1
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Wang Y, Luan S, Yuan Z, Lin C, Fan S, Wang S, Ma C, Wu S. Therapeutic effect of platelet-rich plasma on glucocorticoid-induced rat bone marrow mesenchymal stem cells in vitro. BMC Musculoskelet Disord 2022; 23:151. [PMID: 35168574 PMCID: PMC8845312 DOI: 10.1186/s12891-022-05094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a progressive and disabling disease caused by long-term or high-dose glucocorticoid use. Decreased osteogenesis and proliferation of bone marrow mesenchymal stem cells (BMSCs) are the main pathogenesis of GIONFH. Platelet-rich plasma (PRP) has been shown to play a promising role in bone regeneration. However, the effects of PRP on glucocorticoid-induced BMSCs inhibition remains elusive. The objective of this study was to explore whether PRP could improve the in vitro biological activities of BMSCs inhibited by high-dose glucocorticoid in vitro. METHODS In this study, a dexamethasone (Dex)-induced in vitro cell model was established. The effects of PRP on proliferation, migration, cell cycle and apoptosis of rat BMSCs induced with high-dose Dex compared to BMSCCTRL, using CCK-8 assay, transwell, flow cytometry and TUNEL assay, respectively. We further performed the alkaline phosphatase (ALP) and alizarin red (ALR) staining to explore the influence of PRP on osteogenic differentiation. Western Blot was used to detect the expression of Bcl-2, Caspase-3, RUNX2 apoptosis, and osteogenic-related proteins. RESULTS We observed increased apoptosis rate and Caspase-3 expression, and the decreased migration and osteogenic differentiation, and down-regulation of RUNX-2 and Bcl-2 expression in Dex-induced BMSCs. PRP could reverse these inhibitory effects of Dex, and enhance the BMSCs proliferation, migration, and osteogenic ability in vitro. CONCLUSION Our vitro study showed that PRP significantly protected BMSCs from Dex-induced apoptosis, and further promoted BMSCs proliferation, migration, and osteogenic differentiation. This study provides a scientific basis for the prevention and treatment of GIONFH with PRP. Meanwhile, it also lays the foundation for the application of PRP in other musculoskeletal diseases.
Collapse
Affiliation(s)
- Yanxue Wang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shuo Luan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Ze Yuan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Caina Lin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shengnuo Fan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shaoling Wang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
3
|
Fan ZQ, Bai SC, Xu Q, Li ZJ, Cui WH, Li H, Li XH, Zhang HF. Oxidative Stress Induced Osteocyte Apoptosis in Steroid-Induced Femoral Head Necrosis. Orthop Surg 2021; 13:2145-2152. [PMID: 34559465 PMCID: PMC8528976 DOI: 10.1111/os.13127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the effect and mechanism of Glucocorticoids (GCs) induced oxidative stress and apoptosis on necrosis of the femoral head in patients and rats. Methods Eight patients with steroid‐induced avascular necrosis of the femoral head (SINFH) and eight patients with developmental dysplasia of the hips (DDH) were enrolled in our study. In animal model, twenty male Sprague‐Dawley rats were randomly divided into two groups (SINFH group and NS group). The SINFH model group received the methylprednisolone (MPS) injection, while control group was injected with normal saline (NS). MRI was used to confirm SINFH rat model was established successfully. Then, the rats were sacrificed 4 weeks later and femoral head samples were harvested. Histopathological staining was preformed to evaluate osteonecrosis. TUNEL staining was performed with 8‐OHdG and DAPI immunofluorescence staining to evaluate oxidative injury and osteocyte apoptosis. Immunohistochemistry staining was used to detect Nox1, Nox2, and Nox4 protein expression. Results MRI showed signs of typical osteonecrosis of femoral head in SIHFH patients. Histopathological staining showed that the rate of empty lacunae in SINFH patients was significantly higher (56.88% ± 9.72% vs 19.92% ± 4.18%, T = −11.04, P < 0.001) than that in DDH patients. The immunofluorescence staining indicated that the TUNEL‐positive cell and 8‐OHdG‐positve cell in SINFH patients were significantly higher (49.32% ± 12.95% vs 8.00% ± 2.11%, T = −7.04, P = 0.002, 54.6% ± 23.8% vs 9.75% ± 3.31%, T = −4.17, P = 0.003) compared to the DDH patients. The immunohistochemistry staining showed that the protein expression of NOX1, NOX2 and NOX4 in SINFH patients were significantly increased (64.50% ± 7.57% vs 37.58% ± 9.23%, T = −3.88, P = 0.018, 90.84% ± 2.93% vs 49.56% ± 16.47%, T = −5.46, P = 0.001, 85.46% ± 9.3% vs 40.69% ± 6.77%, T = −8.03, P = 0.001) compared to the DDH patients. In animal model, MRI showed signs of edema of femoral head in MPS group, which represents SINFH rat model was established successfully. Histological evaluation showed the rate of empty lacunae in MPS group was significantly higher (25.85% ± 4.68% vs 9.35% ± 1.99%, T = −7.96, P < 0.001) than that in NS group. The immunofluorescence staining indicated that the TUNEL‐positive cell and 8‐OHdG‐positve cell (in MPS group were significantly increased (31.93% ± 1.01% vs 11.73% ± 1.16%, T = −32.26, P < 0.001, 47.59% ± 1.39% vs 22.07% ± 2.45%, T = −22.18, P < 0.001) compared to the NS group. The immunohistochemistry staining showed that the expression of NOX2 in MPS group was significantly increased (76.77% ± 8.34% vs 50.32% ± 10.84%, T = −4.74, P = 0.001) compare with NS group. Conclusion Our findings indicated that GC‐induced NOXs expression may be an important source of oxidative stress, which could lead to osteocyte apoptosis in the process of SINFH
Collapse
Affiliation(s)
- Zhen-Qi Fan
- The Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-Cai Bai
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Qian Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhi-Jun Li
- The Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Hao Cui
- Department of Endocrinology, The Shenzhen Second People's Hospital, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hui Li
- The Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Hui Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Hua-Feng Zhang
- The Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Xue J, Liu Y, Zhang S, Ding L, Shen B, Shao Y, Wei Z. CGRP protects bladder smooth muscle cells stimulated by high glucose through inhibiting p38 MAPK pathway in vitro. Sci Rep 2021; 11:7643. [PMID: 33828162 PMCID: PMC8027675 DOI: 10.1038/s41598-021-87140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to explore the effect of calcitonin gene-related peptide (CGRP) on bladder smooth muscle cells (BSMCs) under high glucose (HG) treatment in vitro. BSMCs from Sprague-Dawley rat bladders were cultured and passaged in vitro. The third-generation cells were cultured and divided into control group, HG group, HG + CGRP group, HG + CGRP + asiatic acid (AA, p-p38 activator) group, CGRP group, AA group, HG + CGRP + CGRP-8-37 (CGRP receptor antagonist) group and HG + LY2228820 (p38 MAPK inhibitor) group. The cell viability, apoptosis, malondialdehyde (MDA) and superoxide dismutase (SOD) levels of BSMCs were observed by the relevant detection kits. The expressions of α-SM-actin, p38 and p-p38 were detected by qRT-PCR or Western blot analysis. Compared with the control group, the cell viability, SOD and α-SM-actin levels of BSMCs were decreased and apoptotic cells, MDA and p-p38 levels were increased after HG treatment, while these changes could be partly reversed when BSMCs were treated with HG and CGRP or LY2228820 together. Moreover, AA or CGRP-8-37 could suppress the effect of CGRP on BSMCs under HG condition. Our data indicate that CGRP protects BSMCs from oxidative stress induced by HG in vitro, and inhibit the α-SM-actin expression decrease through inhibiting the intracellular p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jun Xue
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Yadong Liu
- Department of Urology, The Third People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Sichong Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Liucheng Ding
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Yunpeng Shao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
5
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
6
|
The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 2019; 10:377. [PMID: 31805987 PMCID: PMC6896503 DOI: 10.1186/s13287-019-1498-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into several tissues, such as bone, cartilage, and fat. Glucocorticoids affect a variety of biological processes such as proliferation, differentiation, and apoptosis of various cell types, including osteoblasts, adipocytes, or chondrocytes. Glucocorticoids exert their function by binding to the glucocorticoid receptor (GR). Physiological concentrations of glucocorticoids stimulate osteoblast proliferation and promote osteogenic differentiation of MSCs. However, pharmacological concentrations of glucocorticoids can not only induce apoptosis of osteoblasts and osteocytes but can also reduce proliferation and inhibit the differentiation of osteoprogenitor cells. Several signaling pathways, including the Wnt, TGFβ/BMP superfamily and Notch signaling pathways, transcription factors, post-transcriptional regulators, and other regulators, regulate osteoblastogenesis and adipogenesis of MSCs mediated by GR. These signaling pathways target key transcription factors, such as Runx2 and TAZ for osteogenesis and PPARγ and C/EBPs for adipogenesis. Glucocorticoid-induced osteonecrosis and osteoporosis are caused by various factors including dysfunction of bone marrow MSCs. Transplantation of MSCs is valuable in regenerative medicine for the treatment of osteonecrosis of the femoral head, osteoporosis, osteogenesis imperfecta, and other skeletal disorders. However, the mechanism of inducing MSCs to differentiate toward the osteogenic lineage is the key to an efficient treatment. Thus, a better understanding of the molecular mechanisms behind the imbalance between GR-mediated osteoblastogenesis and adipogenesis of MSCs would not only help us to identify the pathogenic causes of glucocorticoid-induced osteonecrosis and osteoporosis but also promote future clinical applications for stem cell-based tissue engineering and regenerative medicine. Here, we primarily review the signaling mechanisms involved in adipogenesis and osteogenesis mediated by GR and discuss the factors that control the adipo-osteogenic balance.
Collapse
|
7
|
Yuan N, Li J, Li M, Ji W, Ge Z, Fan L, Wang K. BADGE, a synthetic antagonist for PPARγ, prevents steroid-related osteonecrosis in a rabbit model. BMC Musculoskelet Disord 2018; 19:129. [PMID: 29703208 PMCID: PMC5923022 DOI: 10.1186/s12891-018-2050-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background It was indicated that inhibition of PPARγ probably represents a novel therapy for steroid-related osteonecrosis. In this study, we investigated the preventive effects of PPARγ inhibition on steroid-related osteonecrosis in a rabbit model. Methods Rabbits were randomly divided into three groups (normal group, model group and BADGE group). Osteonecrosis was induced in rabbits in the model group and the BADGE group. The BADGE group also received bisphenol a diglycidyl ether(BADGE), a PPARγ antagonist, for 6 weeks. Results Histopathological results indicated that rabbits treated with BADGE exhibited significantly reduced osteonecrotic changes, incidence of osteonecrosis and bone marrow adiposity. Furthermore, BADGE-treated rabbits exhibited reduced intraosseous pressure and increased femoral blood perfusion. Micro-computed tomography and bone histomorphometry indicated that the BADGE group exhibited significantly improved bone quality and mineral appositional rate compared with the model group. Furthermore, the BADGE group showed a significant increase in circulating levels of the bone formation marker osteocalcin and reduced levels of the bone resorption marker TRACP. Overall, BADGE-treated rabbits exhibited reduced marrow adiposity concomitant with improved bone formation. Conclusions In conclusion, these observations demonstrated that pharmacological inhibition of PPARγ might represent an effective therapy for steroid-related osteonecrosis in the near future.
Collapse
Affiliation(s)
- Na Yuan
- Department of Ultrasonography, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jia Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhaogang Ge
- Department of Joint Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Lihong Fan
- The first department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Kunzheng Wang
- The first department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
8
|
Dai Z, Zheng J, Gao Y, Liu K, Yang S, Xu W. [The role of glutathione in steroid induced bone marrow mesenchymal stem cells dysfunction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:91-98. [PMID: 29806372 DOI: 10.7507/1002-1892.201703129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To investigate the protective effect of the antioxidant glutathione (GSH) on the steroid-induced imbalance between osteogenesis and adipogenesis in human bone marrow mesenchymal stem cells (BMSCs). Methods The BMSCs were isolated from the proximal femur bone marrow from 3 patients of femoral neck fracture and were separated, cultured, and purificated by density gradient centrifugation and adherent wall method in vitro. The third generation BMSCs were divided into 5 groups: group A, BMSCs (1×10 5 cells/mL); group B, BMSCs (1×10 5 cells/mL)+10 μmol/L dexamethasone; group C, BMSCs (1×10 5 cells/mL)+10 μmol/L dexamethasone+5 μmol/L GSH; group D, BMSCs (1×10 5 cells/mL)+10 μmol/L dexamethasone+10 μmol/L GSH; group E, BMSCs (1×10 5 cells/mL)+10 μmol/L dexamethasone+50 μmol/L GSH. After cultured for 7 days, the reactive oxygen species expression was detected by flow cytometry; the superoxide dismutase (SOD) and Catalase mRNA expressions were determined by RT-PCR; the peroxisome proliferator-activated receptors γ (PPAR-γ), CCAAT/enhancer-binding family of proteins (C/EBP), Runx2, and alkaline phosphatase (ALP) mRNA expressions were evaluated by real-time fluorescence quantitative PCR. After cultured for 21 days, Oil red O staining was used to observe the adipogenesis differentiation of cells, and the expressions of related proteins were detected by Western blot. Results The reactive oxygen species expression in group B was obviously higher than in the other groups, in group C than in groups A, D, and E, and in groups D, E than in group A, all showing significant differences between groups ( P<0.05); but there was no significant difference between groups D and E ( P>0.05). The oil red O staining positive cells in group B were obviously more than the other groups, and groups C, D, E, and A decreased sequentially, the absorbance ( A) values had significant differences between groups ( P<0.05). RT-PCR detection showed that the relative expressions of SOD and Catalase mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E ( P<0.05), but there was no significant difference among groups A, D, and E ( P>0.05). Real-time fluorescence quantitative PCR detection showed that the relative expressions of PPAR-γ and C/EBP mRNA in group B were significantly higher than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A ( P<0.05); but there was no significant difference between groups D and E ( P>0.05). The relative expressions of Runx2 and ALP mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A ( P<0.05); but there was no significant difference between groups D and E ( P>0.05). Western blot detection showed that the relative expression of PPAR-γ and C/EBP protein in group B was significantly higher than those in the other groups, and groups C, D, E, and A decreased sequentially, all showing significant differences between groups ( P<0.05). The relative expression of Runx2 and ALP protein in group B was significantly lower than those in the other groups, and groups C, D, E, and A increased sequentially, all showing significant differences between groups ( P<0.05). Conclusions GSH can inhibit the adipogenesis differentiation and enhance the osteogenic differentiation of human BMSCs by reducing the intracellular reactive oxygen species level; and in a certain range, the higher the concentration of GSH, the more obvious the effect is.
Collapse
Affiliation(s)
- Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou Henan, 450003, P.R.China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou Henan, 450003,
| | - Yanzheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou Henan, 450003, P.R.China
| | - Ke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou Henan, 450003, P.R.China
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430022, P.R.China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430022, P.R.China
| |
Collapse
|
9
|
Bian Y, Qian W, Li H, Zhao RC, Shan WX, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med 2015; 36:678-84. [PMID: 26151338 PMCID: PMC4533777 DOI: 10.3892/ijmm.2015.2273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/19/2015] [Indexed: 01/07/2023] Open
Abstract
Avascular necrosis of the femoral head (ANFH) occurs following exposure to corticosteroids, and the proliferative capacity of the mesenchymal stem cells (MSCs) belonging to ANFH was reduced. The previous studies indicate that microRNA (miRNA) has an important regulatory role during proliferation and osteogenic differentiation of MSCs. Therefore, MSCs were obtained from healthy adults, and were cultured and osteogenically-induced by different dexamethasone concentrations. The proliferation and osteogenic differentiation capacities were examined through observing cellular morphology, alkaline phosphatase and alizarin red; miRNA expression was investigated using an miRNA gene chip and miRNA of differential expressions were retrieved through a database to analyze its regulatory effect. Dexamethasone at a concentration of 10−7 mol/l induced the proliferation and osteogenic differentiation of MSCs and resulted in evident miRNA expression profile changes. In total, 11 miRNAs were upregulated at 10−7 mol/l while 6 were downregulated, and partial miRNA was identified to participate in the regulation of cell proliferation and cell apoptosis, MSC osteogenic differentiation, lipid metabolism and other processes.
Collapse
Affiliation(s)
- Yanyan Bian
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenwei Qian
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hongling Li
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Wang Xing Shan
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Li GW, Xu Z, Chen QW, Chang SX, Tian YN, Fan JZ. The temporal characterization of marrow lipids and adipocytes in a rabbit model of glucocorticoid-induced osteoporosis. Skeletal Radiol 2013; 42:1235-44. [PMID: 23754734 DOI: 10.1007/s00256-013-1659-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the temporal changes in marrow lipids content and adipocytes in the development of glucocorticoid-induced osteoporosis (GIOP) in rabbits using MR spectroscopy. SUBJECTS AND METHODS Twenty 20-week-old female rabbits were randomized to a control group and a GIOP group equally. Marrow lipids fraction and bone mineral density at the left proximal femur and L3-L4 vertebrae were measured by MR spectroscopy and dual-energy X-ray absorptiometry at week 0, 4, 8, and 12. Marrow adipocytes were quantitatively evaluated by histopathology. RESULTS Marrow adiposity in the GIOP group showed a significant increase over time, with a variation of marrow lipids fraction (+35.9 %) at week 4 from baseline and it was maintained until week 12 (+75.2 %, p < 0.001 for all). The GIOP group demonstrated continuous deterioration of bone with significant difference between the two groups at week 8, followed by increased marrow fat with significant difference at week 4 (p < 0.05 for all). In comparison with the controls, marrow adipocyte density in the GIOP group increased by 57.1 % at week 8 and 35.4 % at week 12, respectively. A reduction (-13.3 %) in adipocyte mean diameter at week 8 (but an increase (+22.7 %) at week 12) were observed in the GIOP group compared with the control group (p < 0.05 for all). There was significant difference between two periods (p = 0.023) in adipocyte mean diameter in the GIOP group. The percentage area of marrow adipocytes in the GIOP group was 62.8 ± 8.7 % at week 8 and 79.2 ± 7.7 % at week 12, both of which were significantly higher than those of the controls (p < 0.05 for all). CONCLUSIONS Marrow adipogenesis is synchronized with bone loss in the development of GIOP, which was characterized by a significant increase in the number of small-sized marrow adipocytes in the relatively early stage and concomitant volume increase later on. MR spectroscopy appears to be the most powerful tool for detecting the sequential changes in marrow lipid content.
Collapse
Affiliation(s)
- Guan-Wu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan-he Road, Hong-kou District, Shanghai 200437, China
| | | | | | | | | | | |
Collapse
|
11
|
Aconiti Lateralis Preparata Radix Activates the Proliferation of Mouse Bone Marrow Mesenchymal Stem Cells and Induces Osteogenic Lineage Differentiation through the Bone Morphogenetic Protein-2/Smad-Dependent Runx2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:586741. [PMID: 23983792 PMCID: PMC3745886 DOI: 10.1155/2013/586741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells have the capacity for self-renewal and under appropriate stimulation give rise to osteogenic, adipogenic, and chondrogenic lineages. To advance the clinical use of stem cell therapy, such as stem cell transplantation, it is important to find substances that promote endogenous stem cell proliferation and differentiation. We investigated whether medicinal herbs have the potential to promote stem cell proliferation and differentiation, using a cell cycle analysis and differentiation assay. We found that Aconiti Lateralis Preparata Radix (ALR) promoted the proliferation rate of mouse bone marrow mesenchymal stem cells (mBMMSCs) up to 122.24% compared to untreated cells. Fluorescence-activated cell sorter analysis showed that the percentage of cells in the G2/M phase increased to 17.33% in ALR-treated cells compared to 5.65% in normal cells. Signaling pathway analysis indicated that this was mediated through the extracellular signal-regulated kinase 1/2 pathway. A differentiation assay showed that ALR induced differentiation of mBMMSCs into an osteogenic lineage 2 weeks after treatment, whereas traditional osteogenic induction medium treatment did not promote differentiation for 3 weeks. This osteogenic differentiation was signaled by the bone morphogenetic protein-2/Smad-dependent Runx2 pathway. We found that ALR could promote mBMMSC proliferation and differentiation into the osteogenic lineage.
Collapse
|