1
|
Liu XH, Zhong NN, Yi JR, Lin H, Liu B, Man QW. Trends in Research of Odontogenic Keratocyst and Ameloblastoma. J Dent Res 2025; 104:347-368. [PMID: 39876078 DOI: 10.1177/00220345241282256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM. Fibroblast subsets in OKC and tumor cell subsets in AM have been analyzed, revealing mechanisms behind their biological behaviors, including OKC's osteolytic features and AM's recurrence tendencies. Spatial transcriptomics studies of AM have identified engineered fibroblasts and osteoblasts contributing to matrix remodeling gene and oncogene expression at the invasion frontier, driving AM progression. Three-dimensional culture technologies such as organoid models have refined analysis of AM subtypes; uncovered the role of AM fibroblasts in promoting tumor cell proliferation and invasion; and identified signaling pathways such as FOSL1, BRD4, EZH2, and Wnt as potential therapeutic targets. Organoid models also served as preclinical platforms for testing potential therapies. Although preclinical models for AM exist, reliable in vitro and in vivo models for OKC remain scarce. Promising mimic models, including human embryonic stem cells-derived epithelial cells, human oral keratinocytes, human immortalized oral epithelial cells, and HaCaT keratinocytes, show promise, but the advancements in 3-dimensional culture technology are expected to lead to further breakthroughs in this area. Artificial intelligence, including machine learning and deep learning, has enhanced radiomics-based diagnostic accuracy, distinguishing OKC and AM beyond clinician capability. Pathomics-based models further predict OKC prognosis and differentiate AM from ameloblastic carcinoma. Clinical studies have shown positive outcomes with targeted therapies. In a study investigating SMO-targeted treatments for nevoid basal cell carcinoma syndrome, nearly all OKC lesions resolved in 3 patients. A recent clinical trial with neoadjuvant BRAF-targeted therapy for AM demonstrated promising radiologic responses, potentially enabling organ preservation. This review highlights recent advancements and trends in OKC and AM research, aiming to inspire further exploration and progress in these fields.
Collapse
Affiliation(s)
- X-H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - N-N Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-R Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q-W Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Ortiz-García JZ, Munguía-Robledo S, Estrada-Orozco JJ, Licéaga-Escalera C, Rodríguez MA. Expression level and proteolytic activity of MMP-2 and MMP-9 in dental follicles, dentigerous cysts, odontogenic keratocysts and unicystic ameloblastomas. J Oral Biol Craniofac Res 2022; 12:339-342. [DOI: 10.1016/j.jobcr.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/27/2022] Open
|
3
|
Fuchigami T, Ono Y, Kishida S, Nakamura N. Molecular biological findings of ameloblastoma. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:27-32. [PMID: 33737992 PMCID: PMC7946346 DOI: 10.1016/j.jdsr.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
Ameloblastoma is benign odontogenic tumours that mainly occur in the jawbone. This tumour induces aggressive invasion into the surrounding bone and has a high recurrence rate after surgery. Therefore, mandibular resection is performed in many patients with this tumour, causing aesthetic and functional problems. It is necessary to develop a novel treatment strategy for ameloblastoma, but there are currently no innovative treatments. Although our understanding of the molecular biological mechanisms of ameloblastoma is still insufficient, there have been many recent reports of new molecular biological findings on ameloblastoma. Therefore, bioactive factors that have potential for novel therapeutic methods, such as molecular targeted therapy, have been discovered in ameloblastoma. In this review, we summarize the molecular biological findings of ameloblastoma reported over several decades, focusing on factors involved in invasion into surrounding tissues and disease-specific gene mutations. We also mention the effect of the interaction between tumour cells and stromal components in ameloblastoma on tumour development. Scientific field of dental Science: Oral surgery, Odontogenic tumor, Ameloblastoma.
Collapse
Affiliation(s)
- Takao Fuchigami
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Yusuke Ono
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| |
Collapse
|
4
|
Fuchigami T, Suzuki H, Yoshimura T, Kibe T, Chairani E, Kiyono T, Kishida M, Kishida S, Nakamura N. Ameloblastoma cell lines derived from different subtypes demonstrate distinct developmental patterns in a novel animal experimental model. J Appl Oral Sci 2020; 28:e20190558. [PMID: 32348439 PMCID: PMC7185982 DOI: 10.1590/1678-7757-2019-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Ameloblastoma is a representative odontogenic tumor comprising several characteristic invasive forms, and its pathophysiology has not been sufficiently elucidated. A stable animal experimental model using immortalized cell lines is crucial to explain the factors causing differences among the subtypes of ameloblastoma, but this model has not yet been disclosed. In this study, a novel animal experimental model has been established, using immortalized human ameloblastoma-derived cell lines. Methodology Ameloblastoma cells suspended in Matrigel were subcutaneously transplanted into the heads of immunodeficient mice. Two immortalized human ameloblastoma cell lines were used: AM-1 cells derived from the plexiform type and AM-3 cells derived from the follicular type. The tissues were evaluated histologically 30, 60, and 90 days after transplantation. Results Tumor masses formed in all transplanted mice. In addition, the tumors formed in each group transplanted with different ameloblastoma cells were histologically distinct: the tumors in the group transplanted with AM-1 cells were similar to the plexiform type, and those in the group transplanted with AM-3-cells were similar to the follicular type. Conclusions A novel, stable animal experimental model of ameloblastoma was established using two cell lines derived from different subtypes of the tumor. This model can help clarify its pathophysiology and hasten the development of new ameloblastoma treatment strategies.
Collapse
Affiliation(s)
- Takao Fuchigami
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuya Yoshimura
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Elissa Chairani
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- National Cancer Center Research Institute, Tokyo, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Liu X, Chen Z, Lan T, Liang P, Tao Q. Upregulation of interleukin-8 and activin A induces osteoclastogenesis in ameloblastoma. Int J Mol Med 2019; 43:2329-2340. [PMID: 31017256 PMCID: PMC6488175 DOI: 10.3892/ijmm.2019.4171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Ameloblastoma is a common odontogenic benign tumor located in the jaws and is characterized by severe local bone destruction. The current study aimed to investigate the effect of interactions between tumor cells and bone marrow stromal cells (BMSCs) on osteoclast formation in ameloblastoma. The impact of ameloblastoma/BMSC interactions on cytokine production, gene expression and osteoclastogenesis was examined using an immortalized ameloblastoma cell line that the authors' previously established. The results demonstrated that interactions between ameloblastoma cells and BMSCs increased interleukin (IL)‑8 and activin A secretion by BMSCs. IL‑8 expression in BMSCs was modulated by tumor‑derived tumor necrosis factor‑α and IL‑8 contributed to osteoclast formation not only directly but also by stimulating receptor activator of NF‑κB ligand (RANKL) expression in BMSCs. Activin A secretion in BMSCs was stimulated by ameloblastoma cells via cell‑to‑cell‑mediated activation of c‑Jun N‑terminal kinase activation, acting as a cofactor of RANKL to induce osteoclast formation and function. The present study highlights the critical role of communication between BMSCs and ameloblastoma cells in bone resorption in ameloblastoma.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhifeng Chen
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Peisheng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qian Tao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
6
|
Jhamb T, Kramer JM. Molecular concepts in the pathogenesis of ameloblastoma: implications for therapeutics. Exp Mol Pathol 2014; 97:345-53. [PMID: 25194300 DOI: 10.1016/j.yexmp.2014.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/12/2014] [Accepted: 09/01/2014] [Indexed: 12/18/2022]
Abstract
Ameloblastoma is a benign odontogenic neoplasm that may exhibit aggressive biological behavior as evidenced by its rapid growth and significance recurrence rates following initial surgical resection. Currently, the only therapy for ameloblastoma is surgical, and adjunctive treatment modalities are needed to mitigate tumor growth and to reduce the need for extensive and disfiguring surgeries. Many studies have identified markers expressed by ameloblastoma and these lend insight to our understanding of tumor progression. This review provides a summary of the specific molecular pathways implicated in tumor pathogenesis, including those involved in bone remodeling, apoptosis, cell signaling, and tumor suppression. Based on these data, we identify several prognostic or therapeutic markers that have been used successfully in the treatment of other neoplastic processes that may also have diagnostic and prognostic utility for ameloblastoma. Thus, it is important to determine which markers hold the greatest promise for clinical management of this benign neoplasm in order to improve treatment options, particularly in patients with aggressive forms of ameloblastoma.
Collapse
Affiliation(s)
- Tania Jhamb
- Department of Oral and Maxillofacial Medicine and Diagnostic Science, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA.
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA; Oral Diagnostic Sciences, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Liang QX, Liang YC, Xu ZY, Chen WL, Xie HL, Zhang B. RECK overexpression reduces invasive ability in ameloblastoma cells. J Oral Pathol Med 2014; 43:613-8. [PMID: 24646032 DOI: 10.1111/jop.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Qi-xiang Liang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| | - Yan-can Liang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| | - Zhi-ying Xu
- Department of Stomatology; Peking University Shenzhen Hospital; Shenzhen Guangdong China
| | - Wei-liang Chen
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
| | - Hong-liang Xie
- Department of Stomatology; Shenzhen People's Hospital; Shenzhen Guangdong China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes; Sun Yat-sen University; Guangzhou Guangdong China
| |
Collapse
|
8
|
Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One 2014; 9:e86917. [PMID: 24475196 PMCID: PMC3901713 DOI: 10.1371/journal.pone.0086917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/16/2013] [Indexed: 02/07/2023] Open
Abstract
RUNX3 (runt-related transcription factor-3) has been reported to suppress tumor tumorigenesis and metastasis in different human cancers. In this study, we used tissue microarray (TMA) to determine the significance of RUNX3 in prostate cancer progession. Our results showed ectopic expression of RUNX3 in prostate cancer tissues when compared with tumor adjacent normal prostate tissues, and reduced RUNX3 staining was significantly correlated with TNM stage. Moreover, we demonstrated that RUNX3 overexpression inhibited prostate cancer cell migration and invasion resulting from the elevated upregulation of tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), which subsequently inhibited metalloproteinase-2 (MMP-2) expression and activity in vitro. Knock down of RUNX3 expression broke up the balance of TIMP-2/MMP-2, whereas silence of TIMP-2 resulted in the inhibition of MMP-2 expression in prostate cells. We also showed that restoration of RUNX3 decreased vascular endothelial growth factor (VEGF) secretion and suppressed endothelial cell growth and tube formation. Strikingly, RUNX3 was demonstrated to inhibit tumor metastasis and angiogenesis in vivo. Altogether, our results support the tumor suppressive role of RUNX3 in human prostate cancer, and provide insights into development of targeted therapy for this disease.
Collapse
|
9
|
Gomes CC, Duarte AP, Diniz MG, Gomez RS. Review article: Current concepts of ameloblastoma pathogenesis. J Oral Pathol Med 2010; 39:585-91. [PMID: 20618608 DOI: 10.1111/j.1600-0714.2010.00908.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ameloblastoma is a locally destructive and invasive tumour that can recur despite adequate surgical removal. Molecular studies have offered interesting findings regarding ameloblastoma pathogenesis. In the present review, the following topics are discussed regarding its molecular nature: clonality, cell cycle proliferation, apoptosis, tumour suppressor genes, ameloblastin and other enamel matrix proteins, osteoclastic mechanism and matrix metalloproteinases and other signalling molecules. It is clear from the literature reviewed that translational studies are necessary to identify prognostic markers of ameloblastoma behaviour and to establish new diagnostic tools to the differential diagnosis of unicystic from multicystic ameloblastoma. Finally, molecular biology studies are also important to develop more effective alternative approaches to the treatment of this aggressive odontogenic tumour.
Collapse
|