1
|
Zhao YJ, Chen J, Liu Y, Pan LL, Guo YX, Zhang ZM, Li Q, Chen YJ. Regulation of CeA-Vme projection in masseter hyperactivity caused by restraint stress. Front Cell Neurosci 2024; 18:1509020. [PMID: 39640235 PMCID: PMC11617152 DOI: 10.3389/fncel.2024.1509020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The overactivity of the masticatory muscles (bruxism or teeth clenching) is associated with stress exposure, and often leading to consistent muscle pain. However, the neural mechanism underlining it is not fully understood. The central amygdala (CeA), which is linked to stress-induced behaviors and physical reactions, projects directly to the mesencephalic trigeminal nucleus (Vme), which is crucial for oral-motor coordination. Thus, we hypothesized that the projections from the CeA to the Vme could be linked to stress-induced anxiety and overactivity of the jaw muscles. After establishing an animal model of restraint stress, we found that chronic stress could lead to noticeable anxiety-related behavior, increased masseter muscle activity, activation of GABAergic neurons in the CeA, and opposite changes in the excitability of multipolar GABAergic interneurons and pseudounipolar excitatory neurons in the Vme. Subsequently, through the utilization of anterograde and transsynaptic tracing in conjunction with immunofluorescence staining, we discovered that the neural projections from the CeA to the Vme were mainly GABAergic and that the projections from the CeA terminated on GABAergic interneurons within the Vme. Moreover, chemogenetically suppressing the function of GABAergic neurons in the CeA could effectively reduce anxiety levels and reverse the increase in the activity of the masseter muscles induced by stress. And, specifically inhibiting GABAergic projections from the CeA to the Vme via optogenetics could reduce the hyperactivity of the masseter muscles but not stress-induced anxiety. In conclusion, our findings indicate that GABAergic projections from the CeA to the Vme may play an important role in the masseter overactivity in response to chronic stress.
Collapse
Affiliation(s)
- Ya-Juan Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ji Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Department of Oral Implantology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lv-La Pan
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan-Xia Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Zhou-Ming Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Qiang Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yong-Jin Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Uchima Koecklin KH, Aliaga-Del Castillo A, Li P. The neural substrates of bruxism: current knowledge and clinical implications. Front Neurol 2024; 15:1451183. [PMID: 39410996 PMCID: PMC11473305 DOI: 10.3389/fneur.2024.1451183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Bruxism is a complex orofacial behavior that can occur during sleep or wakefulness, characterized by the involuntary grinding or clenching of teeth, involving repetitive activity of the jaw muscles. Its etiology is multifactorial, influenced by genetic, psychological, physiological, and lifestyle factors. While the mild bruxism may not necessitate treatment, severe bruxism can lead to significant consequences, including tooth damage, jaw pain, fatigue, and headaches. The bruxism has been associated with medical conditions, such as stress, anxiety, sleep disorders, and various neurological disorders; however, the exact pathophysiology remains elusive. Although the central nervous system is strongly implicated in the development of bruxism, specific neural substrates have not yet been conclusively established. Furthermore, there is evidence to suggest that individuals with bruxism may exhibit neural plasticity, resulting in the establishment of distinct neural circuitry that control the jaw movements. The application of various neurophysiological techniques in both clinical and pre-clinical studies provides valuable insights into the neural mechanisms underlying bruxism. This review aims to comprehensively examine the current literature on the neural pathways involved in bruxism, with the goal of improving the clinical approach and therapeutics for this condition. A deeper understanding of the neural circuitry controlling bruxism holds the potential to advance future treatment approaches and improve the management of patients with bruxism.
Collapse
Affiliation(s)
- Karin Harumi Uchima Koecklin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aron Aliaga-Del Castillo
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Fan W, Engborg CB, Sciolino NR. Locus Ceruleus Dynamics Are Suppressed during Licking and Enhanced Postlicking Independent of Taste Novelty. eNeuro 2024; 11:ENEURO.0535-23.2024. [PMID: 38649278 PMCID: PMC11036117 DOI: 10.1523/eneuro.0535-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.g., visual, auditory, somatosensation) are known to activate LC neurons. To determine if LC neurons are sensitive to features of taste novelty, we used fiber photometry to record LC-NE activity in water-restricted mice that voluntarily licked either novel or familiar substances of differential palatability (saccharine, citric acid). We observed that LC-NE activity was suppressed during lick bursts and transiently activated upon the termination of licking and that these dynamics were independent of the familiarity of the substance consumed. We next recorded LC dynamics during brief and unexpected consumption of tastants and found no increase in LC-NE activity, despite their responsiveness to visual and auditory stimuli, revealing selectivity in LC's responses to salient sensory information. Our findings suggest that LC activity during licking is not influenced by taste novelty, implicating a possible role for non-LC noradrenergic nuclei in signaling critical information about taste.
Collapse
Affiliation(s)
- Will Fan
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Christopher B Engborg
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Natale R Sciolino
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
- Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
5
|
Wang N, May PJ. The ultrastructure of macaque mesencephalic trigeminal nucleus neurons. Exp Brain Res 2024; 242:295-307. [PMID: 38040856 DOI: 10.1007/s00221-023-06746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Primary afferents originating from the mesencephalic trigeminal nucleus provide the main source of proprioceptive information guiding mastication, and thus represent an important component of this critical function. Unlike those of other primary afferents, their cell bodies lie within the central nervous system. It is believed that this unusual central location allows them to be regulated by synaptic input. In this study, we explored the ultrastructure of macaque mesencephalic trigeminal nucleus neurons to determine the presence and nature of this synaptic input in a primate. We first confirmed the location of macaque mesencephalic trigeminal neurons by retrograde labeling from the masticatory muscles. Since the labeled neurons were by far the largest cells located at the edge of the periaqueductal gray, we could undertake sampling for electron microscopy based on soma size. Ultrastructurally, mesencephalic trigeminal neurons had very large somata with euchromatic nuclei that sometimes displayed deeply indented nuclear membranes. Terminal profiles with varied vesicle characteristics and synaptic density thicknesses were found in contact with either their somatic plasma membranes or somatic spines. However, in contradistinction to other, much smaller, somata in the region, the plasma membranes of the mesencephalic trigeminal somata had only a few synaptic contacts. They did extend numerous somatic spines of various lengths into the neuropil, but most of these also lacked synaptic contact. The observed ultrastructural organization indicates that macaque trigeminal mesencephalic neurons do receive synaptic contacts, but despite their central location, they only avail themselves of very limited input.
Collapse
Affiliation(s)
- Niping Wang
- Department of Periodontics and Preventive Sciences, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
6
|
Coenen VA, Watakabe A, Skibbe H, Yamamori T, Döbrössy MD, Sajonz BEA, Reinacher PC, Reisert M. Tomographic tract tracing and data driven approaches to unravel complex 3D fiber anatomy of DBS relevant prefrontal projections to the diencephalic-mesencephalic junction in the marmoset. Brain Stimul 2023; 16:670-681. [PMID: 37028755 DOI: 10.1016/j.brs.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. OBJECTIVE To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. METHODS We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. RESULTS Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. DISCUSSION Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. CONCLUSION Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Germany; AG Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Japan
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; AG Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany, Breisacher Straße 64, 79106, Freiburg Im Breisgau, Germany; Medical Faculty of the University of Freiburg, Breisacher Str. 153, 79110, Freiburg Im Breisgau, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center - University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany.
| |
Collapse
|
7
|
Shah T, Dunning JL, Contet C. At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 2022; 204:108906. [PMID: 34856204 PMCID: PMC8688299 DOI: 10.1016/j.neuropharm.2021.108906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.
Collapse
Affiliation(s)
- Tanvi Shah
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
8
|
After-effects of acute footshock stress on sleep states and rhythmic masticatory muscle activity during sleep in guinea pigs. Odontology 2022; 110:476-481. [PMID: 35000009 DOI: 10.1007/s10266-021-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
This study investigated the effects of acute footshock stress (FS) on the occurrence of rhythmic masticatory muscle activity (RMMA) during sleep in guinea pigs. Animals were prepared for chronic recordings from electroencephalogram, electrooculogram and electromyograms of neck and masseter muscles. The signals were recorded for six hours on the two successive days: the first day with stress-free condition (non-FS condition) and the second day with acute FS (FS condition). Sleep/wake states and RMMA were scored visually. Sleep variables and the frequency of RMMA occurring during non-rapid eye movement (NREM) sleep were compared during 6-h periods between the two conditions. Compared to non-FS condition, the amount of total sleep and NREM sleep significantly reduced during 2 h following the acute FS in the FS condition. Similarly, the frequency of RMMA significantly increased during 2 h following the acute FS for the FS condition compared to non-FS condition. During 2-6 h after FS in the FS condition, sleep variables and the frequency of RMMA did not differ from those without FS in the non-FS condition. These results suggest that acute experimental stress can induce transient changes in sleep-wake states and the occurrence of RMMA in experimental animals.
Collapse
|
9
|
Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Struct Funct 2021; 227:111-129. [PMID: 34611777 DOI: 10.1007/s00429-021-02391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.
Collapse
|
10
|
Zhong Z, Xu M, Zou X, Ouyang Q, Zhang L, Yu B, Wang K, Yao D. Changes in heart rate related to rhythmic masticatory muscle activities and limb movements in patients with sleep bruxism. J Oral Rehabil 2019; 47:170-179. [PMID: 31697853 DOI: 10.1111/joor.12900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Most sleep bruxism (SB) episodes are accompanied by an increase in sympathetic tone and heart rate (HR). To characterise heart rate (HR) changes in relation to rhythmic masticatory muscle activities (RMMAs) in SB patients, polysomnographic recordings were performed on 10 SB patients and 11 normal controls. The duration of movement events, amplitude and duration of HR increases, and time to reach HR peak associated with RMMAs and limb movements (LMs) were determined, and the relationships of the parameters of HR increases with types of movements and RMMAs were analysed. All of the parameters of HR increases associated with three types of movements (RMMAs, RMMAs + LMs and LMs) and masseter activities (phasic, tonic and mixed) were significantly different (two-way ANOVA, P < .001 for all) in both SB patients and controls. The duration of RMMAs/LMs was positively correlated with the parameters (SB patients: R2 = .24-.85, P < .0001; controls: R2 = .23-.68, P < .0001). The amplitude of HR increases was also positively correlated with respiration changes in the SB patients (R2 = .3258, P < .0001) and controls (R2 = .09469, P < .05). The proportions of phasic RMMAs associated with awakenings, microarousals and no cortical arousals were significantly different and so were the proportions of tonic and mixed RMMAs (Friedman's tests, P < .05-.001). The HR increases associated with RMMAs may be intrinsic to the cortical arousal response and autonomic activation, and differences in HR increases associated with different types of movements and RMMAs might be related to the changes in respiration and differences in cortical arousal levels.
Collapse
Affiliation(s)
- Zhijun Zhong
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China.,School of Pharmaceutical Sciences, Nanchang University, Jiangxi, China
| | - Miao Xu
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China.,School of Pharmaceutical Sciences, Nanchang University, Jiangxi, China
| | - Xueliang Zou
- Jiangxi Mental Hospital, Nanchang University, Jiangxi, China
| | - Qian Ouyang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China.,School of Pharmaceutical Sciences, Nanchang University, Jiangxi, China
| | - Ling Zhang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China.,School of Pharmaceutical Sciences, Nanchang University, Jiangxi, China
| | - Bin Yu
- Jiangxi Mental Hospital, Nanchang University, Jiangxi, China
| | - Kelun Wang
- Department of Health Science & Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, China.,School of Pharmaceutical Sciences, Nanchang University, Jiangxi, China
| |
Collapse
|
11
|
Ommerborn MA, Depprich RA, Schneider C, Giraki M, Franz M, Raab WHM, Schäfer R. Pain perception and functional/occlusal parameters in sleep bruxism subjects following a therapeutic intervention. Head Face Med 2019; 15:4. [PMID: 30696443 PMCID: PMC6350301 DOI: 10.1186/s13005-019-0188-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/14/2019] [Indexed: 12/02/2022] Open
Abstract
Background This study was conducted to assess the individual pain perception in sleep bruxism (SB) subjects. Moreover, the effects of a cognitive behavioural therapy (CBT) compared to an occlusal appliance (OA) on pain perception and a possible continuative impact on several functional parameters were investigated. Methods A total of 57 SB subjects participated in this investigation. The diagnosis of SB was based on the clinical criteria of the American Academy of Sleep Medicine (AASM). Twenty-eight SB subjects were randomly allocated to the CBT group and 29 to the OA group. The therapeutic intervention took place over a period of 12 weeks, whereby both groups were examined at baseline, immediately after termination of the intervention, and at a 6-month follow-up for pain perception and functional parameters. At each of the three measurement periods, participants completed the pain perception scale and ten functional/occlusal parameters were recorded. Results Of the 12 parameters recorded, statistically significant main effects were found for the affective pain perception (p < 0.05) and for the three functional variables. Interestingly, the values obtained for the affective pain perception were considerably below that of a reference group. Apart from the determined statistically significant results, the values recorded for all functional/occlusal variables as well as those obtained for the sensory pain perception were clearly located within normative ranges. Conclusions Within the limitations of this study, it might be concluded that the significantly reduced affective pain perception in SB subjects is the expression of an adaptation mechanism.
Collapse
Affiliation(s)
- Michelle Alicia Ommerborn
- Department of Operative Dentistry, Periodontics, and Endodontics, Faculty of Medicine, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Rita Antonia Depprich
- Department of Cranio- and Maxillofacial Surgery, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christine Schneider
- Clinical Institute of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Giraki
- Department of Operative Dentistry, Periodontics, and Endodontics, Faculty of Medicine, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias Franz
- Clinical Institute of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wolfgang Hans-Michael Raab
- Department of Operative Dentistry, Periodontics, and Endodontics, Faculty of Medicine, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ralf Schäfer
- Clinical Institute of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
The distinguishing motor features of cataplexy: a study from video-recorded attacks. Sleep 2018; 41:4841988. [DOI: 10.1093/sleep/zsy026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Indexed: 11/12/2022] Open
|
13
|
Dudgeon W, Buchanan L, Strickland A, Scheett T, Garner D. Mouthpiece use during heavy resistance exercise affects serum cortisol and lactate. COGENT MEDICINE 2017. [DOI: 10.1080/2331205x.2017.1403728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- W.D. Dudgeon
- Department of Health & Human Performance, College of Charleston, Charleston, SC, USA
| | - L.A. Buchanan
- Department of Health & Human Performance, College of Charleston, Charleston, SC, USA
| | - A.E. Strickland
- Department of Health, Exercise & Sport Science, The Citadel, Charleston, SC 29409, USA
| | - T.P. Scheett
- Department of Health, Exercise & Sport Science, The Citadel, Charleston, SC 29409, USA
| | - D.P. Garner
- Department of Health, Exercise & Sport Science, The Citadel, Charleston, SC 29409, USA
| |
Collapse
|
14
|
Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2014; 49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Nian Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Qi-Cheng Qiao
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
15
|
Erbs E, Faget L, Veinante P, Kieffer BL, Massotte D. In vivo neuronal co-expression of mu and delta opioid receptors uncovers new therapeutic perspectives. ACTA ACUST UNITED AC 2014; 1. [PMID: 25938125 DOI: 10.14800/rci.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular level. Also, the notion of receptor crosstalk via mu-delta heteromers is well documented in vitro but in vivo evidence remains scarce. To identify neurons in which receptor interactions could take place, we designed a unique double mutant knock-in mouse line that expresses functional red-fluorescent mu receptors and green-fluorescent delta receptors. We mapped mu and delta receptor distribution and co-localization throughout the nervous system and created the first interactive brain atlas with concomitant mu-delta visualization at subcellular resolution (http://mordor.ics-mci.fr/). Mu and delta receptors co-localize in neurons from subcortical networks but are mainly detected in separate neurons in the forebrain. Also, co-immunoprecipitation experiments indicated physical proximity in the hippocampus, a prerequisite to mu-delta heteromerization. Altogether, data suggest that mu-delta functional interactions take place at systems level for high-order emotional and cognitive processing whereas mu-delta may interact at cellular level in brain networks essential for survival, which has potential implications for innovative drug design in pain control, drug addiction and eating disorders.
Collapse
Affiliation(s)
- Eric Erbs
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France
| | - Lauren Faget
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France
| | - Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, F-67000 Strasbourg, France
| | - Brigitte L Kieffer
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France ; Douglas Research Centre, Dept Psychiatry, Faculty of Medicine, McGill University, H4H 1R3 Montréal, Canada
| | - Dominique Massotte
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France ; Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, F-67000 Strasbourg, France
| |
Collapse
|
16
|
Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, Koch M, Kessler P, Hentsch D, Birling MC, Koutsourakis M, Vasseur L, Veinante P, Kieffer BL, Massotte D. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 2014; 220:677-702. [PMID: 24623156 PMCID: PMC4341027 DOI: 10.1007/s00429-014-0717-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives.
Collapse
Affiliation(s)
- Eric Erbs
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Lauren Faget
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
- Present Address: University of California, La Jolla, CA 92093 USA
| | - Gregory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University, Stanford, 94305 CA USA
| | - Audrey Matifas
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Dominique Filliol
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Jean-Luc Vonesch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Marc Koch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Pascal Kessler
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Didier Hentsch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | | | - Manoussos Koutsourakis
- Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch cedex, France
- Present Address: Sanger Institute, Hinxton, Cambridge CB 10 1SA UK
| | - Laurent Vasseur
- Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg cedex 03, France
| | - Brigitte L. Kieffer
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Dominique Massotte
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg cedex 03, France
| |
Collapse
|
17
|
Pizza F, Franceschini C, Peltola H, Vandi S, Finotti E, Ingravallo F, Nobili L, Bruni O, Lin L, Edwards MJ, Partinen M, Dauvilliers Y, Mignot E, Bhatia KP, Plazzi G. Clinical and polysomnographic course of childhood narcolepsy with cataplexy. ACTA ACUST UNITED AC 2013; 136:3787-95. [PMID: 24142146 PMCID: PMC3859221 DOI: 10.1093/brain/awt277] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our aim was to investigate the natural evolution of cataplexy and polysomnographic features in untreated children with narcolepsy with cataplexy. To this end, clinical, polysomnographic, and cataplexy-video assessments were performed at diagnosis (mean age of 10 ± 3 and disease duration of 1 ± 1 years) and after a median follow-up of 3 years from symptom onset (mean age of 12 ± 4 years) in 21 children with narcolepsy with cataplexy and hypocretin 1 deficiency (tested in 19 subjects). Video assessment was also performed in two control groups matched for age and sex at first evaluation and follow-up and was blindly scored for presence of hypotonic (negative) and active movements. Patients’ data at diagnosis and at follow-up were contrasted, compared with controls, and related with age and disease duration. At diagnosis children with narcolepsy with cataplexy showed an increase of sleep time during the 24 h; at follow-up sleep time and nocturnal sleep latency shortened, in the absence of other polysomnographic or clinical (including body mass index) changes. Hypotonic phenomena and selected facial movements decreased over time and, tested against disease duration and age, appeared as age-dependent. At onset, childhood narcolepsy with cataplexy is characterized by an abrupt increase of total sleep over the 24 h, generalized hypotonia and motor overactivity. With time, the picture of cataplexy evolves into classic presentation (i.e. brief muscle weakness episodes triggered by emotions), whereas total sleep time across the 24 h decreases, returning to more age-appropriate levels.
Collapse
Affiliation(s)
- Fabio Pizza
- 1 Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kato T, Nakamura N, Masuda Y, Yoshida A, Morimoto T, Yamamura K, Yamashita S, Sato F. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication. J Appl Physiol (1985) 2012. [PMID: 23195628 DOI: 10.1152/japplphysiol.00895.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.
Collapse
Affiliation(s)
- T Kato
- Osaka University Graduate School of Dentistry, Department of Oral Anatomy and Neurobiology, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Effects of sleep bruxism on functional and occlusal parameters: a prospective controlled investigation. Int J Oral Sci 2012; 4:141-5. [PMID: 22935746 PMCID: PMC3464987 DOI: 10.1038/ijos.2012.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study was conducted to verify the results of a preceding retrospective pilot study by means of a prospective controlled investigation including a larger sample size. Therefore, the aim of this clinical investigation was to analyze the relationship between sleep bruxism and several functional and occlusal parameters. The null hypothesis of this study was that there would be no differences among sleep bruxism subjects and non-sleep bruxism controls regarding several functional and occlusal parameters. Fifty-eight sleep bruxism subjects and 31 controls participated in this study. The diagnosis sleep bruxism was based on clinical criteria of the American Academy of Sleep Medicine. Sixteen functional and occlusal parameters were recorded clinically or from dental study casts. Similar to the recently published retrospective pilot study, with a mean slide of 0.77 mm (s.d., 0.69 mm) in the sleep bruxism group and a mean slide of 0.4 mm (s.d., 0.57 mm) in the control group, the evaluation of the mean comparison between the two groups demonstrated a larger slide from centric occlusion to maximum intercuspation in sleep bruxism subjects (Mann–Whitney U-test; P=0.008). However, following Bonferroni adjustment, none of the 16 occlusal and functional variables differed significantly between the sleep bruxism subjects and the non-sleep bruxism controls. The present study shows that the occlusal and functional parameters evaluated do not differ between sleep bruxism subjects and non-sleep bruxism subjects. However, as the literature reveals a possible association between bruxism and certain subgroups of temporomandibular disorders, it appears advisable to incorporate the individual adaptive capacity of the stomatognathic system into future investigations.
Collapse
|
20
|
Hahn JD, Swanson LW. Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 2012; 520:1831-90. [PMID: 22488503 DOI: 10.1002/cne.23064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The connections of the lateral hypothalamic area juxtadorsomedial region (LHAjd) were investigated in a series of pathway-tracing experiments involving iontophoretic co-injection of the tracers Phaseolus vulgaris-leucoagglutinin (PHA-L; for outputs) and cholera toxin B subunit (CTB; for inputs). Results revealed that the LHAjd has connections with some 318 distinct gray matter regions encompassing all four subsystems-motor, sensory, cognitive, and behavioral state-included in a basic structure-function network model of the nervous system. Integration of these subsystems is necessary for the coordination and control of emotion and behavior, and in that regard the connections of the LHAjd indicate that it may have a prominent role. Furthermore, the LHAjd connections, together with the connections of other LHA differentiations studied similarly to date, indicate a distinct topographic organization that suggests each LHA differentiation has specifically differing degrees of involvement in the control of multiple behaviors. For the LHAjd, its involvement to a high degree in the control of defensive behavior, and to a lesser degree in the control of other behaviors, including ingestive and reproductive, is suggested. Moreover, the connections of the LHAjd suggest that its possible role in the control of these behaviors may be very broad in scope because they involve the somatic, neuroendocrine, and autonomic divisions of the nervous system. In addition, we suggest that connections between LHA differentiations may provide, at the level of the hypothalamus, a neuronal substrate for the coordinated control of multiple themes in the behavioral repertoire.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
21
|
Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 2012; 60:83-94. [PMID: 22173294 PMCID: PMC3315017 DOI: 10.1016/j.neuroimage.2011.11.082] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/28/2011] [Accepted: 11/24/2011] [Indexed: 01/17/2023] Open
Abstract
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Collapse
Affiliation(s)
- Christian Lambert
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Zoltan Nagy
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Antoine Lutti
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Bogdan Draganski
- LREN, Department des neurosciences cliniques - CHUV, UNIL; Lausanne, Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Richard Frackowiak
- LREN, Department des neurosciences cliniques - CHUV, UNIL; Lausanne, Switzerland
| |
Collapse
|
22
|
Plazzi G, Pizza F, Palaia V, Franceschini C, Poli F, Moghadam KK, Cortelli P, Nobili L, Bruni O, Dauvilliers Y, Lin L, Edwards MJ, Mignot E, Bhatia KP. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. ACTA ACUST UNITED AC 2011; 134:3477-89. [PMID: 21930661 PMCID: PMC3235554 DOI: 10.1093/brain/awr244] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of hypocretin-producing neurons in the hypothalamus of likely autoimmune aetiology. Noting that children with narcolepsy often display complex abnormal motor behaviours close to disease onset that do not meet the classical definition of cataplexy, we systematically analysed motor features in 39 children with narcolepsy with cataplexy in comparison with 25 age- and sex-matched healthy controls. We found that patients with narcolepsy with cataplexy displayed a complex array of ‘negative’ (hypotonia) and ‘active’ (ranging from perioral movements to dyskinetic–dystonic movements or stereotypies) motor disturbances. ‘Active’ and ‘negative’ motor scores correlated positively with the presence of hypotonic features at neurological examination and negatively with disease duration, whereas ‘negative’ motor scores also correlated negatively with age at disease onset. These observations suggest that paediatric narcolepsy with cataplexy often co-occurs with a complex movement disorder at disease onset, a phenomenon that may vanish later in the course of the disease. Further studies are warranted to assess clinical course and whether the associated movement disorder is also caused by hypocretin deficiency or by additional neurochemical abnormalities.
Collapse
Affiliation(s)
- Giuseppe Plazzi
- Department of Neurological Sciences, University of Bologna, 40123 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shirasu M, Takahashi T, Yamamoto T, Itoh K, Sato S, Nakamura H. Direct projections from the central amygdaloid nucleus to the mesencephalic trigeminal nucleus in rats. Brain Res 2011; 1400:19-30. [DOI: 10.1016/j.brainres.2011.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/30/2022]
|
24
|
Goebel M, Stengel A, Wang L, Coskun T, Alsina-Fernandez J, Rivier J, Taché Y. Pattern of Fos expression in the brain induced by selective activation of somatostatin receptor 2 in rats. Brain Res 2010; 1351:150-164. [PMID: 20637739 DOI: 10.1016/j.brainres.2010.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 02/08/2023]
Abstract
Central activation of somatostatin (sst) receptors by oligosomatostatin analogs inhibits growth hormone and stress-related rise in catecholamine plasma levels while stimulating grooming, feeding behaviors, gastric transit and acid secretion, which can be mimicked by selective sst(2) receptor agonist. To evaluate the pattern of neuronal activation induced by peptide sst receptor agonists, we assessed Fos-expression in rat brain after intracerebroventricular (i.c.v.) injection of a newly developed selective sst(2) agonist compared to the oligosomatostatin ODT8-SST, a pan-sst(1-5) agonist. Ninety min after injection of vehicle (10 microl) or previously established maximal orexigenic dose of peptides (1 microg=1 nmol/rat), brains were assessed for Fos-immunohistochemistry and doublelabeling. Food and water were removed after injection. The sst(2) agonist and ODT8-SST induced a similar Fos distribution pattern except in the arcuate nucleus where only the sst(2) agonist increased Fos. Compared to ODT8-SST, the sst(2) agonist induced higher Fos-expression by 3.7-times in the basolateral amygdaloid nucleus, 1.2-times in the supraoptic nucleus (SON), 1.6-times in the magnocellular paraventricular hypothalamic nucleus (mPVN), 4.1-times in the external lateral parabrachial nucleus, and 2.6-times in both the inferior olivary nucleus and superficial layer of the caudal spinal trigeminal nucleus. Doublelabeling in the hypothalamus showed that ODT8-SST activates 36% of oxytocin, 63% of vasopressin and 79% of sst(2) immunoreactive neurons in the mPVN and 28%, 55% and 25% in the SON, respectively. Selective activation of sst(2) receptor results in a more robust neuronal activation than the pan-sst(1-5) agonist in various brain regions that may have relevance in sst(2) mediated alterations of behavioral, autonomic and endocrine functions.
Collapse
Affiliation(s)
- Miriam Goebel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Lixin Wang
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Tamer Coskun
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| |
Collapse
|