1
|
A vaccine against CCR5 protects a subset of macaques upon intravaginal challenge with simian immunodeficiency virus SIVmac251. J Virol 2013; 88:2011-24. [PMID: 24307581 DOI: 10.1128/jvi.02447-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
As an alternative to targeting human immunodeficiency virus (HIV), we have developed vaccines targeting CCR5, a self-protein critically involved in HIV replication and pathogenesis. By displaying peptides derived from CCR5 at high density on the surface of virus-like particles, we can efficiently induce high-titer IgG antibodies against this self-molecule. Here, we investigated whether prophylactic immunization of rhesus macaques with a particle-based vaccine targeting two regions of macaque CCR5 could prevent or suppress vaginal infection with highly virulent SIVmac251. Twelve macaques were vaccinated with a bacteriophage Qß-based vaccine targeting macaque CCR5 (Qß.CCR5). Six control animals were immunized with the Qß platform alone. All animals immunized with Qß.CCR5 developed high-titer anti-CCR5 antibody responses. Macaques were vaginally challenged with a high dose of SIVmac251. The mean peak viral RNA levels in the vaccinated groups were 30-fold lower than in the control group (10(6.8) versus 10(8.3) copies/ml plasma). Three of the 12 vaccinated macaques dramatically suppressed simian immunodeficiency virus (SIV) replication: peak viral loads were low (10(3) to 10(4) RNA copies/ml), and SIV RNA became undetectable from 6 weeks onward. No viral RNA or DNA could be detected in colon and lymph node biopsy specimens collected 13 months after challenge. In vivo depletion of CD8(+) cells failed to induce a viral rebound. However, once anti-CCR5 antibody responses had waned, the 3 animals became infected after intravaginal and/or intravenous rechallenge. In conclusion, vaccination against CCR5 was associated with dramatic suppression of virus replication in a subset (25%) of macaques. These data support further research of vaccination against CCR5 to combat HIV infection.
Collapse
|
2
|
Ling B, Rogers L, Johnson AM, Piatak M, Lifson J, Veazey RS. Effect of combination antiretroviral therapy on Chinese rhesus macaques of simian immunodeficiency virus infection. AIDS Res Hum Retroviruses 2013; 29:1465-74. [PMID: 23387294 DOI: 10.1089/aid.2012.0378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Definitive treatment of HIV infection remains a critical but elusive goal, with persistence of residual virus even in the face of prolonged administration of suppressive combination antiretroviral treatment (cART) providing a source for recrudescent infection if treatment is stopped. Characterization of the residual virus and devising strategies to target it for eradication are key goals in HIV treatment research. Indian rhesus macaques (In-RM) infected with SIVmac have been widely used in such research. However, it has proven challenging to achieve and sustain clinically relevant levels of suppression (<30 vRNA copies/ml plasma) with cART in such models. As ease of viral suppression by cART is related to pretreatment levels of viral replication, and levels of replication of SIVmac239/251 are lower in Chinese rhesus macaques (Ch-RM) than in In-RM, we evaluated cART administration to SIVmac-infected Ch-RM as a potential model for studies of residual virus and eradication strategies. Four SIVmac239-infected Ch-RM received cART including reverse transcriptase inhibitors PMPA/FTC and integrase inhibitor L-870812 daily for 8 weeks. Plasma viral loads were promptly reduced to <30 copies/ml upon initiation of cART. Cell-associated SIV DNA levels in lymphocytes from the gut were also significantly reduced. Jejunal and colonic CCR5(+)CD4(+) mucosal memory T cells increased significantly; restoration of these cells was associated with reductions in immune activation. In conclusion, cART effectively suppressed viral replication to <30 vRNA copies/ml in SIVmac239-infected Ch-RM, reducing immune activation and restoring mucosal immune cell populations. SIVmac239-infected Ch-RM may be a useful model for studying responses to cART and persistent tissue reservoirs and evaluating candidate eradication strategies to cure HIV infection.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
3
|
Dunham RM, Gordon SN, Vaccari M, Piatak M, Huang Y, Deeks SG, Lifson J, Franchini G, McCune JM. Preclinical evaluation of HIV eradication strategies in the simian immunodeficiency virus-infected rhesus macaque: a pilot study testing inhibition of indoleamine 2,3-dioxygenase. AIDS Res Hum Retroviruses 2013; 29:207-14. [PMID: 22924680 DOI: 10.1089/aid.2012.0162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Even in the setting of maximally suppressive antiretroviral therapy (ART), HIV persists indefinitely. Several mechanisms might contribute to this persistence, including chronic inflammation and immune dysfunction. In this study, we have explored a preclinical model for the evaluation of potential interventions that might serve to eradicate or to minimize the level of persistent virus. Given data that metabolic products of the inducible enzyme indoleamine 2,3-dioxygeanse (IDO) might foster inflammation and viral persistence, chronically simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques were treated with the IDO inhibitor 1-methyl tryptophan (1mT). Orally administered 1mT achieved targeted plasma levels, but did not impact tryptophan metabolism or decrease viral RNA or DNA in plasma or in intestinal tissues beyond levels achieved by ART alone. Animals treated with 1mT showed no difference in the levels of T cell activation or differentiation, or in the kinetics or magnitude of viral rebound following cessation of ART. Notwithstanding these negative results, our observations suggest that the chronically SIV-infected rhesus macaque on suppressive ART can serve as a tractable model in which to test and to prioritize the selection of other potential interventions designed to eradicate HIV in vivo. In addition, this model might be used to optimize the route and dose by which such interventions are administered and the methods by which their effects are monitored.
Collapse
Affiliation(s)
- Richard M. Dunham
- Department of Medicine, University of California, San Francisco, California
| | - Shari N. Gordon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Piatak
- AIDS and Cancer Virus Program, Science Applications International Corporation Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Science Applications International Corporation Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph M. McCune
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
4
|
Hartigan-O'Connor DJ, Abel K, Van Rompay KKA, Kanwar B, McCune JM. SIV replication in the infected rhesus macaque is limited by the size of the preexisting TH17 cell compartment. Sci Transl Med 2012; 4:136ra69. [PMID: 22649090 DOI: 10.1126/scitranslmed.3003941] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanisms by which some HIV-infected subjects resist disease progression, whereas others progress rapidly, are incompletely understood. Viral and host genetic factors, such as nef deletions and major histocompatibility complex alleles, explain a portion of the observed variability. However, it has been difficult to identify host immune functions that may be present before infection and that allow resistance to lentiviral disease progression. Here, we show that simian immunodeficiency virus replication in the infected rhesus macaque is limited by the size of the preexisting T helper 17 (T(H)17) cell compartment: Animals with a high representation of such cells in blood and intestinal tissue before infection experienced peak and set-point viral loads about one log unit lower than those with a lower representation of T(H)17 cells. Reciprocally, treatment of macaques with interleukin-2 and granulocyte colony-stimulating factor before infection led to depletion of T(H)17 cells, reduction of the ratio between T(H)17 cells and CD3(+)CD4(+)CD25(+)CD127(low) regulatory T cells, and higher viral loads for 6 months after infection. These results demonstrate that the composition of the host immune system before infection has an influence on the course of disease after infection. Furthermore, to the extent that this influence shapes and interacts with T cell-mediated responses to virus, our findings provide a new framework for understanding interindividual variation in responses to therapies and vaccines against HIV.
Collapse
Affiliation(s)
- Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | |
Collapse
|
5
|
A quantitative measurement of antiviral activity of anti-human immunodeficiency virus type 1 drugs against simian immunodeficiency virus infection: dose-response curve slope strongly influences class-specific inhibitory potential. J Virol 2012; 86:11368-72. [PMID: 22875968 DOI: 10.1128/jvi.01563-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.
Collapse
|
6
|
Van Rompay KKA, Trott KA, Jayashankar K, Geng Y, LaBranche CC, Johnson JA, Landucci G, Lipscomb J, Tarara RP, Canfield DR, Heneine W, Forthal DN, Montefiori D, Abel K. Prolonged tenofovir treatment of macaques infected with K65R reverse transcriptase mutants of SIV results in the development of antiviral immune responses that control virus replication after drug withdrawal. Retrovirology 2012; 9:57. [PMID: 22805180 PMCID: PMC3419085 DOI: 10.1186/1742-4690-9-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/17/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. RESULTS Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. CONCLUSION Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kristin A Trott
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kartika Jayashankar
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Yongzhi Geng
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | | | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Ross P Tarara
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Don R Canfield
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | | | - Kristina Abel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Shytaj IL, Norelli S, Chirullo B, Della Corte A, Collins M, Yalley-Ogunro J, Greenhouse J, Iraci N, Acosta EP, Barreca ML, Lewis MG, Savarino A. A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model. PLoS Pathog 2012; 8:e1002774. [PMID: 22737073 PMCID: PMC3380955 DOI: 10.1371/journal.ppat.1002774] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (10³-10⁷) viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (i.e. <40 RNA copies/mL) after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*10⁵ cells) in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR⁺) effector memory CD4⁺ T-cells in vivo, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing potential cures for AIDS.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Sandro Norelli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Barbara Chirullo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Alessandro Della Corte
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Matt Collins
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | | | - Jack Greenhouse
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Nunzio Iraci
- Dipartimento di Chimica e Tecnologia del Farmaco, Facoltà di Farmacia, Università di Perugia, Perugia, Italy
| | - Edward P. Acosta
- The University of Alabama at Birmingham, Division of Clinical Pharmacology, Birmingham, Alabama, United States of America
| | - Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia del Farmaco, Facoltà di Farmacia, Università di Perugia, Perugia, Italy
| | - Mark G. Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Andrea Savarino
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
- * E-mail:
| |
Collapse
|
8
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
9
|
Wang W, Cong Z, Liu X, Tong W, Qiao H, Jiang H, Wei Q, Qin C. Frequency of the major histocompatibility complex Mamu-A*01 allele in experimental rhesus macaques in China. J Med Primatol 2011; 39:374-80. [PMID: 20444001 DOI: 10.1111/j.1600-0684.2010.00420.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In Indian rhesus macaques, the major histocompatibility complex Mamu gene, especially the Mamu-A*01 allele, plays an important role in simian immunodeficiency virus susceptibility and disease progression. The Mamu-A*01 allele is one of the protective genes mostly being studied in simian acquired immunodeficiency syndrome. METHODS PCR was used to amplify the Mamu-A*01 allele in 130 Chinese-origin rhesus macaques. Identification of the allele was then confirmed by sequencing and IFN-γ ELISPOT assay. RESULTS The Mamu-A*01 allele was detected in 3.85% (5 of 130) of the experimental Chinese-origin rhesus macaques. The sequence homology reached 99.1% in comparison with Indian rhesus macaques. A significantly large number of spots were observed in Mamu-A*01-positive monkeys when analyzed by ELISPOT with Gag181-189 epitope stimulation. CONCLUSIONS Our study suggests that Mamu-A*01-positive Chinese-origin rhesus monkeys are suitable for use in AIDS studies.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 2009; 83:9247-57. [PMID: 19570871 DOI: 10.1128/jvi.00840-09] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART), a combination of three or more antiretroviral drugs, suppresses viremia below the clinical limit of detection (50 HIV-1 RNA copies/ml), but latently infected resting CD4(+) T cells serve as lifelong reservoirs, and low-level viremia can be detected with special assays. Recent studies have provided evidence for additional reservoirs that contribute to residual viremia but are not present in circulating cells. Identification of all the sources of residual viremia in humans may be difficult. These discoveries highlight the need for a tractable model system to identify additional viral reservoirs that could represent barriers to eradication. In this study, simian immunodeficiency virus (SIV)-infected pig-tailed macaques (Macaca nemestrina) were treated with four antiretroviral drugs to develop an animal model for viral suppression during effective HAART. Treatment led to a biphasic decay in viremia and a significant rise in levels of circulating CD4(+) T cells. At terminal infection time points, the frequency of circulating resting CD4(+) T cells harboring replication-competent virus was reduced to a low steady-state level similar to that observed for HIV-infected patients on HAART. The frequencies of resting CD4(+) T cells harboring replication-competent virus in the pooled head lymph nodes, gut lymph nodes, spleen, and peripheral blood were reduced relative to those for untreated SIV-infected animals. These observations closely parallel findings for HIV-infected humans on suppressive HAART and demonstrate the value of this animal model to identify and characterize viral reservoirs persisting in the setting of suppressive antiretroviral drugs.
Collapse
|
11
|
With minimal systemic T-cell expansion, CD8+ T Cells mediate protection of rhesus macaques immunized with attenuated simian-human immunodeficiency virus SHIV89.6 from vaginal challenge with simian immunodeficiency virus. J Virol 2008; 82:11181-96. [PMID: 18787003 DOI: 10.1128/jvi.01433-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8(+) T-cell response in SHIV-immunized monkeys by CD8(+) lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8(+) T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8(+) T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8(+) T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8(+) T cells can provide significant protection from vaginal SIV challenge.
Collapse
|
12
|
Early restoration of mucosal CD4 memory CCR5 T cells in the gut of SIV-infected rhesus predicts long term non-progression. AIDS 2007; 21:2377-85. [PMID: 18025874 DOI: 10.1097/qad.0b013e3282f08b32] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES : To use SIVmac-infected Chinese-origin rhesus macaques (Ch Rh) to characterize the immunopathology of the long term non-progressor (LTNP) state. The key questions addressed were whether or not LTNP experience an early and rapid loss of mucosal CD4 T cells during the acute infection and the mechanisms by which they maintain the LTNP state. METHODS : Ch Rh were infected with SIVmac239. Polychromatic flow cytometry was used to analyze T lymphocyte subsets from blood, lymph nodes and gut tissues during SIV infection. Plasma viral loads were monitored by bDNA assay. Two LTNP were treated with anti-CD8 antibody to deplete CD8 cells in vivo. RESULTS : Thirty-one percent (5/16) of SIVmac239-infected ChRh having low viral loads for as long as 6 years were LTNP. Both LTNP and progressors had similar levels of gut memory CD4/CCR5 T cells (target cells) before infection and there was an early and profound depletion of target cells in both groups. LTNP were distinguished by gradual restoration of mucosal target cells which was evident by 6 months post infection. In vivo CD8 depletion in two LTNP induced AIDS in one LTNP (V542) post anti-CD8 treatment and the other (AJ07) remained healthy after a transient spike in viremia. CONCLUSIONS : Early destruction of target cells was equivalent in LTNP and progressors and did not predict clinical outcome. Restoration of target cells in the gut is associated with long term non-progression. CD8 T cells may play a critical role on maintaining the LTNP state.
Collapse
|
13
|
Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proc Natl Acad Sci U S A 2007; 104:18648-53. [PMID: 18000037 DOI: 10.1073/pnas.0709198104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-gamma-producing CD8(+) and CD4(+) effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-gamma was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication.
Collapse
|
14
|
Hadas E, Borjabad A, Chao W, Saini M, Ichiyama K, Potash MJ, Volsky DJ. Testing antiretroviral drug efficacy in conventional mice infected with chimeric HIV-1. AIDS 2007; 21:905-9. [PMID: 17457083 DOI: 10.1097/qad.0b013e3281574549] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We previously described chimeric HIV-1, EcoHIV, which can infect mouse cells in culture and cause spreading infection in conventional immunocompetant mice. We have now applied this system as a model for preclinical evaluation of anti-retroviral drugs. DESIGN AND METHODS We used chimeric virus EcoHIV/NDK constructed on the backbone of subtype D NDK. EcoHIV/NDK expression in mice was characterized 5-10 days after infection by testing viral DNA, RNA, and protein burdens in spleen and macrophages by real-time PCR (QPCR), RT-PCR, and p24 ELISA. For antiviral evaluation, groups of 5-7 mice were pretreated with 2',3'-dideoxycytidine (ddC), abacavir, or vehicle; mice were then infected with EcoHIV/NDK, treatment maintained for additional 48 h, and tested for viral DNA and RNA burdens in spleens and macrophages by QPCR. RESULTS EcoHIV/NDK infected mice reproducibly showed viral burdens of up to 1.4 x 10 viral DNA copies and 200 pg p24 per 10 spleen cells and expressed spliced Vif RNA and mature p24 in macrophages 5-10 days after infection. Treatment of mice with 60 or 300 mg ddC/kg/day blocked EcoHIV/NDK infection in a dose-dependent manner with significantly lower viral DNA and RNA burdens at both drug doses (P < 0.001) in the spleens of infected mice. Abacavir tested at 100 mg/kg/day caused 96% inhibition of viral DNA synthesis in spleen and it almost completely abolished viral spliced RNA synthesis in spleens and macrophages. CONCLUSIONS The system of chimeric HIV-1 infection of mice permits rapid, statistically powerful, and inexpensive evaluation of antiretroviral drugs in vivo.
Collapse
Affiliation(s)
- Eran Hadas
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University Medical Center, New York 10019, USA
| | | | | | | | | | | | | |
Collapse
|