1
|
Johnson M, Piedrahita R, Pillarisetti A, Shupler M, Menya D, Rossanese M, Delapeña S, Penumetcha N, Chartier R, Puzzolo E, Pope D. Modeling approaches and performance for estimating personal exposure to household air pollution: A case study in Kenya. INDOOR AIR 2021; 31:1441-1457. [PMID: 33655590 DOI: 10.1111/ina.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study assessed the performance of modeling approaches to estimate personal exposure in Kenyan homes where cooking fuel combustion contributes substantially to household air pollution (HAP). We measured emissions (PM2.5 , black carbon, CO); household air pollution (PM2.5 , CO); personal exposure (PM2.5 , CO); stove use; and behavioral, socioeconomic, and household environmental characteristics (eg, ventilation and kitchen volume). We then applied various modeling approaches: a single-zone model; indirect exposure models, which combine person-location and area-level measurements; and predictive statistical models, including standard linear regression and ensemble machine learning approaches based on a set of predictors such as fuel type, room volume, and others. The single-zone model was reasonably well-correlated with measured kitchen concentrations of PM2.5 (R2 = 0.45) and CO (R2 = 0.45), but lacked precision. The best performing regression model used a combination of survey-based data and physical measurements (R2 = 0.76) and a root mean-squared error of 85 µg/m3 , and the survey-only-based regression model was able to predict PM2.5 exposures with an R2 of 0.51. Of the machine learning algorithms evaluated, extreme gradient boosting performed best, with an R2 of 0.57 and RMSE of 98 µg/m3 .
Collapse
Affiliation(s)
| | | | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Matthew Shupler
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Diana Menya
- Department of Epidemiology and Medical Statistics, School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | | | | | | | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Elisa Puzzolo
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
- Global LPG Partnership, London, UK
| | - Daniel Pope
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Kaundal A, Powar S, Dhar A. Numerical investigation of the effect of air supply on cook stove performance. Inhal Toxicol 2021:1-11. [PMID: 34105429 DOI: 10.1080/08958378.2021.1929583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Objectives: In a domestic biomass cook stove, the air supply plays a significant role in improving the overall combustion characteristics. The present research aims to numerically investigate the effect of air supply, division of air intake into primary and secondary air, and its optimization. > In a domestic biomass cook stove, the air supply plays a significant role in improving the overall combustion characteristics. The present research aims to numerically investigate the effect of air supply, division of air intake into primary and secondary air, and its optimization. Methods: The geometries of cook stove combustion chamber were prepared and simulated using species transport model with eddy-dissipation turbulent mixing. The stoichiometric amount of air was split into different ratios varying from 50:50 to 10:90 and simulations were carried out for each case. The computational model was validated and the concentration of CO2, H2O, O2, wood volatile and resultant temperature were compared and analyzed. Results: Species transport in the form of conservation of mass along with momentum conservation and energy conservation gave the spatial distribution of resultant species and spatial temperature distribution. The computational domain with feedstock inlet corresponding to the pyrolysis regime has yielded good results compared to that in the front. In this domain, the primary to secondary air ratio of 50:50 showed the best results due to the dominance of primary air utilization and, thus, less secondary air use even at higher elevations. With the maximum temperature near 1300 K, maximum relative CO2 production, and maximum feedstock utilization, the primary to secondary air ratio of 50:50 observed to be optimum. Conclusions: Due to the adequate intermixing of reactant species and uniform diffusion of product species along the combustion chamber's height, the computational domain with feedstock inlet corresponding to the pyrolysis regime has shown realistic conditions. The temperature profile and mole fraction of various species, thus obtained, can be used to design an efficient cook stove as the cross-section and dimensions of the combustion chamber and chimney relates to approach the desired division of air.
Collapse
Affiliation(s)
- Ankur Kaundal
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Satvasheel Powar
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
- School of Technology and Business Studies, Energy Technology, Högskolan Dalarna, Borlänge, Sweden
| | - Atul Dhar
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
3
|
Exposure to Wood Smoke and Associated Health Effects in Sub-Saharan Africa: A Systematic Review. Ann Glob Health 2020; 86:32. [PMID: 32211302 PMCID: PMC7082829 DOI: 10.5334/aogh.2725] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Observational studies suggest that exposure to wood smoke is associated with a variety of adverse health effects in humans. Objective We aimed to summarise evidence from sub-Saharan Africa on levels of exposure to pollutants in wood smoke and the association between such exposures and adverse health outcomes. Methods PubMed and Google scholar databases were searched for original articles reporting personal exposure levels to pollutants or health outcomes associated with wood smoke exposure in Sub-Saharan African population. Results Mean personal PM2.5 and carbon monoxide levels in the studies ranged from 26.3 ± 1.48 μg/m3 to 1574 ± 287μg/m3 and from 0.64 ± 2.12 ppm to 22 ± 2.4 ppm, respectively. All the reported personal PM2.5 exposure levels were higher than the World Health Organization's Air Quality Guideline (AQG) for 24-hour mean exposure. Use of wood fuels in domestic cooking is the major source of wood smoke exposure in this population. Occupational exposure to wood smoke included the use of wood fuels in bakery, fish drying, cassava processing and charcoal production. Females were exposed to higher levels of these pollutants than males of the same age range. Major determinants for higher exposure to wood smoke in SSA included use of unprocessed firewood, female gender and occupational exposure. We recorded strong and consistent associations between exposure to wood smoke and respiratory diseases including acute respiratory illness and impaired lung function. Positive associations were reported for increased blood pressure, low birth weight, oesophageal cancer, sick building syndrome, non-syndromic cleft lip and/or cleft palate and under-five mortality. Conclusion There is high level of exposure to wood smoke in SSA and this exposure is associated with a number of adverse health effects. There is urgent need for aggressive programs to reduce wood smoke exposure in this population.
Collapse
|
4
|
Abstract
Biomass burning for home energy use is a major environmental health concern. Improved cooking technologies could generate environmental health benefits, yet prior results regarding reduced personal exposure to air pollution are mixed. In this study, two improved stove types were distributed over four study groups in Northern Ghana. Participants wore real-time carbon monoxide (CO) monitors to measure the effect of the intervention on personal exposures. Relative to the control group (those using traditional stoves), there was a 30.3% reduction in CO exposures in the group given two Philips forced draft stoves (p = 0.08), 10.5% reduction in the group given two Gyapa stoves (locally made rocket stoves) (p = 0.62), and 10.2% reduction in the group given one of each (p = 0.61). Overall, CO exposure for participants was low given the prevalence of cooking over traditional three-stone fires, with 8.2% of daily samples exceeding WHO Tier-1 standards. We present quantification methods and performance of duplicate monitors. We analyzed the relationship between personal carbonaceous particulate matter less than 2.5 microns (PM2.5) and CO exposure for the dataset that included both measurements, finding a weak relationship likely due to the diversity of identified air pollution sources in the region and behavior variability.
Collapse
|
5
|
Scheid A, Hafner JM, Hoffmann H, Kächele H, Uckert G, Sieber S, Rybak C. Adapting to Fuelwood Scarcity: The Farmers' Perspective. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Curto A, Donaire-Gonzalez D, Barrera-Gómez J, Marshall JD, Nieuwenhuijsen MJ, Wellenius GA, Tonne C. Performance of low-cost monitors to assess household air pollution. ENVIRONMENTAL RESEARCH 2018; 163:53-63. [PMID: 29426028 DOI: 10.1016/j.envres.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Exposure to household air pollution is a leading cause of morbidity and mortality globally. However, due to the lack of validated low-cost monitors with long-lasting batteries in indoor environments, most epidemiologic studies use self-reported data or short-term household air pollution assessments as proxies of long-term exposure. We evaluated the performance of three low-cost monitors measuring fine particulate matter (PM2.5) and carbon monoxide (CO) in a wood-combustion experiment conducted in one household of Spain for 5 days (including the co-location of 2 units of HAPEX and 3 units of TZOA-R for PM2.5 and 3 units of EL-USB-CO for CO; a total of 40 unit-days). We used Spearman correlation (ρ) and Concordance Correlation Coefficient (CCC) to assess accuracy of low-cost monitors versus equivalent research-grade devices. We also conducted a field study in India for 1 week (including HAPEX in 3 households and EL-USB-CO in 4 households; a total of 49 unit-days). Correlation and agreement at 5-min were moderate-high for one unit of HAPEX (ρ = 0.73 / CCC = 0.59), for one unit of TZOA-R (ρ = 0.89 / CCC = 0.62) and for three units of EL-USB-CO (ρ = 0.82-0.89 / CCC = 0.66-0.91) in Spain, although the failure or malfunction rate among low-cost units was high in both settings (60% of unit-days in Spain and 43% in India). Low-cost monitors tested here are not yet ready to replace more established exposure assessment methods in long-term household air pollution epidemiologic studies. More field validation is needed to assess evolving sensors and monitors with application to health studies.
Collapse
Affiliation(s)
- A Curto
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - D Donaire-Gonzalez
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - J Barrera-Gómez
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - J D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - M J Nieuwenhuijsen
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - G A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI USA
| | - C Tonne
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
7
|
Carter E, Norris C, Dionisio KL, Balakrishnan K, Checkley W, Clark ML, Ghosh S, Jack DW, Kinney PL, Marshall JD, Naeher LP, Peel JL, Sambandam S, Schauer JJ, Smith KR, Wylie BJ, Baumgartner J. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:076002. [PMID: 28886596 PMCID: PMC5744652 DOI: 10.1289/ehp767] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM2.5 in studies of household air pollution. OBJECTIVE The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM2.5 in studies of household air pollution and the consistency of the PM2.5-CO relationship across different study settings and conditions. METHODS We conducted a systematic review of studies with exposure and/or cooking area PM2.5 and CO measurements and assembled 2,048 PM2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM2.5-CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. RESULTS We retained 61 of 70 studies for review, representing 27 countries. Reported PM2.5-CO correlations (r) were lower for personal exposure (range: 0.22-0.97; median=0.57) than for cooking areas (range: 0.10-0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM2.5), respectively. CONCLUSIONS Our results suggest that exposure to CO is not a consistently valid surrogate measure of exposure to PM2.5. Studies measuring CO exposure as a surrogate measure of PM exposure should conduct local validation studies for different stove/fuel types and seasons. https://doi.org/10.1289/EHP767.
Collapse
Affiliation(s)
- Ellison Carter
- Institute on the Environment, University of Minnesota , St. Paul, Minnesota, USA
| | - Christina Norris
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University , Montreal, Quebec, Canada
| | - Kathie L Dionisio
- National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - Kalpana Balakrishnan
- Department Environmental Health Engineering, Sri Ramachandra University , Porur, Chennai, India
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University , Baltimore, Maryland, USA
- Program in Global Disease Epidemiology and Control, Department of International Heath, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, Colorado, USA
| | - Santu Ghosh
- Department Environmental Health Engineering, Sri Ramachandra University , Porur, Chennai, India
| | - Darby W Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Patrick L Kinney
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington, USA
| | - Luke P Naeher
- Department of Environmental Health Science, College of Public Health, The University of Georgia , Athens, Georgia, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, Colorado, USA
| | - Sankar Sambandam
- Department Environmental Health Engineering, Sri Ramachandra University , Porur, Chennai, India
| | - James J Schauer
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison , Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | - Kirk R Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Blair J Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | - Jill Baumgartner
- Institute on the Environment, University of Minnesota , St. Paul, Minnesota, USA
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University , Montreal, Quebec, Canada
- Institute for Health and Social Policy, McGill University , Montreal Quebec, Canada
| |
Collapse
|
8
|
Quansah R, Semple S, Ochieng CA, Juvekar S, Armah FA, Luginaah I, Emina J. Effectiveness of interventions to reduce household air pollution and/or improve health in homes using solid fuel in low-and-middle income countries: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2017; 103:73-90. [PMID: 28341576 DOI: 10.1016/j.envint.2017.03.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cookstove intervention programs have been increasing over the past two (2) decades in Low and Middle Income Countries (LMICs) across the globe. However, there remains uncertainty regarding the effects of these interventions on household air pollution concentrations, personal exposure concentrations and health outcomes. OBJECTIVES The primary objective was to determine if household air pollution (HAP) interventions were associated with improved indoor air quality (IAQ) in households in LMICs. Given the potential impact of HAP interventions on health, a secondary objective was to evaluate the effectiveness of HAP interventions to improve health in populations receiving these interventions. DATA SOURCES OVID Medline, Ovid Embase, SCOPUS and PubMED were searched from their inception until December 2015 with no restrictions on study design. The WHO Global database of household air pollution measurements and Members' archives were also reviewed together with the reference lists of identified reviews and relevant articles. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND INTERVENTION We considered randomized controlled trials, or non-randomized control trials, or before-and-after studies; original studies; studies conducted in a LMIC (based on the United Nations Human Development Report released in March 2013 (World Bank, 2013); interventions that were explicitly aimed at improving IAQ and/or health from solid fuel use; studies published in a peer-reviewed journal or student theses or reports; studies that reported on outcomes which was indicative of IAQ or/and health. There was no restriction on the type of comparator (e.g. household receiving plancha vs. household using traditional cookstove) used in the intervention study. STUDY APPRAISAL AND SYNTHESIS METHODS Five review authors independently used pre-designed data collection forms to extract information from the original studies and assessed risk of bias using the Effective Public Health Practice Project (EPHPP). We computed standardized weighted mean difference (SMD) using random-effects models. Heterogeneity was computed using the Q and I2-statistics. We examined the influence of various characteristics on the study-specific effect estimates by stratifying the analysis by population type, study design, intervention type, and duration of exposure monitoring. The trim and fill method was used to assess the potential impact of missing studies. RESULTS Fifty-five studies met our a priori inclusion criteria and were included in the systematic review. Fifteen studies provided 43 effect estimates for our meta-analysis. The largest improvement in HAP was observed for average particulate matter (PM) (SMD=1.57) concentrations in household kitchens (1.03), followed by daily personal average concentrations of PM (1.18), and carbon monoxide (CO) concentrations in kitchens. With respect to personal PM, significant improvement was observed in studies of children (1.26) and studies monitoring PM for ≥24h (1.32). This observation was also noted in terms of studies of kitchen concentrations of CO. A significant improvement was also observed for kitchen levels of PM in both adult populations (1.56) and in RCT/cohort designs (1.59) involving replacing cookstoves without chimneys. Our findings on health outcomes were inconclusive. LIMITATIONS, CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS We observed high statistical between study variability in the study-specific estimate. Thus, care should be taken in concluding that HAP interventions - as currently designed and implemented - support reductions in the average kitchen and personal levels of PM and CO. Further, there is limited evidence that current stand-alone HAP interventions yield any health benefits. Post-intervention levels of pollutants were generally still greatly in excess of the relevant WHO guideline and thus a need to promote cleaner fuels in LMICs to reduce HAP levels below the WHO guidelines. SYSTEMATIC REVIEW REGISTRATION NUMBER The review has been registered with PROSPERO (registration number CRD42014009768).
Collapse
Affiliation(s)
- Reginald Quansah
- Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Sean Semple
- Respiratory Intervention Group, Institute of Applied Health Science, University of Aberdeen, Aberdeen, Scotland
| | | | - Sanjar Juvekar
- KEM Hospital Research Centre, Pune, India; INDEPTH Network, Accra, Ghana
| | | | - Isaac Luginaah
- Department of Geography, Western University, Ontario, Canada
| | - Jacques Emina
- INDEPTH Network, Accra, Ghana; Department of Population and Development Studies, University of Kinshasa, Kinshasa, People's Republic of Congo
| |
Collapse
|
9
|
Ochieng C, Vardoulakis S, Tonne C. Household air pollution following replacement of traditional open fire with an improved rocket type cookstove. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:440-447. [PMID: 28040224 DOI: 10.1016/j.scitotenv.2016.10.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Cooking with biomass fuel is an important source of household air pollution (HAP) in developing countries, and a leading risk factor for ill-health. Although various designs of "improved cookstoves" (ICS) have been promoted as HAP interventions in these settings, few of them have undergone in-field evaluation, partly due to the challenge of conducting field measurements in remote settings. In this study we assessed the change in carbon monoxide (CO) exposure following the replacement of the traditional three-stone stove with a popular ICS in 49 homes in Western Kenya. We also assessed the suitability of using kitchen CO as a proxy for kitchen PM2.5. Reduction in 48h mean kitchen CO was 3.1ppm (95% CI: -8.1, 1.8) and in personal CO was 0.9ppm (95% CI: -4.3, 2.6) following stove replacements. Overall, 48-h kitchen and personal CO exposures were lower after stove replacement (28% and 12%, respectively) but with wide confidence intervals that also suggested possible increases in exposure. There were statistically significant reductions in peak kitchen and personal CO concentrations represented by the 8-h 95th percentile: reductions of 26.1ppm (95% CI: -44.6, -7.6) and 8.0ppm (95% CI: -12.2, -3.8), respectively. This is equivalent to 53% reduction in kitchen CO and 39% reduction in personal CO. We found good correlation between kitchen CO and PM2.5 concentrations overall (r=0.73, n=33 over averaging periods approximating 1day), which varied by time of day and exposure setting. These variations limit the applicability of CO as a proxy measure for PM2.5 concentrations. A combination of interventions, including better designed stoves, improved ventilation and cleaner fuels, may be needed to reduce HAP to levels that are likely to improve health.
Collapse
Affiliation(s)
- Caroline Ochieng
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK; Stockholm Environment Institute, Linnegatan 87D, Box 24218, 10451 Stockholm, Sweden.
| | - Sotiris Vardoulakis
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK; Environmental Change Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxon, UK
| | - Cathryn Tonne
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
10
|
Dickinson KL, Kanyomse E, Piedrahita R, Coffey E, Rivera IJ, Adoctor J, Alirigia R, Muvandimwe D, Dove M, Dukic V, Hayden MH, Diaz-Sanchez D, Abisiba AV, Anaseba D, Hagar Y, Masson N, Monaghan A, Titiati A, Steinhoff DF, Hsu YY, Kaspar R, Brooks B, Hodgson A, Hannigan M, Oduro AR, Wiedinmyer C. Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol. BMC Public Health 2015; 15:126. [PMID: 25885780 PMCID: PMC4336492 DOI: 10.1186/s12889-015-1414-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes. METHODS/DESIGN REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) is an ongoing interdisciplinary randomized cookstove intervention study in the Kassena-Nankana District of Northern Ghana. The study tests two types of biomass burning stoves that have the potential to meet local cooking needs and represent different "rungs" in the cookstove technology ladder: a locally-made low-tech rocket stove and the imported, highly efficient Philips gasifier stove. Intervention households were randomized into four different groups, three of which received different combinations of two improved stoves, while the fourth group serves as a control for the duration of the study. Diverse measurements assess different points along the causal chain linking the intervention to final outcomes of interest. We assess stove use and cooking behavior, cooking emissions, household air pollution and personal exposure, health burden, and local to regional air quality. Integrated analysis and modeling will tackle a range of interdisciplinary science questions, including examining ambient exposures among the regional population, assessing how those exposures might change with different technologies and behaviors, and estimating the comparative impact of local behavior and technological changes versus regional climate variability and change on local air quality and health outcomes. DISCUSSION REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes. By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.
Collapse
Affiliation(s)
- Katherine L Dickinson
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA.
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Ernest Kanyomse
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | | | - Evan Coffey
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Isaac J Rivera
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA.
| | - James Adoctor
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | - Rex Alirigia
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | | | - MacKenzie Dove
- Relief International, 5455 Wilshire Blvd., Suite 1280, Los Angeles, CA, 90036, USA.
| | - Vanja Dukic
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Mary H Hayden
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA.
| | - David Diaz-Sanchez
- EPA Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27514-4512, USA.
| | - Adoctor Victor Abisiba
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | - Dominic Anaseba
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | - Yolanda Hagar
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Nicholas Masson
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Andrew Monaghan
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA.
| | - Atsu Titiati
- Relief International, 5455 Wilshire Blvd., Suite 1280, Los Angeles, CA, 90036, USA.
| | - Daniel F Steinhoff
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA.
| | - Yueh-Ya Hsu
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Rachael Kaspar
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Bre'Anna Brooks
- University of Colorado - Boulder, Boulder, CO, 80309-0427, USA.
| | - Abraham Hodgson
- Ghana Health Service, Private Mail Bag, Ministries, Accra, Ghana.
| | | | - Abraham Rexford Oduro
- Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Navrongo, Ghana.
| | | |
Collapse
|
11
|
Rosa G, Majorin F, Boisson S, Barstow C, Johnson M, Kirby M, Ngabo F, Thomas E, Clasen T. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda. PLoS One 2014; 9:e91011. [PMID: 24614750 PMCID: PMC3948730 DOI: 10.1371/journal.pone.0091011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/05/2014] [Indexed: 11/25/2022] Open
Abstract
Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake, compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5% reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p<0.001) and a median reduction of 48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005). Further studies to increase compliance should be undertaken to better inform large-scale interventions. Trial registration: Clinicaltrials.gov; NCT01882777; http://clinicaltrials.gov/ct2/results?term=NCT01882777&Search=Search
Collapse
Affiliation(s)
- Ghislaine Rosa
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Fiona Majorin
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sophie Boisson
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christina Barstow
- Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Michael Johnson
- Berkeley Air Monitoring Group, Berkeley, California, United States of America
| | - Miles Kirby
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fidele Ngabo
- Ministry of Health, Government of Rwanda, Kigali, Rwanda
| | - Evan Thomas
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, United States of America
| | - Thomas Clasen
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Environmental Health, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
12
|
Alim MA, Sarker MAB, Selim S, Karim MR, Yoshida Y, Hamajima N. Respiratory involvements among women exposed to the smoke of traditional biomass fuel and gas fuel in a district of Bangladesh. Environ Health Prev Med 2013; 19:126-34. [PMID: 24105352 DOI: 10.1007/s12199-013-0364-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/24/2013] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Burning of biomass fuel (cow-dung, crop residue, dried leaves, wood, etc.) in the kitchen releases smoke, which may impair the respiratory functions of women cooking there. This paper aimed to compare the respiratory symptoms between biomass fuel users and gas fuel users in Bangladesh. METHODS A cross-sectional survey was conducted through face-to-face interviews and chest examination of 224 adult women using biomass fuel in a rural village and 196 adult women using gas fuel in an urban area. RESULTS The prevalence of respiratory involvement (at least one among nine symptoms and two diseases) was significantly higher among biomass users than among gas users (29.9 vs. 11.2 %). After adjustment for potential confounders by a logistic model, the odds ratio (OR) of the biomass users for the respiratory involvement was significantly higher (OR = 3.23, 95 % confidence interval 1.30-8.01). The biomass fuel use elevated symptoms/diseases significantly; the adjusted OR was 3.04 for morning cough, 7.41 for nasal allergy, and 5.94 for chronic bronchitis. The mean peak expiratory flow rate of biomass users (253.83 l/min) was significantly lower than that of gas users (282.37 l/min). CONCLUSIONS The study shows significant association between biomass fuel use and respiratory involvement among rural women in Bangladesh, although the potential confounding of urban/rural residency could not be ruled out in the analysis. The use of smoke-free stoves and adequate ventilation along with health education to the rural population to increase awareness about the health effects of indoor biomass fuel use might have roles to prevent these involvements.
Collapse
Affiliation(s)
- Md Abdul Alim
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan,
| | | | | | | | | | | |
Collapse
|