1
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Mitchell JL, Mee ET, Almond NM, Cutler K, Rose NJ. Characterisation of MHC haplotypes in a breeding colony of Indonesian cynomolgus macaques reveals a high level of diversity. Immunogenetics 2012; 64:123-9. [PMID: 21881952 DOI: 10.1007/s00251-011-0567-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/16/2011] [Indexed: 12/13/2022]
Abstract
Recent reports have revealed that cynomolgus macaques obtained from different geographic origins may be more or less suitable for particular studies depending on the specific question(s) being addressed, e.g. Mauritian cynomolgus macaques are particularly suitable for detailed immunological studies against a limited genetic background while less conserved populations may be more appropriate to predict breadth of vaccine coverage in the genetically diverse human population. We have characterised MHC haplotypes in 90 Indonesian cynomolgus macaques using microsatellite and reference strand conformational analysis. Thirty unique haplotypes were defined in the cohort, emphasising the high degree of diversity in this population of cynomolgus macaques. The majority of haplotypes were present at a frequency of ≤ 6%. Transcription profiles indicated that each haplotype was associated with two to eight transcribed class I alleles. The results corroborate previous reports of the extensive MHC diversity of Indonesian cynomolgus macaques and provide additional data to inform colony management decisions. Further, definition of the MHC diversity of the population satisfies one of the prerequisites to MHC association studies and detailed immunological investigations in this outbred non-human primate species.
Collapse
Affiliation(s)
- Jane L Mitchell
- Division of Retrovirology, National Institute for Biological Standards and Control, Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | | | | | |
Collapse
|
3
|
Li B, Berry N, Ham C, Ferguson D, Smith D, Hall J, Page M, Quartey-Papafio R, Elsley W, Robinson M, Almond N, Stebbings R. Vaccination with live attenuated simian immunodeficiency virus causes dynamic changes in intestinal CD4+CCR5+ T cells. Retrovirology 2011; 8:8. [PMID: 21291552 PMCID: PMC3038908 DOI: 10.1186/1742-4690-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Background Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. Results In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. Conclusions This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.
Collapse
Affiliation(s)
- Bo Li
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|