1
|
Baixauli-Martín J, Burguete MC, López-Morales MA, Castelló-Ruiz M, Aliena-Valero A, Jover-Mengual T, Falahatgaroshibi D, Torregrosa G, Salom JB. Spatio-Temporal Characterization of Cellular Senescence Hallmarks in Experimental Ischemic Stroke. Int J Mol Sci 2025; 26:2364. [PMID: 40076983 PMCID: PMC11900039 DOI: 10.3390/ijms26052364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, evidence of the existence of cellular senescence in the central nervous system has accumulated. In ischemic stroke, cellular senescence has been suggested as an unidentified pathophysiological mechanism, prompting research into the neuroprotective potential of senolytic drugs. This study aims to provide spatio-temporal evidence of the existence of brain senescence following ischemic stroke and to elucidate the involved pathways and cell types. We focused on the most established markers of senescence: cell cycle arrest (p16, p21); lysosomal activity (senescence-associated β-galactosidase [SA-β-gal]); the senescence-associated secretory phenotype ([SASP]; Interleukin-6 [IL-6], Interleukin-1β [IL-1β], Tumor necrosis factor [TNF]); and DNA/nuclear damage (Checkpoint kinase 1 [Chk1], Checkpoint kinase 2 [Chk2], Lamin B1 [LB1]). Male Wistar rats underwent 60 min of transient middle cerebral artery occlusion, followed by 24 h and 3, 7, and 14 days of recovery. Our results show significant increases in p16 expression, particularly in neurons and microglia/macrophages; SA-β-gal accumulation in the infarcted tissue; significant increases in SASP markers as early as 24 h after reperfusion; and significant changes in Chk1, Chk2, and LB1 at 14 days. Overall, our findings lend support to the existence of senescence after ischemic stroke in neurons and microglia/macrophages. However, there is still room to gain further insight into the role of senescence in the pathophysiology of ischemic stroke and in the implementation of successful senolytic therapy.
Collapse
Affiliation(s)
- Júlia Baixauli-Martín
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universidad de Valencia, 46100 Burjassot, Spain
| | - Maria Consuelo Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universidad de Valencia, 46100 Burjassot, Spain
| | - Mikahela A. López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Fisioterapia, Universidad de Valencia, 46010 Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
| | - Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universidad de Valencia, 46100 Burjassot, Spain
- The Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Dianoush Falahatgaroshibi
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Biotecnología, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
| | - Juan B. Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (J.B.-M.); (M.C.B.); (M.C.-R.); (A.A.-V.); (T.J.-M.); (D.F.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universidad de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Nikolova T, Kiweler N, Krämer OH. Interstrand Crosslink Repair as a Target for HDAC Inhibition. Trends Pharmacol Sci 2017; 38:822-836. [PMID: 28687272 DOI: 10.1016/j.tips.2017.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022]
Abstract
DNA interstrand crosslinks (ICLs) covalently connect complementary DNA strands. Consequently, DNA replication and transcription are hampered, DNA damage responses (DDR) are initiated, and cell death is triggered. Therefore, drugs inducing ICLs are effective against rapidly growing cancer cells. However, tumors engage a complicated enzymatic machinery to repair and survive ICLs. Several factors, including the post-translational acetylation/deacetylation of lysine residues within proteins, control this network. Histone deacetylases (HDACs) modulate the expression and functions of DNA repair proteins which remove ICLs and control the accessibility of chromatin. Accordingly, histone deacetylase inhibitors (HDACi) are small, pharmacologically and clinically relevant molecules that sensitize cancer cells to ICL inducers. We discuss the mechanism of ICL repair and targets of HDACi within this pathway.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | - Nicole Kiweler
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochem Pharmacol 2017; 142:1-12. [PMID: 28408343 DOI: 10.1016/j.bcp.2017.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system.
Collapse
Affiliation(s)
- Marie Toutfaire
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | - Emilie Bauwens
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | | |
Collapse
|
4
|
Martínez TF, Phillips JW, Karanja KK, Polaczek P, Wang CM, Li BC, Campbell JL, Dervan PB. Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response. Nucleic Acids Res 2014; 42:11546-59. [PMID: 25249630 PMCID: PMC4191428 DOI: 10.1093/nar/gku866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.
Collapse
Affiliation(s)
- Thomas F Martínez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John W Phillips
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenneth K Karanja
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Mei Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin C Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter B Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg Med Chem 2013; 21:5047-53. [DOI: 10.1016/j.bmc.2013.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022]
|
6
|
Briganti S, Flori E, Mastrofrancesco A, Kovacs D, Camera E, Ludovici M, Cardinali G, Picardo M. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ. Exp Dermatol 2013; 22:41-7. [PMID: 23278893 DOI: 10.1111/exd.12066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 12/12/2022]
Abstract
Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated β-galactosidase (SA-β-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-β-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism.
Collapse
Affiliation(s)
- Stefania Briganti
- Cutaneous Physiopatology Laboratory, San Gallicano Dermatology Institute, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kitada K, Nakano D, Hitomi H, Kobori H, Deguchi K, Mori H, Masaki T, Nishiyama A. Aldosterone induces p21-regulated apoptosis via increased synthesis and secretion of tumour necrosis factor-α in human proximal tubular cells. Clin Exp Pharmacol Physiol 2013; 39:858-63. [PMID: 23013131 DOI: 10.1111/1440-1681.12001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. Aldosterone has been shown to mediate p21-dependent cellular senescence in rat kidney proximal tubules in vivo and in cultured human proximal tubular cells. The p21-induced senescent cells express higher levels of apoptotic cytokines, such as tumour necrosis factor (TNF)-α compared with non-senescent cells. The aim of the present study was to investigate the hypothesis that aldosterone increases proximal tubular apoptosis by increasing the secretion of apoptosis-inducing factors through a p21-dependent mechanism. 2. Human proximal tubular cells were incubated with aldosterone (10 nmol/L) and cell senescence was detected by senescence-associated β-galactosidase staining and expression of p21. Apoptosis was analysed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling and annexin/propidium iodide staining, whereas p21 localization was determined by immunofluorescence. 3. Exposure of cells to aldosterone for 3 or 5 days increased senescence-associated β-galactosidase staining, p21 and TNF-α mRNA expression and secretion of TNF-α into the culture medium. These changes were abolished by gene silencing of p21. Aldosterone failed to increase the number of apoptotic cells on day 3, but did increase them on day 5. A neutralizing antibody against TNF-α prevented the aldosterone-induced apoptotic changes. Aldosterone did not affect localization of p21. 4. These findings indicate that aldosterone increases TNF-α synthesis and secretion in proximal tubular cells via p21/senescence-dependent cell phenotypic changes and that the TNF-α secreted plays an important role as a paracrine factor in mediating cell apoptosis, indicating a possible involvement in aldosterone-induced renal damage.
Collapse
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
9
|
Kitada K, Nakano D, Hitomi H, Kobori H, Deguchi K, Mori H, Masaki T, Nishiyama A. Aldosterone induces p21-regulated apoptosis via increased synthesis and secretion of tumour necrosis factor-αin human proximal tubular cells. Clin Exp Pharmacol Physiol 2012. [DOI: 10.1111/j.1440-1681.2012.12001.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kento Kitada
- Department of Pharmacology; Kagawa University; Kagawa; Japan
| | - Daisuke Nakano
- Department of Pharmacology; Kagawa University; Kagawa; Japan
| | - Hirofumi Hitomi
- Department of Pharmacology; Kagawa University; Kagawa; Japan
| | - Hiroyuki Kobori
- Department of Pharmacology; Kagawa University; Kagawa; Japan
| | - Kazushi Deguchi
- Department of Gastroenterology and Neurology; Kagawa University; Kagawa; Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology; Kagawa University; Kagawa; Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology; Kagawa University; Kagawa; Japan
| | - Akira Nishiyama
- Department of Pharmacology; Kagawa University; Kagawa; Japan
| |
Collapse
|