to transiently normalize the tumor vasculature and enhance infiltration of T lymphocytes, providing a rationale for a combination of these two therapeutic approaches to sustain and improve therapeutic efficacy in cancer. In this review, we discuss how the tumor vasculature facilitates an immunosuppressive phenotype and vice versa how innate and adaptive immune cells regulate angiogenesis during tumor progression. We further highlight recent results of antiangiogenic immunotherapies in experimental models and the clinic to evaluate the concept that targeting both the tumor vessels and immune cells increases the effectiveness in cancer patients.
Collapse
Affiliation(s)
- Rindert Missiaen
- VIB-Center for Cancer Biology, and KU Leuven, Department of Oncology, 3000 Leuven, Belgium
| | - Massimiliano Mazzone
- VIB-Center for Cancer Biology, and KU Leuven, Department of Oncology, 3000 Leuven, Belgium
| | - Gabriele Bergers
- VIB-Center for Cancer Biology, and KU Leuven, Department of Oncology, 3000 Leuven, Belgium; Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
14
|
Kim Y, Wen X, Bae JM, Kim JH, Cho NY, Kang GH. The distribution of intratumoral macrophages correlates with molecular phenotypes and impacts prognosis in colorectal carcinoma. Histopathology 2018; 73:663-671. [DOI: 10.1111/his.13674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Younghoon Kim
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Pathology; Seoul National University College of Medicine; Seoul South Korea
| | - Xianyu Wen
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Pathology; Seoul National University College of Medicine; Seoul South Korea
| | - Jeong M Bae
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Pathology; Seoul National University Hospital; Seoul South Korea
| | - Jung H Kim
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Pathology; Seoul National University Hospital; Seoul South Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
| | - Gyeong H Kang
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Pathology; Seoul National University College of Medicine; Seoul South Korea
| |
Collapse
|
15
|
Majumdar I, Ahuja V, Paul J. Altered expression of Tumor Necrosis Factor Alpha -Induced Protein 3 correlates with disease severity in Ulcerative Colitis. Sci Rep 2017; 7:9420. [PMID: 28842689 PMCID: PMC5572729 DOI: 10.1038/s41598-017-09796-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC), an inflammatory disorder of the colon arises from dysregulated immune response towards gut microbes. Transcription factor NFκB is a major regulatory component influencing mucosal inflammation. We evaluated expression of Tumor Necrosis Factor Alpha Induced Protein3 (TNFAIP3), the inhibitor of NFκB activation and its associated partners ITCH, RNF11 and Tax1BP1 in inflamed mucosa of UC patients. We found highly significant up-regulated mRNA expression of TNFAIP3 that negatively correlated with disease activity in UC. mRNA levels of ITCH, RNF11 and Tax1BP1 were significantly down-regulated. Significant positive correlation with disease activity was noted for Tax1BP1. All four genes showed significant down-regulation at protein level. mRNA levels of inducers of TNFAIP3 expression, NFκB p65 subunit and MAST3 was determined. There was significant increase in p65 mRNA expression and down-regulated MAST3 expression. This suggested that increase in NFκB expression regulates TNFAIP3 levels. Deficiency of TNFAIP3 expression resulted in significant up-regulation of NFκB p65 sub-unit as well as its downstream genes such as iNOS, an inflammatory marker, inhibitors of apoptosis like cIAP2 and XIAP and mediators of anti-apoptotic signals TRAF1 and TRAF2. Taken together, decreased expression of TNFAIP3 and its partners contribute to inflammation and up-regulation of apoptosis inhibitors that may create microenvironment for colorectal cancer.
Collapse
Affiliation(s)
- Ishani Majumdar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
16
|
Involvement of the Toll-Like Receptor/Nitric Oxide Signaling Pathway in the Pathogenesis of Cervical Cancer Caused by High-Risk Human Papillomavirus Infection. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626766 PMCID: PMC5463171 DOI: 10.1155/2017/7830262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human papillomavirus (HPV) can activate Toll-like receptor (TLR)/nitric oxide (NO) signaling pathways; however, whether the TLR/NO pathway is involved in cervical cancer caused by high-risk HPV (HR-HPV) remains unclear. In this study, 43 HR-HPV-positive patients with cervical cancer (CC group), 39 HR-HPV-positive patients with a healthy cervix (HR-HPV group), and 33 HR-HPV-negative controls were recruited. NO concentration in cervical canal and expression of inducible NO synthase (iNOS) in cervical tissues were detected. Expressions of key TLR/NO pathway genes (TLR3/4/7/8, NF-κB p65, and iNOS) in cervical epithelial cells were detected by quantitative reverse transcription PCR. Expressions of TLR4, NF-κB p65, and iNOS in CaSki, HeLa, and C33a cells were determined by Western blot. NO concentration in cervical canal of CC group was significantly higher than in other groups (P < 0.05). Positive rates of iNOS in cervical tissues were 72.1%, 28.2%, and 3.1% in the CC group, HR-HPV group, and controls, respectively (P < 0.05). Levels of TLR3, TLR4, TLR7, TLR8, NF-κB p65, and iNOS in cervical epithelial cells were higher in CC group than in other groups (P < 0.05). Both mRNA and protein levels of TLR4, NF-κB p65, and iNOS were higher in HPV-positive HeLa and CaSki cells than in HPV-negative C33a cells (P < 0.05). Together, these results suggest that TLR/NO signaling pathway may be involved in pathogenesis of cervical cancer caused by HR-HPV.
Collapse
|
17
|
Koelzer VH, Canonica K, Dawson H, Sokol L, Karamitopoulou-Diamantis E, Lugli A, Zlobec I. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology 2015; 5:e1106677. [PMID: 27141391 DOI: 10.1080/2162402x.2015.1106677] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022] Open
Abstract
Tumor-associated macrophages (TAM) play a controversial role in epithelial-mesenchymal transition (EMT) and prognosis of colorectal cancer (CRC). In particular, the microlocalization, polarization and prognostic impact of TAM in the immediate environment of invading CRC cells has not yet been established. To address this clinically relevant question, intraepithelial (iCD68) and stromal macrophages (sCD68), M1-macrophages (iNOS), M2-macrophages (CD163), cytokeratin-positive cancer cells (tumor buds) and expression of the anti-phagocytic marker CD47 were investigated in primary tumors of 205 well-characterized CRC patients. Cell-to-cell contacts between tumor buds and TAM were detected using high-resolution digital scans. The composition of the tumor microenvironment was analyzed with clinicopathological and molecular features. High CD68 counts predicted long term overall survival independent of microlocalization (iCD68 p=0.0016; sCD68 p=0.03), pT, pN, pM and post-operative therapy. CD68 infiltration correlated with significantly less tumor budding (iCD68 p=0.0066; sCD68 p=0.0091) and absence of lymph node metastasis (sCD68 p=0.0286). Cell-to-cell contact of sCD68 and invading cancer cells was frequent and ameliorated the detrimental prognostic effect of the tumor budding phenotype. Subgroup analysis identified long-term survival with CD47 loss and predominance of CD163+ M2 macrophages (p = 0.0366). CD163+ macrophages represented 40% of the total population, and positively correlated with total CD68 macrophage numbers (r[CD68/CD163] = 0.32; p = 0.0001). Strong CD163 infiltration predicted lower tumor grade (p = 0.0026) and less lymph node metastasis (p = 0.0056). This study provides direct morphological evidence of an interaction between TAM and infiltrating cancer cells. The prognostic impact of TAM is modulated by phenotype, microlocalization and the expression of anti-phagocytic markers in CRC.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Katharina Canonica
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lena Sokol
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern, Switzerland
| | - Eva Karamitopoulou-Diamantis
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern , Bern, Switzerland
| |
Collapse
|
18
|
Quantitative measurement of iNOS expression in melanoma, nasopharyngeal, colorectal, and breast tumors of Tunisian patients: comparative study and clinical significance. Tumour Biol 2015; 37:5153-64. [PMID: 26547585 DOI: 10.1007/s13277-015-4303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/20/2015] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation increases the risk of development of human malignancies. iNOS is an enzyme dominantly expressed during inflammatory reactions and seems to play a critical role in tumorigenesis. Our aim was to assess the iNOS expression in four types of human tumors: breast, colorectal, nasopharyngeal, and melanoma, of Tunisian patients. The level of iNOS was measured by RT-QPCR in tumor specimens. We showed that the expression of iNOS was higher in breast compared to colorectal and nasopharyngeal tumors, whereas in melanoma, the level of iNOS expression was low. Significant associations were found when comparing the iNOS expression in cancers pairs such as melanoma versus colorectal (p < 0.0001), colorectal versus nasopharyngeal (p = 0.0072), and melanoma versus breast (p < 0.0001). Furthermore, iNOS expression correlated with the Breslow thickness, Clark level, and histological subtype in melanoma, while in nasopharyngeal carcinoma, significant association was seen with age at diagnosis, TNM, metastasis, response to treatment, and expression of COX-2. Furthermore, the expression of iNOS correlated with tumor size, TNM, tumor location, and histological type in colorectal cancer, and with tumor size, tumor stage, SBR grade, and triple negative cases in breast cancer. On the other hand, immunohistochemistry analysis shows that the expression of iNOS is observed in the stroma and tumor cells as well. Overall, our results highlight that iNOS is a reliable marker for advanced stage and aggressive behavior for the four types of cancer and might be a potential promising therapeutic target.
Collapse
|
19
|
Filippi L, Dal Monte M, Casini G, Daniotti M, Sereni F, Bagnoli P. Infantile hemangiomas, retinopathy of prematurity and cancer: a common pathogenetic role of the β-adrenergic system. Med Res Rev 2014; 35:619-52. [PMID: 25523517 DOI: 10.1002/med.21336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serendipitous demonstration that the nonselective β-adrenergic receptor (β-AR) antagonist propranolol promotes the regression of infantile hemangiomas (IHs) aroused interest around the involvement of the β-adrenergic system in angiogenic processes. The efficacy of propranolol was related to the β2-AR blockade and the consequent inhibition of the production of vascular endothelial growth factor (VEGF), suggesting the hypothesis that propranolol could also be effective in treating retinopathy of prematurity (ROP), a retinal pathology characterized by VEGF-induced neoangiogenesis. Consequent to the encouraging animal studies, a pilot clinical trial showed that oral propranolol protects newborns from ROP progression, even though this treatment is not sufficiently safe. Further, animal studies clarified the role of β3-ARs in the development of ROP and, together with several preclinical studies demonstrating the key role of the β-adrenergic system in tumor progression, vascularization, and metastasis, prompted us to also investigate the participation of β3-ARs in tumor growth. The aim of this review is to gather the recent findings on the role of the β-adrenergic system in IHs, ROP, and cancer, highlighting the fact that these different pathologies, triggered by different pathogenic noxae, share common pathogenic mechanisms characterized by the presence of hypoxia-induced angiogenesis, which may be contrasted by targeting the β-adrenergic system. The mechanisms characterizing the pathogenesis of IHs, ROP, and cancer may also be active during the fetal-neonatal development, and a great contribution to the knowledge on the role of β-ARs in diseases characterized by chronic hypoxia may come from research focusing on the fetal and neonatal period.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, "A. Meyer" University Children's Hospital, Florence, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L. Nitric oxide in cancer metastasis. Cancer Lett 2014; 353:1-7. [PMID: 25079686 DOI: 10.1016/j.canlet.2014.07.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the spread and growth of tumor cells from the original neoplasm to further organs. This review analyzes the role of nitric oxide (NO), a signaling molecule, in the regulation of cancer formation, progression, and metastasis. The action of NO on cancer relies on multiple factors including cell type, metastasis stage, and organs involved. Various chemotherapy drugs cause cells to release NO, which in turn induces cytotoxic death of breast, liver, and skin tumors. However, NO has also been clinically connected to a poor cancer prognosis because of its role in angiogenesis and intravasation. This supports the claim that NO can be characterized as both pro-metastatic and anti-metastatic, depending on specific factors. The inhibition of cell proliferation and anti-apoptosis pathways by NO donors has been proposed as a novel therapy to various cancers. Studies suggest that NO-releasing non-steroidal anti-inflammatory drugs act on cancer cells in several ways that may make them ideal for cancer therapy. This review summarizes the biological significance of NO in each step of cancer metastasis, its controversial effects for cancer progression, and its therapeutic potential.
Collapse
Affiliation(s)
- Huiwen Cheng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Research Center, Ohio University, Athens, OH 45701, USA
| | - Lei Wang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Research Center, Ohio University, Athens, OH 45701, USA
| | - Molly Mollica
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Research Center, Ohio University, Athens, OH 45701, USA
| | - Anthony T Re
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Research Center, Ohio University, Athens, OH 45701, USA.
| | - Li Zuo
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Rahat MA, Hemmerlein B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol 2013; 4:144. [PMID: 23785333 PMCID: PMC3684767 DOI: 10.3389/fphys.2013.00144] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022] Open
Abstract
Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors.
Collapse
Affiliation(s)
- Michal A Rahat
- Department of Immunology, Immunology Research Unit, Carmel Medical Center and the Ruth and Bruce Rappaport Faculty of Medicine Technion, Haifa, Israel
| | | |
Collapse
|
22
|
The impact of immunohistochemical expression of nitric oxide synthases on clinical and pathological features of renal cell carcinoma. World J Urol 2012; 31:1197-203. [PMID: 22562149 DOI: 10.1007/s00345-012-0878-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate the immunohistochemical expression of nitric oxide synthase (NOS) types 1, 2, and 3 in intratumoral and non-neoplastic samples of renal cell carcinoma (RCC) and correlate it with the clinical and pathological features of this malignancy. METHODS We analyzed 110 patients with RCC underwent radical nephrectomy (RN) or partial nephrectomy (PN) by streptavidin-biotin peroxidase method, tissue microarray, and digital microscopy. As endpoints, NOS expression was correlated with pathological features, overall survival (OS), and cancer-specific survival (CSS). RESULTS Non-neoplastic samples had higher NOS3 and lower NOS 2 levels than RCC tissues. Greater expression of all NOS isoforms was associated with larger tumors. High NOS1 expression correlated with microscopic venous invasion (MVI) (p = 0.046) and lymph node metastases (p = 0.007). High NOS2 expression was linked to MVI, more RN performed, and male gender (p = 0.035, p = 0.003, and p = 0.027, respectively). High NOS3 expression correlated with lymph node metastases (p = 0.039), microlymphatic invasion (p = 0.029), invasion of the renal pelvis and ureter (p = 0.004), RN (p = 0.003), and shorter OS (58.1 vs. 79.4 % respectively, p = 0.033) by univariate analysis. DFS was not influenced by any NOS isoform. By multivariate analysis, the risk factors for death were TNM stages III and IV (hazard ratio [HR] = 4.5), high Fuhrman's grade (HR = 2.9), Karnofsky performance status ≤80 (HR = 2.5), progression (HR = 5.5), and recurrence (HR = 6.3). Stage III disease was an independent risk factor for recurrence (HR = 9.5). CONCLUSIONS High NOS expression in RCC is associated with a poor prognosis and larger tumors. NOS3 influences OS by univariate analysis.
Collapse
|
23
|
COX-2 and survivin reduction may play a role in berberine-induced apoptosis in human ductal breast epithelial tumor cell line. Tumour Biol 2011; 33:207-14. [PMID: 22081376 DOI: 10.1007/s13277-011-0263-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/27/2011] [Indexed: 01/05/2023] Open
Abstract
Berberine is an isoquinoline alkaloid that has several pharmacological effects such as antiinflammatory, antimicrobial, apoptosis-inducing and anticancer effects. It has been illustrated that the antiinflammatory effect is mediated by suppressing the nuclear factor-kappa B (NF-κB) that activates expression of some antiinflammatory and antiapoptotic proteins including cyclooxygenase-2(COX-2), inducible nitric oxide synthase (iNOS) and survivin; therefore, berberine may induce apoptosis by reducing antiinflammatory and antiapoptotic agents, which suggest the relationship between antiinflammatory and apoptosis pathways. For further illustration of the mechanism of berberine action, the human ductal breast epithelial tumor cell line (T47D cell line) was treated with different concentrations of berberine (25-100 μM/ml). Berberine in 50 μM/ml had the most reducing effect on cell viability and inducing of apoptosis. The level of COX-2, iNOS and survivin proteins decreased in berberine-treated cells; however, treatment of the cells with aspirin and aminoguanidine (AG), COX-2 and iNOS inhibitors, respectively, showed that despite the cell growth-reducing effect of aspirin, AG did not have a significant effect on cell viability. On the other hand, with the attention to reduction in survivin protein level in berberine-treated cells, the results suggest that the apoptotic effect of berberine may be mediated by reduction in both of the COX-2 and survivin in T47D cell line, while the iNOS does not play any effective role in berberine-induced apoptosis.
Collapse
|
24
|
van Oosten M, Crane LM, Bart J, van Leeuwen FW, van Dam GM. Selecting Potential Targetable Biomarkers for Imaging Purposes in Colorectal Cancer Using TArget Selection Criteria (TASC): A Novel Target Identification Tool. Transl Oncol 2011; 4:71-82. [PMID: 21461170 PMCID: PMC3069650 DOI: 10.1593/tlo.10220] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/23/2010] [Accepted: 11/01/2010] [Indexed: 12/19/2022] Open
Abstract
Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value.
Collapse
Affiliation(s)
- Marleen van Oosten
- Department of Surgery, Division of Surgical Oncology, Surgical Research Laboratory/BioOptical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|