1
|
Lachner J, Derdak S, Mlitz V, Wagner T, Holthaus KB, Ehrlich F, Mildner M, Tschachler E, Eckhart L. An In Vitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. J Invest Dermatol 2021; 141:2829-2837. [PMID: 34116064 DOI: 10.1016/j.jid.2021.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.
Collapse
Affiliation(s)
- Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Wagner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Eckhart L, Tschachler E. Control of cell death-associated danger signals during cornification prevents autoinflammation of the skin. Exp Dermatol 2019; 27:884-891. [PMID: 29862564 DOI: 10.1111/exd.13700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
The function of the skin as a barrier to the environment is mainly achieved by the outermost layers of the epidermis. In the granular layer, epidermal keratinocytes undergo the last steps of their terminal differentiation program resulting in cornification. The coordinated conversion of living keratinocytes into corneocytes, the building blocks of the cornified layer, represents a unique form of programmed cell death. Recent studies have identified numerous genes that are specifically expressed in terminally differentiated keratinocytes and, surprisingly, this genetic program does not only include mediators of cornification but also suppressors of pyroptosis, another mode of programmed cell death. Pyroptosis is activated by inflammasomes, leads to the release of interleukin-1 (IL-1) family cytokines, and thereby activates inflammation. In addition, inhibitors of potentially pro-inflammatory proteases and enzymes removing danger-associated cytoplasmic DNA are expressed in differentiated keratinocytes. We propose the concept of cornification as an inherently hazardous process in which damaging side effects are actively suppressed by protective mechanisms. In support of this hypothesis, loss-of-function mutations in epidermal protease inhibitors and IL-1 family antagonists suffice to induce autoinflammation. Similarly, exogenous disturbances of either cornification or its accompanying control mechanisms may be starting points for skin inflammation. Further studies into the relationship between cornification, pyroptosis and other forms of cell death will help to define the initiation phase of inflammatory skin diseases and offer new targets for disease prevention and therapy.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, Weissenbacher A, Sipos W, Tschachler E, Eckhart L. Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Mol Biol Evol 2019; 36:328-340. [PMID: 30517738 PMCID: PMC6367960 DOI: 10.1093/molbev/msy214] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Bettina Ebner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Figlak
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Shih BB, Nirmal AJ, Headon DJ, Akbar AN, Mabbott NA, Freeman TC. Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders. J Pathol 2017; 241:600-613. [PMID: 28008606 PMCID: PMC5363360 DOI: 10.1002/path.4864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
Abstract
Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Arne N Akbar
- Division of Infection and ImmunityUniversity College London90 Gower StreetLondonWC1E 6BTUK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| |
Collapse
|
5
|
Bin L, Deng L, Yang H, Zhu L, Wang X, Edwards MG, Richers B, Leung DYM. Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation. PLoS One 2016; 11:e0167392. [PMID: 27907090 PMCID: PMC5132327 DOI: 10.1371/journal.pone.0167392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC) terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq) profiling approach, we found that forkhead box c 1 (FOXC1) was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.
Collapse
Affiliation(s)
- Lianghua Bin
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| | - Liehua Deng
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Hengwen Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Leqing Zhu
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Michael G. Edwards
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Brittany Richers
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation. PLoS One 2016; 11:e0147069. [PMID: 26785122 PMCID: PMC4718520 DOI: 10.1371/journal.pone.0147069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/29/2023] Open
Abstract
TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype. The morphology of the epidermis assessed by histology and by labelling differentiation markers in immunofluorescence was not altered. Toluidine blue permeability assay showed that the epidermal barrier develops normally during embryonic development. We also showed that depletion of TMEM45A in human keratinocytes does not alter their potential to form in vitro 3D-reconstructed epidermis. Indeed, epidermis with normal morphogenesis were generated from TMEM45A-silenced keratinocytes. Their expression of differentiation markers quantified by RT-qPCR and evidenced by immunofluorescence labelling as well as their barrier function estimated by Lucifer yellow permeability were similar to the control epidermis. In summary, TMEM45A gene expression is dispensable for epidermal morphogenesis, keratinization and barrier formation. If this protein plays a role in the epidermis, its experimental depletion can possibly be compensated by other proteins in the two experimental models analyzed in this study.
Collapse
|
7
|
Hyaluronidase-1 Is Mainly Functional in the Upper Granular Layer, Close to the Epidermal Barrier. J Invest Dermatol 2015. [DOI: 10.1038/jid.2015.299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Bart G, Hämäläinen L, Rauhala L, Salonen P, Kokkonen M, Dunlop T, Pehkonen P, Kumlin T, Tammi M, Pasonen-Seppänen S, Tammi R. rClca2is associated with epidermal differentiation and is strongly downregulated by ultraviolet radiation. Br J Dermatol 2014; 171:376-87. [DOI: 10.1111/bjd.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Affiliation(s)
- G. Bart
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Hämäläinen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Rauhala
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Salonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M. Kokkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T.W. Dunlop
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Pehkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T. Kumlin
- Department of Environmental Science; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M.I. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - S. Pasonen-Seppänen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - R.H. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| |
Collapse
|
9
|
Hayez A, Malaisse J, Roegiers E, Reynier M, Renard C, Haftek M, Geenen V, Serre G, Simon M, de Rouvroit CL, Michiels C, Poumay Y. High TMEM45A expression is correlated to epidermal keratinization. Exp Dermatol 2014; 23:339-44. [DOI: 10.1111/exd.12403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Aurélie Hayez
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| | - Jérémy Malaisse
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| | - Edith Roegiers
- Research Unit for Cell biology-NARILIS; University of Namur; Namur Belgium
| | - Marie Reynier
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | - Chantal Renard
- Center of Immunoendocrinology; GIGA-I; University of Liège; Liège Belgium
| | - Marek Haftek
- Laboratoire de Recherche Dermatologique; University of Lyon; Lyon France
| | - Vincent Geenen
- Center of Immunoendocrinology; GIGA-I; University of Liège; Liège Belgium
| | - Guy Serre
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | - Michel Simon
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | | | - Carine Michiels
- Research Unit for Cell biology-NARILIS; University of Namur; Namur Belgium
| | - Yves Poumay
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| |
Collapse
|
10
|
Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, Ding J, Stuart PE, Xing X, Kochkodan JJ, Voorhees JJ, Kang HM, Nair RP, Abecasis GR, Elder JT. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol 2014; 134:1828-1838. [PMID: 24441097 PMCID: PMC4057954 DOI: 10.1038/jid.2014.28] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
To increase our understanding of psoriasis, we utilized RNA-seq to assay the transcriptomes of lesional psoriatic and normal skin. We sequenced polyadenylated RNA-derived cDNAs from 92 psoriatic and 82 normal punch biopsies, generating an average of ~38 million single-end 80-bp reads per sample. Comparison of 42 samples examined by both RNA-seq and microarray revealed marked differences in sensitivity, with transcripts identified only by RNA-seq having much lower expression than those also identified by microarray. RNA-seq identified many more differentially expressed transcripts enriched in immune system processes. Weighted gene co-expression network analysis (WGCNA) revealed multiple modules of coordinately expressed epidermal differentiation genes, overlapping significantly with genes regulated by the long non-coding RNA TINCR, its target gene, staufen-1 (STAU1), the p63 target gene ZNF750, and its target KLF4. Other coordinately expressed modules were enriched for lymphoid and/or myeloid signature transcripts and genes induced by IL-17 in keratinocytes. Dermally-expressed genes were significantly down-regulated in psoriatic biopsies, most likely due to expansion of the epidermal compartment. These results demonstrate the power of WGCNA to elucidate gene regulatory circuits in psoriasis, and emphasize the influence of tissue architecture in both differential expression and co-expression analysis.
Collapse
Affiliation(s)
- Bingshan Li
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jun Ding
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA; Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - James J Kochkodan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hyun M Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Goncalo R Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Ghoreschi K, Gadina M. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol 2014; 23:7-11. [PMID: 24131352 PMCID: PMC3877164 DOI: 10.1111/exd.12265] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
Cytokines are key mediators of the development and homeostasis of haematopoietic cells, critical for host defense, but also for the development of autoimmune and inflammatory diseases such as psoriasis or rheumatoid arthritis (RA). Blocking cytokines activity by interfering with the ligand-receptor association has been successfully employed to treat several immune disorders. A subgroup of cytokines signals through receptors requiring the association with a family of cytoplasmic protein tyrosine kinases known as Janus kinases (Jaks). Jaks have recently gained significant attention as therapeutic targets in inflammation and autoimmunity, and several Jak inhibitory small molecules have been developed. The first two Jak inhibitors, tofacitinib and ruxolitinib, have been approved for the treatment of RA and primary myelofibrosis, respectively. Efficacy and safety data suggest that some of these oral Jak inhibitors as well as their topical formulations may soon enter the daily clinical practice for treating patients with psoriasis, lupus erythematosus or other inflammatory skin diseases. While biologics typically target one single cytokine, these new immunomodulators can inhibit signals from multiple cytokines intra-cellularly and therefore could be useful when other therapies are ineffective. Thus, Jak inhibitors may replace some traditional immunosuppressive agents and help patients not responding to previous therapies.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
12
|
Roelandt T, Heughebaert C, Bredif S, Giddelo C, Baudouin C, Msika P, Roseeuw D, Uchida Y, Elias PM, Hachem JP. Cannabinoid receptors 1 and 2 oppositely regulate epidermal permeability barrier status and differentiation. Exp Dermatol 2013; 21:688-93. [PMID: 22897575 DOI: 10.1111/j.1600-0625.2012.01561.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabinoid receptors (CBR) 1 and 2 have been implicated in keratinocyte differentiation/proliferation. How CB receptors affect epidermal permeability barrier and stratum corneum structure and function remains unclear. Permeability barrier abrogation was induced by sequential tape-stripping of the SC and assessed in both CB1R and CB2R knockout (-/-) mice in comparison with wild-type (+/+) littermates. Absence of CB1R delays permeability barrier recovery, while the latter was found to be accelerated in CB2R -/- mice. While increased lamellar body (LB) secretion is observed in CB2R -/- mice accounting for the enhanced recovery, CB1R -/- animals display strong alterations in lipid bilayer structures. Markers for epidermal differentiation (i.e. filaggrin, loricrin and involucrin) and terminal differentiation (i.e. TUNEL assay and caspase-14 activation) were respectively decreased and increased in CB1R and CB2R -/- mice. Surprisingly, CB1R agonist treatment of human cultured keratinocytes increases mRNA of p21 and cytokeratin 1 and 10 and decreases cyclin D1 but protein levels remained unchanged. Such paradox could partially be explained by the increase in non-phosphorylated-4E-BP1, an inhibitor of mRNA translation, following CB1R agonist treatment. Altogether, these observations put forward the importance and the complexity of cannabinoid signalling for the regulation of permeability barrier and epidermal differentiation.
Collapse
Affiliation(s)
- Truus Roelandt
- Department of Dermatology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sumigray KD, Foote HP, Lechler T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. ACTA ACUST UNITED AC 2012; 199:513-25. [PMID: 23091070 PMCID: PMC3483132 DOI: 10.1083/jcb.201206143] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Noncentrosomal microtubules recruit myosin II to the cell cortex in order to engage adherens junctions and increase tight junction formation, resulting in an increase in mechanical integrity of cell sheets. During differentiation, many cells reorganize their microtubule cytoskeleton into noncentrosomal arrays. Although these microtubules are likely organized to meet the physiological roles of their tissues, their functions in most cell types remain unexplored. In the epidermis, differentiation induces the reorganization of microtubules to cell–cell junctions in a desmosome-dependent manner. Here, we recapitulate the reorganization of microtubules in cultured epidermal cells. Using this reorganization assay, we show that cortical microtubules recruit myosin II to the cell cortex in order to engage adherens junctions, resulting in an increase in mechanical integrity of the cell sheets. Cortical microtubules and engaged adherens junctions, in turn, increase tight junction function. In vivo, disruption of microtubules or loss of myosin IIA and B resulted in loss of tight junction–mediated barrier activity. We propose that noncentrosomal microtubules act through myosin II recruitment to potentiate cell adhesion in the differentiating epidermis, thus forming a robust mechanical and chemical barrier against the external environment.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
14
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
15
|
Burgess STG, McNeilly TN, Watkins CA, Nisbet AJ, Huntley JF. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis. PLoS One 2011; 6:e24402. [PMID: 21915322 PMCID: PMC3168495 DOI: 10.1371/journal.pone.0024402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/08/2011] [Indexed: 12/18/2022] Open
Abstract
Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.
Collapse
Affiliation(s)
- Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|