1
|
Poomsawat S, Kariya A, Nimmanon T, Kosanwat T, Juengsomjit R, Sirima S. Diagnostic potential of Type VII Collagen during oral carcinogenesis. J Appl Oral Sci 2023; 31:e20220486. [PMID: 37194793 DOI: 10.1590/1678-7757-2022-0486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Type VII collagen (Col7) is a major component of anchoring fibrils. Col7 plays a role in tumor development and aggressiveness of cutaneous squamous cell carcinoma of recessive dystrophic epidermolysis bullosa. However, the role of Col7 in oral squamous cell carcinoma (OSCC) and oral leukoplakia (OL) remains largely unknown. To elucidate the role of Col7 and its diagnostic potential during oral carcinogenesis. Col7 expression was immunohistochemically studied in 254 samples, including normal oral mucosa (NM), OL without dysplasia, OL with dysplasia, and OSCC. The correlation between Col7 expression and clinicopathologic parameters of OSCC was also determined. Col7 was present as a linear deposit at the basement membrane of NM, OL without dysplasia and OL with dysplasia, and at the tumor-stromal junction around tumor islands in OSCC. Discontinuity of expression was frequently observed in OL with dysplasia and OSCC. OSCC had the significantly lowest Col7 expression (p<0.0001). Compared with OL without dysplasia, OL with dysplasia showed significantly reduced Col7 expression. Patients in clinical stage 4 with positive nodes had low Col7 expression compared with those in clinical stage 1 and negative nodes, respectively. Loss of Col7 is associated with tumorigenesis and aggressiveness in OSCC. A significantly reduced Col7 expression in OSCC implies that Col7 may be a useful marker for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Sopee Poomsawat
- Mahidol University, Faculty of Dentistry, Department of Oral and Maxillofacial Pathology, Bangkok, Thailand
| | | | - Thirayost Nimmanon
- Phramongkutklao College of Medicine, Department of Pathology, Bangkok, Thailand
| | - Theerachai Kosanwat
- Mahidol University, Faculty of Dentistry, Department of Oral and Maxillofacial Pathology, Bangkok, Thailand
| | - Rachai Juengsomjit
- Mahidol University, Faculty of Dentistry, Department of Oral and Maxillofacial Pathology, Bangkok, Thailand
| | - Sanguansin Sirima
- Mahidol University, Faculty of Dentistry, Department of Oral Biology, Bangkok, Thailand
| |
Collapse
|
2
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
3
|
Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Exp Cell Res 2014; 325:58-64. [DOI: 10.1016/j.yexcr.2013.12.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/28/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
|
4
|
South AP, O'Toole EA. Understanding the pathogenesis of recessive dystrophic epidermolysis bullosa squamous cell carcinoma. Dermatol Clin 2010; 28:171-8. [PMID: 19945632 DOI: 10.1016/j.det.2009.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patients with recessive dystrophic epidermolysis bullosa develop numerous life-threatening skin cancers. The reasons for this remain unclear. Parallels exist with other scarring skin conditions, such as Marjolin ulcer. We summarize observational and experimental data and discuss proposed theories for the development of such aggressive skin cancers. A context-driven situation seems to be emerging, but more focused research is required to elucidate the pathogenesis of epidermolysis bullosa-associated squamous cell carcinoma.
Collapse
Affiliation(s)
- Andrew P South
- Centre For Oncology and Molecular Medicine, Ninewell's Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | |
Collapse
|
5
|
Baba Y, Iyama KI, Honda S, Ishikawa S, Miyanari N, Baba H. Cytoplasmic expression of type VII collagen is related to prognosis in patients with esophageal squamous cell carcinoma. Oncology 2007; 71:221-8. [PMID: 17652943 DOI: 10.1159/000106426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/18/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Type VIIcollagen, the major component of anchoring fibrils, has been suggested to be involved with tumor cell invasion in a laminin-5-dependent manner in skin squamous cell carcinoma. However, the significance of type VII collagen expression in esophageal squamous cell carcinoma (ESCC) has been unknown to date. Therefore, we examined the expression of type VIIcollagen in ESCC, and confirmed the association between type VIIcollagen expression and clinicopathologic characteristics. METHODS We immunohistochemically examined the expression of type VII collagen and laminin-5 gamma2 chain in surgical specimens of primary tumors in 109 patients with ESCC. RESULTS Positive cytoplasmic expression of type VII collagen was detected in 35%. Significant correlation between the expression of type VII collagen and laminin-5 gamma2 chain expression was observed. In the type VII collagen-negative group, the 5-year survival rate was significantly better than in the positive group. Multivariate analysis indicated that the positive expression of type VII collagen was an independent prognostic factor. CONCLUSIONS The expression of type VII collagen was closely related to poor prognosis. Type VII collagen cytoplasmic expression could be a useful marker for evaluating the tumor cell properties, including prognosis, in patients with ESCC.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Väänänen A, Ylipalosaari M, Parikka M, Kainulainen T, Rehn M, Heljasvaara R, Tjäderhane L, Salo T. Collagen XVIII modulation is altered during progression of oral dysplasia and carcinoma. J Oral Pathol Med 2006; 36:35-42. [PMID: 17181740 DOI: 10.1111/j.1600-0714.2006.00498.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Collagen XVIII is a ubiquitous basement membrane (BM) component and a precursor of endostatin. METHODS Using immunohistochemistry and in situ hybridization, we studied the expression and localization of collagen XVIII in different stages of normal oral wound healing, epithelial dysplasia and squamous cell carcinoma (SCC). RESULTS In mild epithelial dysplasias collagen XVIII appeared as a continuous signal in the BM, whereas in severe epithelial dysplasias and in the invasive areas of oral SCCs collagen XVIII was absent. In situ hybridization showed that collagen XVIII mRNA expression did not decrease in severe dysplasia or oral carcinoma samples when compared with the mild dysplasias. CONCLUSIONS The results indicate that the absence of collagen XVIII protein in severe oral dysplasias is related to the processing of the protein rather than to changes in mRNA expression.
Collapse
Affiliation(s)
- Anu Väänänen
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ziober BL, Silverman SS, Kramer RH. Adhesive mechanisms regulating invasion and metastasis in oral cancer. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:499-510. [PMID: 11806519 DOI: 10.1177/10454411010120060401] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is the relentless invasion and growth into surrounding tissue that characterize oral squamous cell carcinoma. Metastasis is perhaps the most challenging and important aspect of cancer progression, in that it generally signifies limited survival and ineffective therapy. Inherent in metastasis is invasion, the process by which cells infiltrate into adjacent tissues, degrading basement membranes and extracellular matrix and disrupting tissue architecture and sometimes organ function. The factors that regulate these processes are complex and likely involve loss of the controls that are normally in place in physiologic tissue modeling. Adhesion receptors and their ligands are important in modulating not only invasion of oral squamous cell carcinoma cells but also their survival and proliferation. Normal oral mucosal epithelial cells use integrins to maintain their anchorage to the basement membrane, whereas the formation of stratifying cell layers depends on the formation of intercellular adhesions mediated by cadherins. The process of squamous cell carcinoma invasion and dissemination requires active cell migration through the extracellular matrix with the simultaneous remodeling of intercellular adhesions. Integrins are clearly important in the invasive process, whereas intercellular adhesion receptors restrain invasion and promote a more differentiated phenotype.
Collapse
Affiliation(s)
- B L Ziober
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
8
|
Eyden B, Tzaphlidou M. Structural variations of collagen in normal and pathological tissues: role of electron microscopy. Micron 2001; 32:287-300. [PMID: 11006508 DOI: 10.1016/s0968-4328(00)00045-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The spectrum of ultrastructural appearances assumed by collagen in normal and pathological tissues is illustrated using techniques of thin section transmission electron microscopy and computer-assisted analysis. The normal fibrillar collagen types are described in order to provide a basis for comparing other normal and abnormal forms. In normal tissues, the anchoring fibril and basal lamina (basement membrane) represent tissue structures largely containing collagen but differing significantly in organisation from normal types I to III fibrillar collagen. In pathological tissue, deviations from normal fine structure are reflected in abnormal aggregates of collagen fibrils (amianthoid and skeinoid fibres) and abnormalities in fibril diameter and cross-sectional profile. Fibrous and segment long-spacing collagen represent two further organisational variants of collagen, the former found widely in pathological tissues, the latter very rarely. Much remains to be discovered about these abnormal collagen variants-their mode of formation, the cells that produce them, and their roles. They also present a challenge for the collagen biologist formulating hypotheses of collagen fibril assembly and molecular organisation.
Collapse
Affiliation(s)
- B Eyden
- Department of Histopathology, Christie Hospital NHS Trust, M20 4BX, Manchester, UK
| | | |
Collapse
|
9
|
Catusse C, Polette M, Coraux C, Burlet H, Birembaut P. Modified basement membrane composition during bronchopulmonary tumor progression. J Histochem Cytochem 2000; 48:663-9. [PMID: 10769050 DOI: 10.1177/002215540004800510] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During tumor progression, the extracellular matrix (ECM) and particularly the basement membrane (BM) appear to be dynamic structures that are not only degraded but also deposited around tumor clusters. In this study we examined by immunohistochemistry the localization of three chains of Type IV collagen (alpha1, alpha3 and alpha5), Type VII collagen, and laminin 5 at different stages of bronchopulmonary cancers. In normal tissues, alpha1(IV) chain was detected in all BMs (bronchial, vascular, alveolar, and glandular), alpha5(IV) chain was present only in vascular BM, and laminin 5 and Type VII collagen were co-localized in bronchial and glandular BMs, whereas alpha3(IV) immunolabeling was totally absent from normal bronchi. In well-differentiated carcinomas, alpha3(IV) chain staining was found in some neosynthetized BMs interfacing the tumor cell and the stromal compartment, contrasting with the total absence of labeling in normal tissues. alpha1(IV) chain showed strong reactivity in all BM. Laminin 5 and Type VII collagen were also detected in neosynthetized BM. In poorly differentiated invasive cancers, alpha3(IV) chain and Type VII collagen were not found, whereas laminin 5 and alpha1(IV) chain persisted. The most important modifications in BM composition during tumor progression therefore appear to be the appearance of the alpha3 (IV) chain in well-differentiated carcinomas and its subsequent disappearance in poorly differentiated carcinomas, together with the loss of type VII collagen. alpha5(IV) chain distribution was restricted in vascular BM of well- and poorly differentiated carcinomas. These results show that the composition of BM is modified during the progression of bronchopulmonary tumor, emphasizing that the BM represents a dynamic element in tumor progression and has an important role in tumor cell invasiveness.
Collapse
Affiliation(s)
- C Catusse
- INSERM U514, IFR 53, Unité de Biologie Cellulaire, Laboratoire Pol Bouin, CHU Maison Blanche, Reims, France
| | | | | | | | | |
Collapse
|