1
|
Chea M, Rigolot L, Canali A, Vergez F. Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts. Int J Mol Sci 2024; 25:2150. [PMID: 38396825 PMCID: PMC10889505 DOI: 10.3390/ijms25042150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients.
Collapse
Affiliation(s)
- Mathias Chea
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
| | - Lucie Rigolot
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Alban Canali
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Francois Vergez
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
2
|
Muranyi A, Ammer T, Kechter A, Rawat VP, Sinha A, Gonzalez-Menendez I, Quintanilla-Martinez L, Azoitei A, Günes C, Mupo A, Vassiliou G, Bamezai S, Buske C. Npm1 haploinsufficiency in collaboration with MEIS1 is sufficient to induce AML in mice. Blood Adv 2023; 7:351-364. [PMID: 35468619 PMCID: PMC9898611 DOI: 10.1182/bloodadvances.2022007015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
NPM1 is among the most frequently mutated genes in acute myeloid leukemia (AML). Mutations in the NPM1 gene result in the increased export of NPM1 to the cytoplasm (NPM1c) and are associated with multiple transforming events including the aberrant upregulation of MEIS1 that maintains stem cell and cell cycle-associated pathways in NPM1c AML. However, another consequence of the NPM1c mutation is the inadequate levels of NPM1 wild-type in the nucleus and nucleolus, caused by the loss of one wild-type allele in addition to enforced NPM1 nuclear export. The contribution of NPM1 haploinsufficiency independently of the NPM1 mutation to AML development and its relationship with MEIS1 function is poorly understood. Using mouse models, our study shows that NPM1 haploinsufficiency paired with MEIS1 overexpression is sufficient to induce a fully penetrant AML in mice that transcriptionally resembles human NPM1c AML. NPM1 haploinsufficiency alters MEIS1-binding occupancies such that it binds the promoter of the oncogene structural maintenance of chromosome protein 4 (SMC4) in NPM1 haploinsufficient AML cells but not in NPM1 wild-type-harboring Hoxa9/Meis1-transformed cells. SMC4 is higher expressed in haploinsufficient and NPM1c+ AML cells, which are more vulnerable to the disruption of the MEIS1-SMC4 axis compared with AML cells with nonmutated NPM1. Taken together, our study underlines that NPM1 haploinsufficiency on its own is a key factor of myeloid leukemogenesis and characterizes the MEIS1-SMC4 axis as a potential therapeutic target in this AML subtype.
Collapse
Affiliation(s)
- Andrew Muranyi
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Tobias Ammer
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Anna Kechter
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Vijay P.S. Rawat
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University, Ulm, Germany
| | | | - Annalisa Mupo
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - George Vassiliou
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
3
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
4
|
The Impact of DNMT3A Status on NPM1 MRD Predictive Value and Survival in Elderly AML Patients Treated Intensively. Cancers (Basel) 2021; 13:cancers13092156. [PMID: 33947035 PMCID: PMC8124973 DOI: 10.3390/cancers13092156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of acute myeloid leukemia (AML) patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. A 4log reduction of NPM1 MRD was associated with a better outcome. DNMT3A negative patients who achieved a 4log reduction had a superior outcome to those who did not. However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identify a subgroup of patients at high risk of relapse. Abstract Minimal residual disease (MRD) is now a powerful surrogate marker to assess the response to chemotherapy in acute myeloid leukemia (AML). DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of AML patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. DNMT3A status did not influence the probability of having a ≥ 4log MRD1 reduction after induction. Only 20.4% of FLT3-ITD patients reached ≥ 4log MRD1 reduction compared to 47.5% in FLT3wt cases. A 4log reduction of NPM1 MRD was associated with a better outcome, even in FLT3-ITD mutated patients, independent of the allelic ratio. DNMT3A negative patients who reached a 4log reduction had a superior outcome to those who did not (HR = 0.23; p < 0.001). However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identifies a subgroup of patients at high risk of relapse.
Collapse
|
5
|
Skou AS, Juul-Dam KL, Ommen HB, Hasle H. Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse. Br J Haematol 2021; 195:310-327. [PMID: 33851435 DOI: 10.1111/bjh.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal molecular measurable residual disease (MRD) sampling after completion of therapy serves as a refined tool for identification of imminent relapse of acute myeloid leukaemia (AML) among patients in long-term haematological complete remission. Tracking of increasing quantitative polymerase chain reaction MRD before cytomorphological reappearance of blasts may instigate individual management decisions and has paved the way for development of pre-emptive treatment strategies to substantially delay or perhaps even revert leukaemic regrowth. Traditionally, MRD monitoring is performed using repeated bone marrow aspirations, albeit the current European LeukemiaNet MRD recommendations acknowledge the use of peripheral blood as an alternative source for MRD assessment. Persistent MRD positivity in the bone marrow despite continuous morphological remission is frequent in both core binding factor leukaemias and nucleophosmin 1-mutated AML. In contrast, monthly assessment of MRD in peripheral blood superiorly separates patients with imminent haematological relapse from long-term remitters and may allow pre-emptive therapy of AML relapse.
Collapse
Affiliation(s)
- Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Bewersdorf JP, Shallis RM, Boddu PC, Wood B, Radich J, Halene S, Zeidan AM. The minimal that kills: Why defining and targeting measurable residual disease is the “Sine Qua Non” for further progress in management of acute myeloid leukemia. Blood Rev 2020; 43:100650. [DOI: 10.1016/j.blre.2019.100650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
7
|
Ritterhouse LL, Parilla M, Zhen CJ, Wurst MN, Puranik R, Henderson CM, Joudeh NZ, Hartley MJ, Haridas R, Wanjari P, Furtado LV, Kadri S, Segal JP. Clinical Validation and Implementation of a Measurable Residual Disease Assay for NPM1 in Acute Myeloid Leukemia by Error-Corrected Next-Generation Sequencing. Mol Diagn Ther 2019; 23:791-802. [DOI: 10.1007/s40291-019-00436-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Molecular Detection of Minimal Residual Disease before Allogeneic Stem Cell Transplantation Predicts a High Incidence of Early Relapse in Adult Patients with NPM1 Positive Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11101455. [PMID: 31569375 PMCID: PMC6826431 DOI: 10.3390/cancers11101455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
We analyzed the impact of alloHSCT in a single center cohort of 89 newly diagnosed NPM1mut AML patients, consecutively treated according to the Northern Italy Leukemia Group protocol 02/06 [NCT00495287]. After two consolidation cycles, the detection of measurable residual disease (MRD) by RQ-PCR was strongly associated with an inferior three-year overall survival (OS, 45% versus 84%, p = 0.001) and disease-free survival (DFS, 44% versus 76%, p = 0.006). In MRD-negative patients, post-remissional consolidation with alloHSCT did not provide a significant additional benefit over a conventional chemotherapy in terms of overall survival [OS, 89% (95% CI 71–100%) versus 81% (95% CI 64–100%), p = 0.59] and disease-free survival [DFS, 80% (95% CI 59–100%) versus 75% (95% CI 56–99%), p = 0.87]. On the contrary, in patients with persistent MRD positivity, the three-year OS and DFS were improved in patients receiving an alloHSCT compared to those allocated to conventional chemotherapy (OS, 52% versus 31%, p = 0.45 and DFS, 50% versus 17%, p = 0.31, respectively). However, in this group of patients, the benefit of alloHSCT was still hampered by a high incidence of leukemia relapse during the first year after transplantation (43%, 95% CI 25–60%). Consolidative alloHSCT improves outcomes compared to standard chemotherapy in patients with persistent NPM1mut MRD positivity, but in these high-risk patients, the significant incidence of leukemia relapse must be tackled by post-transplant preemptive treatments.
Collapse
|
9
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. Int J Mol Sci 2018; 19:ijms19113492. [PMID: 30404199 PMCID: PMC6274702 DOI: 10.3390/ijms19113492] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) with NPM1 gene mutations is currently recognized as a distinct entity, due to its unique biological and clinical features. We summarize here the results of published studies investigating the clinical application of minimal/measurable residual disease (MRD) in patients with NPM1-mutated AML, receiving either intensive chemotherapy or hematopoietic stem cell transplantation. Several clinical trials have so far demonstrated a significant independent prognostic impact of molecular MRD monitoring in NPM1-mutated AML and, accordingly, the Consensus Document from the European Leukemia Net MRD Working Party has recently recommended that NPM1-mutated AML patients have MRD assessment at informative clinical timepoints during treatment and follow-up. However, several controversies remain, mainly with regard to the most clinically significant timepoints and the MRD thresholds to be considered, but also with respect to the optimal source to be analyzed, namely bone marrow or peripheral blood samples, and the correlation of MRD with other known prognostic indicators. Moreover, we discuss potential advantages, as well as drawbacks, of newer molecular technologies such as digital droplet PCR and next-generation sequencing in comparison to conventional RQ-PCR to quantify NPM1-mutated MRD. In conclusion, further prospective clinical trials are warranted to standardize MRD monitoring strategies and to optimize MRD-guided therapeutic interventions in NPM1-mutated AML patients.
Collapse
|
11
|
Delsing Malmberg E, Johansson Alm S, Nicklasson M, Lazarevic V, Ståhlman S, Samuelsson T, Lenhoff S, Asp J, Ehinger M, Palmqvist L, Brune M, Fogelstrand L. Minimal residual disease assessed with deep sequencing of NPM1 mutations predicts relapse after allogeneic stem cell transplant in AML. Leuk Lymphoma 2018; 60:409-417. [DOI: 10.1080/10428194.2018.1485910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Erik Delsing Malmberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofie Johansson Alm
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Nicklasson
- Department of Medicine, Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sara Ståhlman
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stig Lenhoff
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Ehinger
- Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Brune
- Department of Medicine, Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Chen J, Yang L, Fan Y, Xu Y, Han Y, Tang X, Qiu H, Fu C, Miao M, Chen F, Wu D. Comparison of Autologous Stem Cell Transplantation versus Haploidentical Donor Stem Cell Transplantation for Favorable- and Intermediate-Risk Acute Myeloid Leukemia Patients in First Complete Remission. Biol Blood Marrow Transplant 2018; 24:779-788. [DOI: 10.1016/j.bbmt.2017.12.796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023]
|
13
|
Mencia-Trinchant N, Hu Y, Alas MA, Ali F, Wouters BJ, Lee S, Ritchie EK, Desai P, Guzman ML, Roboz GJ, Hassane DC. Minimal Residual Disease Monitoring of Acute Myeloid Leukemia by Massively Multiplex Digital PCR in Patients with NPM1 Mutations. J Mol Diagn 2017; 19:537-548. [PMID: 28525762 DOI: 10.1016/j.jmoldx.2017.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022] Open
Abstract
The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML. However, detection is complicated by the existence of hundreds of potential frameshift insertions, clonal heterogeneity, and absence of sequence information when the NPM1 mutation is identified using capillary electrophoresis. Thus, some patients are ineligible for NPM1 MRD monitoring. Furthermore, a subset of patients with NPM1-mutated AML will have false-negative MRD results because of clonal evolution. To simplify and improve MRD testing for NPM1, we present a novel digital PCR technique composed of massively multiplex pools of insertion-specific primers that selectively detect mutated but not wild-type NPM1. By measuring reaction end points using digital PCR technology, the resulting single assay enables sensitive and specific quantification of most NPM1 exon 12 mutations in a manner that is robust to clonal heterogeneity, does not require NPM1 sequence information, and obviates the need for maintenance of hundreds of type-specific assays and associated plasmid standards.
Collapse
Affiliation(s)
- Nuria Mencia-Trinchant
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Yang Hu
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Maria Antonina Alas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Fatima Ali
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Bas J Wouters
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sangmin Lee
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ellen K Ritchie
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Pinkal Desai
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Duane C Hassane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
14
|
Kayser S, Benner A, Thiede C, Martens U, Huber J, Stadtherr P, Janssen JWG, Röllig C, Uppenkamp MJ, Bochtler T, Hegenbart U, Ehninger G, Ho AD, Dreger P, Krämer A. Pretransplant NPM1 MRD levels predict outcome after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia. Blood Cancer J 2016; 6:e449. [PMID: 27471865 PMCID: PMC5030374 DOI: 10.1038/bcj.2016.46] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
The objective was to evaluate the prognostic impact of pre-transplant minimal residual disease (MRD) as determined by real-time quantitative polymerase chain reaction in 67 adult NPM1-mutated acute myeloid leukemia patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Twenty-eight of the 67 patients had a FLT3-ITD (42%). Median age at transplantation was 54.7 years, median follow-up for survival from time of allografting was 4.9 years. At transplantation, 31 patients were in first, 20 in second complete remission (CR) and 16 had refractory disease (RD). Pre-transplant NPM1 MRD levels were measured in 39 CR patients. Overall survival (OS) for patients transplanted in CR was significantly longer as compared to patients with RD (P=0.004), irrespective of whether the patients were transplanted in first or second CR (P=0.74). There was a highly significant difference in OS after allogeneic HSCT between pre-transplant MRD-positive and MRD-negative patients (estimated 5-year OS rates of 40 vs 89% P=0.007). Multivariable analyses on time to relapse and OS revealed pre-transplant NPM1 MRD levels >1% as an independent prognostic factor for poor survival after allogeneic HSCT, whereas FLT3-ITD had no impact. Notably, outcome of patients with pre-transplant NPM1 MRD positivity >1% was as poor as that of patients transplanted with RD.
Collapse
Affiliation(s)
- S Kayser
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - A Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Thiede
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - U Martens
- Cancer Center Heilbronn-Franken, Heilbronn, Germany
| | - J Huber
- Cancer Center Heilbronn-Franken, Heilbronn, Germany
| | - P Stadtherr
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - J W G Janssen
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - C Röllig
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - M J Uppenkamp
- Department of Oncology, Hospital of Ludwigshafen, Ludwigshafen, Germany
| | - T Bochtler
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - U Hegenbart
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - G Ehninger
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - A D Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - P Dreger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - A Krämer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Pettersson L, Levéen P, Axler O, Dvorakova D, Juliusson G, Ehinger M. Improved minimal residual disease detection by targeted quantitative polymerase chain reaction inNucleophosmin 1type a mutated acute myeloid leukemia. Genes Chromosomes Cancer 2016; 55:750-66. [DOI: 10.1002/gcc.22375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Per Levéen
- Department of Pathology; University and Regional Laboratories, Skåne University Hospital; Lund Sweden
| | - Olof Axler
- Department of Pathology; University and Regional Laboratories, Skåne University Hospital; Lund Sweden
| | - Dana Dvorakova
- Department of Internal Medicine-Hematology and Oncology; Center of Molecular Biology and Gene Therapy, Masaryk University and University Hospital Brno; Brno Czech Republic
| | - Gunnar Juliusson
- Department of Hematology; Skåne University Hospital; Lund Sweden
| | - Mats Ehinger
- Department of Pathology; University and Regional Laboratories, Skåne University Hospital; Lund Sweden
| |
Collapse
|
16
|
Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7:3-16. [PMID: 26834951 DOI: 10.1177/2040620715614529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several disease-monitoring techniques are available for the physician treating acute myeloid leukaemia (AML). Besides immunohistochemistry assisted light microscopy, the past 20 years have seen the development and preclinical perfection of a number of techniques, most notably quantitative polymerase chain reaction (PCR) and multicolor flow cytometry. Late additions to the group of applicable assays include next generation sequencing and digital PCR. In this review the principles of use of these modalities at three different time points during the AML disease course are discussed, namely at the time of treatment evaluation, pretransplantation and postconsolidation. The drawbacks and pitfalls of each different technique are delineated. The evidence or lack of evidence for minimal residual disease guided treatment decisions is discussed. Lastly, future strategies in the MRD field are suggested and commented upon.
Collapse
Affiliation(s)
- Hans Beier Ommen
- Department of Hematology, Aarhus University Hospital, Tage-Hansens gade 2, Aarhus C, 8000, Denmark
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is a heterogeneous disease. Detection of minimal residual disease (MRD) has the potential to improve risk stratification, and its routine monitoring may allow timely therapeutic actions such as allogeneic hematopoietic stem cell transplantation. The current review will discuss challenges and available evidence for clinical application of MRD detection in AML management. RECENT FINDINGS The heterogeneous nature of AML, variations in genetic aberrations and immunophenotypes among patients and between malignant subclones coexisting within a single patient, is a challenge for the development of a reliable MRD test in AML. MRD value was demonstrated in subtypes of AML in which reliable leukemia-specific genetic marker is present (e.g., core-binding leukemia, AML positive for NPM1 mutation). Multicolor flow cytometry and quantitative PCR monitoring for Wilms tumor 1 gene transcript have also been shown to correlate with disease progression. MRD results should always be interpreted within patient-specific clinical context considering other risk factors and timing of MRD eradication. SUMMARY Introduction of MRD testing into routine clinical practice is a challenge in AML. An improvement in laboratory techniques along with identification of additional leukemia-specific markers is required.
Collapse
|
18
|
Hokland P, Ommen HB, Mulé MP, Hourigan CS. Advancing the Minimal Residual Disease Concept in Acute Myeloid Leukemia. Semin Hematol 2015; 52:184-92. [PMID: 26111465 DOI: 10.1053/j.seminhematol.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The criteria to evaluate response to treatment in acute myeloid leukemia (AML) have changed little in the past 60 years. It is now possible to use higher sensitivity tools to measure residual disease burden in AML. Such minimal or measurable residual disease (MRD) measurements provide a deeper understanding of current patient status and allow stratification for risk of subsequent clinical relapse. Despite these obvious advantages, and after over a decade of laboratory investigation and preclinical validation, MRD measurements are not currently routinely used for clinical decision-making or drug development in non-acute promyelocytic leukemia (non-APL) AML. We review here some potential constraints that may have delayed adoption, including a natural hesitancy of end users, economic impact concerns, misperceptions regarding the meaning of and need for assay sensitivity, the lack of one single MRD solution for all AML patients, and finally the need to involve patients in decision-making based on such correlates. It is our opinion that none of these issues represent insurmountable barriers and our hope is that by providing potential solutions we can help map a path forward to a future where our patients will be offered personalized treatment plans based on the amount of AML they have left remaining to treat.
Collapse
Affiliation(s)
- Peter Hokland
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Matthew P Mulé
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
19
|
Nyvold CG. Critical methodological factors in diagnosing minimal residual disease in hematological malignancies using quantitative PCR. Expert Rev Mol Diagn 2015; 15:581-4. [DOI: 10.1586/14737159.2015.1014341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Ben Lassoued A, Nivaggioni V, Gabert J. Minimal residual disease testing in hematologic malignancies and solid cancer. Expert Rev Mol Diagn 2015; 14:699-712. [PMID: 24938122 DOI: 10.1586/14737159.2014.927311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Minimal residual disease (MRD) assays are of a great value to assess treatment efficacy and may provide prognostic information. This is particularly relevant in the era of targeted therapy where the introduction of MRD monitoring has fundamentally transformed the way in which cancer patients are managed. While MRD guidelines are well-established for chronic myeloid leukemia, acute promyelocytic leukemia and acute lymphoblastic leukemia, areas for continuing development are available. High level of standardization and regular external quality control rounds and recommendations for data interpretation remain essential to improve MRD monitoring. In this review, we describe the different applications of MRD assays in most frequent hematologic malignancies and solid cancer and provide an overview of the strengths and potential weaknesses of each method.
Collapse
Affiliation(s)
- Amin Ben Lassoued
- Laboratoire de Biochimie et de Biologie Moléculaire, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital NORD, Marseille, France
| | | | | |
Collapse
|
21
|
Quan J, Gao YJ, Yang ZL, Chen H, Xian JR, Zhang SS, Zou Q, Zhang L. Quantitative detection of circulating nucleophosmin mutations DNA in the plasma of patients with acute myeloid leukemia. Int J Med Sci 2015; 12:17-22. [PMID: 25552914 PMCID: PMC4278871 DOI: 10.7150/ijms.10144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/21/2014] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE The aim of this study was to quantify the copies of circulating nucleophosmin (NPM) mutations DNA in the plasma of patients with acute myeloid leukemia (AML) and to explore the association of circulating NPM mutation levels with clinical characteristics. DESIGN AND METHODS The presence of NPM mutations in 100 Chinese patients newly diagnosed with AML were identified by RT-PCR and sequencing analysis. Copies of circulating NPM mutation A (NPM mut.A) DNA in the plasma of mutation-positive cases were quantified by real-time quantitative PCR (qRT-PCR). Furthermore, the association of circulating NPM mutation levels and clinical characteristics was analyzed. RESULTS NPM mutations were identified in 37 of the 100 patients and all cases were NPM mut.A. The circulating NPM mut.A levels ranged from 0.35×10(8) copies/ml to 6.0×10(8) copies/ml in the 37 mutation-positive cases. The medium and quartile M (P25, P75) of the circulating NPM mut.A levels in patients classified as M2, M4 and M5 morphological subtypes were 1.35×10(8) (0.76×10(8), 1.91×10(8)) copies/ml, 1.81×10(8) (1.47×10(8), 2.2×10(8)) copies/ml and 2.50×10(8) (2.42×10(8), 3.05×10(8)) copies/ml, respectively. Circulating NPM mut.A levels were significantly higher in patients with the M5 subtype of AML compared to patients with the M2 and M4 subtypes (p=0.000, p=0.046). In addition, circulating NPM mut.A copies were significantly associated with a higher white blood cell count, platelet count and bone marrow blast percentage (p<0.05). CONCLUSION Our results suggest that circulating NPM mutations DNA assay serves as a complementary to the routine investigative protocol of NPM-mutated leukemia.
Collapse
Affiliation(s)
- Jing Quan
- 1. Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Yixueyuan Road, Chongqing 400016, P.R.China
| | - Yu-jie Gao
- 2. Department of Laboratory Medicine, Yantai Yuhuangding Hospital, Yantai 264000, P.R.China
| | - Zai-lin Yang
- 3. Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R.China
| | - Hui Chen
- 4. Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R.China
| | - Jing-rong Xian
- 1. Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Yixueyuan Road, Chongqing 400016, P.R.China
| | - Shuai-shuai Zhang
- 1. Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Yixueyuan Road, Chongqing 400016, P.R.China
| | - Qin Zou
- 1. Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Yixueyuan Road, Chongqing 400016, P.R.China
| | - Ling Zhang
- 1. Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Yixueyuan Road, Chongqing 400016, P.R.China
| |
Collapse
|
22
|
Shin SY, Ki CS, Kim HJ, Kim JW, Kim SH, Lee ST. Mutant Enrichment with 3'-Modified Oligonucleotides (MEMO)-Quantitative PCR for Detection of NPM1 Mutations in Acute Myeloid Leukemia. J Clin Lab Anal 2014; 29:361-5. [PMID: 25384962 DOI: 10.1002/jcla.21779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Detection of NPM1 mutations in acute myeloid leukemia (AML) is important for risk stratification, treatment decision, and therapeutic monitoring. We have designed a real-time PCR method implementing the Mutant enrichment with 3'-modified oligonucleotides (MEMO) technique to detect NPM1 mutations and validated its utility in clinical samples. METHODS Sensitivity and linearity were evaluated using serially diluted NPM1-positive samples. Clinical usefulness was assessed by measuring the levels of mutant alleles in 29 patients at diagnosis and in ten patients after induction chemotherapy. RESULTS Excellent linear relationships between the mutant allele proportion and the threshold cycle (Ct) values (r = 0.999) were observed in a range of 1:1-1:10(3) . MEMO-PCR was able to detect NPM1 mutations regardless of mutant type and also detected novel mutants (964_967delTGGAinsATGATGTC, 957_959delCTGinsATGCATG, 960insTAAG, and 960insTCAG). The concentrations of NPM1 mutant alleles decreased after induction chemotherapy in accordance with the reduction of tumor cells, and in one case, NPM1 mutant alleles were detectable about 7 months before morphological relapse. CONCLUSION MEMO-quantitative PCR was shown to detect virtually all types of NPM1 mutants with high sensitivity and specificity. This novel method may be useful in the diagnosis of AML with an NPM1 mutation, the detection of minimal residual disease, and the monitoring of treatment response.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Abstract
Cytogenetic data suggest that acute myeloid leukemia (AML) develops through a process of branching evolution, especially during relapse and progression. Recent genomic data from AML cases using digital sequencing, temporal comparisons, xenograft cloning, and single-cell analysis indicate that most, if not all, AML cases emerge through branching evolution. According to a review of the current literature, the balanced translocations (t[15;17], t[8;21], and inv[16]) and nucleotide variants in DNMT3A and TET2 most commonly occur in the founding clone at diagnosis. These mutations are rarely gained or lost at relapse, and the latter 2 mutations are observed in elderly subjects with mosaic hematopoiesis antedating overt leukemia. In contrast, +8, +13, +22, -X, -Y, and nucleotide variants in FLT3, NRAS/KRAS, WT1, and KIT frequently occur in subclones and are observed either to emerge or to be lost at relapse. Because drugs that target mutations within a subclone are unlikely to eliminate all leukemic cells, it will be essential to understand not only which mutations a patient has but also how they organize within the leukemic subclonal architecture.
Collapse
Affiliation(s)
- John S Welch
- Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, St. Louis, MO.
| |
Collapse
|
24
|
Meyer SC, Levine RL. Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncol 2014; 15:e382-94. [DOI: 10.1016/s1470-2045(14)70008-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Balatzenko G, Spassov B, Stoyanov N, Ganeva P, Dikov T, Konstantinov S, Hrischev V, Romanova M, Toshkov S, Guenova M. NPM1 Gene Type A Mutation in Bulgarian Adults with Acute Myeloid Leukemia: A Single-Institution Study. Turk J Haematol 2014; 31:40-8. [PMID: 24764728 PMCID: PMC3996648 DOI: 10.4274/tjh.2013.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/10/2013] [Indexed: 01/17/2023] Open
Abstract
Objective: Mutations of the nucleophosmin (NPM1) gene are considered as the most frequent acute myeloid leukemia (AML)-associated genetic lesion, reported with various incidences in different studies, and type A (NPM1-A) is the most frequent type. However, since most series in the literature report on the features of all patients regardless of the type of mutation, NPM1-A(+) cases have not been well characterized yet. Therefore, we evaluated the prevalence of NPM1-A in Bulgarian AML patients and searched for an association with clinical and laboratory features. Materials and Methods: One hundred and four adults (51 men, 53 women) were included in the study. NPM1-A status was determined using allele-specific reverse-transcription polymerase chain reaction with co-amplification of NPM1-A and β-actin and real-time quantitative TaqMan-based polymerase chain reaction. Patients received conventional induction chemotherapy and were followed for 13.2±16.4 months. Results: NPM1-A was detected in 26 (24.8%) patients. NPM1-A mutation was detected in all AML categories, including in one patient with RUNX1-RUNX1T1. There were no differences associated with the NPM1-A status with respect to age, sex, hemoglobin, platelet counts, percentage of bone marrow blasts, splenomegaly, complete remission rates, and overall survival. NPM1-A(+) patients, compared to NPM1-A(-) patients, were characterized by higher leukocyte counts [(75.4±81.9)x109/L vs. (42.5±65.9)x109/L; p=0.049], higher frequency of normal karyotype [14/18 (77.8%) vs. 26/62 (41.9%); p=0.014], higher frequency of FLT3-ITD [11/26 (42.3%) vs. 8/77 (10.4%); p=0.001], and lower incidence of CD34(+) [6/21 (28.8%) vs. 28/45 (62.2%); p=0.017]. Within the FLT3-ITD(-) group, the median overall survival of NPM1-A(-) patients was 14 months, while NPM1-A(+) patients did not reach the median (p=0.10). Conclusion: The prevalence of NPM1-A mutation in adult Bulgarian AML patients was similar to that reported in other studies. NPM1-A(+) patients were characterized by higher leukocyte counts, higher frequency of normal karyotypes and FLT3-ITD, and lower incidence of CD34(+), supporting the idea that the specific features of type A mutations might contribute to the general clinical and laboratory profile of NPM1(+) AML patients.
Collapse
Affiliation(s)
- Gueorgui Balatzenko
- National Specialized Hospital for Active Treatment of Hematological Diseases, Laboratory of Cytogenetics and Molecular Biology, Sofia, Bulgaria ; Center of Excellence for Translational Research in Hematology, Sofia, Bulgaria
| | - Branimir Spassov
- Center of Excellence for Translational Research in Hematology, Sofia, Bulgaria ; National Specialized Hospital for Active Treatment of Hematological Diseases, Hematology Clinic, Sofia, Bulgaria
| | - Nikolay Stoyanov
- Center of Excellence for Translational Research in Hematology, Sofia, Bulgaria ; National Specialized Hospital for Active Treatment of Hematological Diseases, Laboratory of Hematopathology and Immunology, Sofia, Bulgaria
| | - Penka Ganeva
- Center of Excellence for Translational Research in Hematology, Sofia, Bulgaria ; National Specialized Hospital for Active Treatment of Hematological Diseases, Hematology Clinic, Sofia, Bulgaria
| | - Tihomit Dikov
- National Specialized Hospital for Active Treatment of Hematological Diseases, Laboratory of Hematopathology and Immunology, Sofia, Bulgaria
| | - Spiro Konstantinov
- National Specialized Hospital for Active Treatment of Hematological Diseases, Hematology Clinic, Sofia, Bulgaria ; Medical University of Sofia, Faculty of Pharmacy, Department of Pharmacology, Toxicology and Pharmacotherapy, Sofia, Bulgaria
| | - Vasil Hrischev
- National Specialized Hospital for Active Treatment of Hematological Diseases, Hematology Clinic, Sofia, Bulgaria
| | - Malina Romanova
- National Specialized Hospital for Active Treatment of Hematological Diseases, Laboratory of Cytogenetics and Molecular Biology, Sofia, Bulgaria
| | - Stavri Toshkov
- National Specialized Hospital for Active Treatment of Hematological Diseases, Laboratory of Cytogenetics and Molecular Biology, Sofia, Bulgaria
| | - Margarita Guenova
- Center of Excellence for Translational Research in Hematology, Sofia, Bulgaria
| |
Collapse
|
26
|
Ommen HB, Hokland P, Haferlach T, Abildgaard L, Alpermann T, Haferlach C, Kern W, Schnittger S. Relapse kinetics in acute myeloid leukaemias with MLL translocations or partial tandem duplications within the MLL gene. Br J Haematol 2014; 165:618-28. [PMID: 24611505 DOI: 10.1111/bjh.12792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/10/2014] [Indexed: 01/03/2023]
Abstract
Correct action upon re-emergence of minimal residual disease in acute myeloid leukaemia (AML) patients has not yet been established. The applicability of demethylating agents and use of allogeneic stem cell transplantation will be dependent on pre-relapse AML growth rates. We here delineate molecular growth kinetics of AML harbouring MLL partial tandem duplication (MLL-PTD; 37 cases) compared to those harbouring MLL translocations (43 cases). The kinetics of MLL-PTD relapses was both significantly slower than those of MLL translocation positive ones (median doubling time: MLL-PTD: 24 d, MLL-translocations: 12 d, P = 0·015, Wilcoxon rank sum test), and displayed greater variation depending on additional mutations. Thus, MLL-PTD+ cases with additional RUNX1 mutations or FLT3-internal tandem duplication relapsed significantly faster than cases without one of those two mutations (Wilcoxon rank sum test, P = 0·042). As rapid relapses occurred in all MLL subgroups, frequent sampling are necessary to obtain acceptable relapse detection rates and times from molecular relapse to haematological relapse (blood sampling every second month: MLL-PTD: 75%/50 d; MLL translocations: 85%/25 d). In conclusion, in this cohort relapse kinetics is heavily dependent on AML subtype as well as additional genetic aberrations, with possibly great consequences for the rational choice of pre-emptive therapies.
Collapse
Affiliation(s)
- Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a "moving target" for detection of residual disease. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:3-14. [PMID: 24151248 DOI: 10.1002/cyto.b.21134] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Detection of minimal residual disease is recognized as an important post-therapy risk factor in acute myeloid leukemia patients. Two most commonly used methods for residual disease monitoring are real-time quantitative polymerase chain reaction and multiparameter flow cytometry. The results so far are very promising, whereby it is likely that minimal residual disease results will enable to guide future post-remission treatment strategies. However, the leukemic clone may change between diagnosis and relapse due to the instability of the tumor cells. This instability may already be evident at diagnosis if different subpopulations of tumor cells coexist. Such tumor heterogeneity, which may be reflected by immunophenotypic, molecular, and/or cytogenetic changes, can have important consequences for minimal residual disease detection, since false-negative results can be expected to be the result of losses of aberrancies used as minimal residual disease markers. In this review the role of such changes in minimal residual disease monitoring is explored. Furthermore, possible causes of tumor instability are discussed, whereby the concept of clonal selection and expansion of a chemotherapy-resistant subpopulation is highlighted. Accordingly, detailed knowledge of the process of clonal evolution is required to improve both minimal residual disease risk stratification and patient outcome.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor
- Clonal Evolution
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Genetic Variation
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/prevention & control
- Real-Time Polymerase Chain Reaction
- Treatment Outcome
Collapse
Affiliation(s)
- W Zeijlemaker
- Department of Hematology, VU Institute for Cancer and Immunology (V-ICI), VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Jain P, Kantarjian H, Patel K, Faderl S, Garcia-Manero G, Benjamini O, Borthakur G, Pemmaraju N, Kadia T, Daver N, Nazha A, Luthra R, Pierce S, Cortes J, Ravandi F. Mutated NPM1 in patients with acute myeloid leukemia in remission and relapse. Leuk Lymphoma 2013; 55:1337-44. [PMID: 24004182 DOI: 10.3109/10428194.2013.840776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with newly diagnosed AML (n = 360) including 137 (38%) with normal karyotype (NK) were evaluated. Overall, 60 (16.6%) patients, including 46 of the 137 (33.5%) NK patients, had NPM1 mutation at baseline. Thirty-nine patients (30 NK) had available NPM1 status at the time of complete remission (CR) and all (100%) were negative for mutated NPM1. Among the patients with mutated NPM1 at baseline, 10/39 overall (25%) and 7/30 NK (23%) patients relapsed. NPM1 status was available for eight patients (six with NK) at the time of relapse. Among them, 7/8 overall (87%) and 5/6 NK (83%) patients had mutated NPM1, while 1/8 overall (12%) and 1/6 NK (16%) patients remained NPM1 wild type. Among the 300 patients (including 91 with NK) with wild type NPM1 at diagnosis, none acquired a mutated NPM1 clone, either at CR or at relapse. We conclude that mutated NPM1 is a stable and reliable prognostic marker in AML and can be used to assess MRD.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW In patients with acute myeloid leukemia (AML), measuring response to treatment is essential to guide clinical decisions. Methods for detecting disease beyond the resolution limit of morphology (i.e., minimal residual disease, MRD) are now widely available. We here discuss their merits and the results of side-to-side comparisons. RECENT FINDINGS The ever-increasing comprehension of the molecular genetics of AML has led to the identification of targets for molecular monitoring of MRD in the majority of AML cases. Likewise, virtually all cases express aberrant immunophenotypes suitable for MRD monitoring by flow cytometry, a progress bolstered by powerful new-generation instruments. The clinical significance of MRD monitoring by either approach has been corroborated by recent results. However, with few exceptions, most of the studies continue to rely on retrospectively determined cut-off levels and time points. Moreover, when applied in parallel, the two approaches have yielded contradictory results. SUMMARY MRD monitoring can help predicting the risk of relapse better than morphology and also provide endpoints for clinical testing of experimental agents. MRD can be applied to guide therapy but one must carefully consider the characteristics of the methods used and the degree of expertise of the laboratory performing the test.
Collapse
|
30
|
Abstract
Technological advances in the laboratory have led to substantial improvements in clinical decision making through the introduction of pretreatment prognostic risk stratification factors in acute myeloid leukaemia (AML). Unfortunately, similar progress has not been made in treatment response criteria, with the definition of 'complete remission' in AML largely unchanged for over half a century. Several clinical trials have demonstrated that high-sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission, but at increased relapse risk. We review these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and improve clinical use of MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies, such as chronic myelogenous leukaemia and acute promyelocytic leukaemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission and recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as standard of care.
Collapse
Affiliation(s)
- Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, 10 Centre Drive, Bethesda, MD 20892-1583, USA.
| | | |
Collapse
|
31
|
New Quantitative Method to Identify NPM1 Mutations in Acute Myeloid Leukaemia. LEUKEMIA RESEARCH AND TREATMENT 2013; 2013:756703. [PMID: 23691328 PMCID: PMC3649360 DOI: 10.1155/2013/756703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Somatic mutations in the NPM1 gene, which encodes for nucleophosmin, have been reported to be the most frequent genetic abnormalities found in acute myeloid leukaemia (AML). Their identification and quantification remain crucial for the patients' residual disease monitoring. We investigated a new method that could represent a novel reliable alternative to sequencing for its identification. This method was based on high-resolution melting analysis in order to detect mutated patients and on an allele-specific oligonucleotide real-time quantitative polymerase chain reaction (ASO-RQ-PCR) for the identification and quantification of the transcripts carrying NPM1 mutations (NPM1m). Few patients carrying known NPM1m enabled us to set up a table with the different primers' ΔCT values, identifying a profile for each mutation type. We then analysed a series of 337 AML patients' samples for NPM1 mutational status characterization and confirmed the ASO-RQ-PCR results by direct sequencing. We identified some mutations in 86 samples, and the results were fully correlated in 100% of the 36 sequenced samples. We also detected other rare NPM1m in two samples, that we confirmed by direct sequencing. This highly specific method provides a novel quick, useful, and costless tool, easy to use in routine practice.
Collapse
|
32
|
Válková V, Polák J, Marková M, Vítek A, Hájková H, Sálek C, Procházka B, Cetkovský P, Trněný M. Minimal residual disease detectable by quantitative assessment of WT1 gene before allogeneic stem cell transplantation in patients in first remission of acute myeloid leukemia has an impact on their future prognosis. Clin Transplant 2012; 27:E21-9. [PMID: 23231003 DOI: 10.1111/ctr.12046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
Overall 42 patients (pts) transplanted in hematological CR1 were retrospectively analyzed. Median follow-up was 15 months (range 2-77). The expression of WT1 gene was measured according to the European Leukaemia Net recommendations. At the time of allogeneic stem cell transplantation (allo-SCT) 29 pts were WT1-negative and 13 pts were WT1-positive. In the univariate analysis, significantly better results were observed in the group of WT1 neg in terms of progression-free survival (in three yr 77% vs. 27%, p = 0.001). In multivariate analysis, the only significant feature in terms of better OS was WT1 negativity (p = 0.029). Our results show that minimal residual disease status measured by quantitative assessment of WT1 gene in acute myeloid leukemia pts in CR1 significantly affects their future prognosis after allo-SCT.
Collapse
Affiliation(s)
- Veronika Válková
- Department of Bone Marrow Transplantation, Institute of Haematology and Blood Transfusion, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsuda K, Ishida F, Ito T, Nakazawa H, Miura S, Taira C, Sueki A, Kobayashi Y, Honda T. Spliceosome-related gene mutations in myelodysplastic syndrome can be used as stable markers for monitoring minimal residual disease during follow-up. Leuk Res 2012; 36:1393-7. [DOI: 10.1016/j.leukres.2012.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/09/2012] [Accepted: 07/28/2012] [Indexed: 12/18/2022]
|