1
|
Kavakebian F, Rezapour A, Seyedebrahimi R, Eslami Farsani M, Jabbari Fakhr M, Zare Jalise S, Ababzadeh S. Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications. Mol Biol Rep 2025; 52:190. [PMID: 39899148 DOI: 10.1007/s11033-025-10281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.
Collapse
Affiliation(s)
- Fatemeh Kavakebian
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Massoumeh Jabbari Fakhr
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeedeh Zare Jalise
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Yortchan W, Puwanun S. Oscillatory fluid flow enhanced mineralization of human dental pulp cells. Front Bioeng Biotechnol 2025; 13:1500730. [PMID: 39886658 PMCID: PMC11774892 DOI: 10.3389/fbioe.2025.1500730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
The purpose of this study is to evaluate the optimum frequency of oscillatory fluid flow (OFF) for increasing osteogenesis in human dental pulp cells (DPCs) in an incubating rocking shaker. DPCs from 3 donors were cultured in an osteogenic induction medium (OIM) and mechanical stimulation was applied using an incubating rocking shaker at frequencies of 0 (control), 10, 20, 30, and 40 round per minute (RPM) for 1 h/day, 5 days/week. Cell proliferation was measured using total protein quantification, and osteogenic activity was measured by alkaline phosphatase (ALP) activity, calcium deposition, and collagen production on days 7, 14, and 21 of culture. Results of DPCs morphology in the 30 RPM group were more clustered and formed interconnections between cells. Results of DPC proliferation and collagen production showed no significant differences between the experiment groups. The ALP activity on day 7 and 14, and calcium deposition on day 21 of the 30 RPM group were significantly higher than the control groups. Thus 30 RPM is likely an effective frequency for increasing calcium deposition. This study uses strategies in Tissue Engineering followed the research topic about an application of human cells to stimulate oral and maxillofacial hard tissue regeneration. In the future, the mineralization of DPCs could be enhanced by using an incubating rocking shaker at 30 RPM in the lab to create a cell sheet. The mineralized cell sheet could then be implanted into the patient for bone repair of orofacial defects.
Collapse
Affiliation(s)
| | - Sasima Puwanun
- Department of Preventive Dentistry, Division of Pediatric Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Yamada S, Ockermann PN, Schwarz T, Mustafa K, Hansmann J. Translation of biophysical environment in bone into dynamic cell culture under flow for bone tissue engineering. Comput Struct Biotechnol J 2023; 21:4395-4407. [PMID: 37711188 PMCID: PMC10498129 DOI: 10.1016/j.csbj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation. The knowledge has been now translated into regenerative medicine, particularly into the field of bone tissue engineering, where multipotent stem cells are combined with three-dimensional (3D) scaffolding biomaterials to produce transplantable constructs for bone regeneration. In the presence of 3D scaffolds, the importance of suitable dynamic cell culture platforms increases further not only to improve mass transfer inside the scaffolds but to provide appropriate biophysical cues to guide cell fate. In principle, the concept of dynamic cell culture platforms is rooted to bone mechanobiology. Therefore, this review primarily focuses on biophysical environment in bone and its translation into dynamic cell culture platforms commonly used for 2D and 3D cell expansion, including their advancement, challenges, and future perspectives. Additionally, it provides the literature review of recent empirical studies using 2D and 3D flow-based dynamic cell culture systems for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Philipp Niklas Ockermann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Kamal Mustafa
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
- Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Germany
| |
Collapse
|
4
|
BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells Int 2022; 2022:4910399. [PMID: 35283997 PMCID: PMC8916887 DOI: 10.1155/2022/4910399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bone tissue provides support and protection to different organs and tissues. Aging and different diseases can cause a decrease in the rate of bone regeneration or incomplete healing; thus, tissue-engineered substitutes can be an acceptable alternative to traditional therapies. In the present work, we have developed an in vitro osteogenic differentiation model based on mesenchymal stem cells (MSCs), to first analyse the influence of the culture media and the origin of the cells on the efficiency of this process and secondly to extrapolate it to a 3D environment to evaluate its possible application in bone regeneration therapies. Two osteogenic culture media were used (one commercial from Stemcell Technologies and a second supplemented with dexamethasone, ascorbic acid, glycerol-2-phosphate, and BMP-2), with human cells of a mesenchymal phenotype from two different origins: adipose tissue (hADSCs) and dental pulp (hDPSCs). The expression of osteogenic markers in 2D cultures was evaluated in several culture periods by means of the immunofluorescence technique and real-time gene expression analysis, taking as reference MG-63 cells of osteogenic origin. The same strategy was extrapolated to a 3D environment of polylactic acid (PLA), with a 3% alginate hydrogel. The expression of osteogenic markers was detected in both hADSCs and hDPSCs, cultured in either 2D or 3D environments. However, the osteogenic differentiation of MSCs was obtained based on the culture medium and the cell origin used, since higher osteogenic marker levels were found when hADSCs were cultured with medium supplemented with BMP-2. Furthermore, the 3D culture used was suitable for cell survival and osteogenic induction.
Collapse
|
5
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
7
|
Perczel-Kovách K, Hegedűs O, Földes A, Sangngoen T, Kálló K, Steward MC, Varga G, Nagy KS. STRO-1 positive cell expansion during osteogenic differentiation: A comparative study of three mesenchymal stem cell types of dental origin. Arch Oral Biol 2020; 122:104995. [PMID: 33278647 DOI: 10.1016/j.archoralbio.2020.104995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Although the osteogenic differentiation potential of mesenchymal stem cells of dental origin is well established, the roles of different marker proteins in this process remain to be clarified. Our aim was to compare the cellular and molecular changes, focusing in particular on mesenchymal stem cell markers, during in vitro osteogenesis in three dental stem cell types: dental follicle stem cells (DFSCs), periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs). DESIGN Human DFSCs, PDLSCs and DPSCs were isolated, cultured and their osteogenic differentiation was induced for 3 weeks. Mineralization was assessed by von Kossa staining and calcium concentration measurements. The expression of mesenchymal and osteogenic markers was studied by immunocytochemistry and qPCR techniques. Alkaline phosphatase (ALP) activity and the frequency of STRO-1 positive cells were also quantified. RESULTS The three cultures all showed abundant mineralization, with high calcium content by day 21. The expression of vimentin and nestin was sustained after osteogenic induction. The osteogenic medium induced a considerable elevation of STRO-1 positive cells. By day 7, the ALP mRNA level had increased more than 100-fold in DFSCs, PDLSCs, and DPSCs. Quantitative PCR results indicated dissimilarities of osteoblastic marker levels in the three dental stem cell cultures. CONCLUSIONS DFSCs, PDLSCs and DPSCs have similar functional osteogenic differentiation capacities although their expressional profiles of key osteogenic markers show considerable variations. The STRO-1 positive cell fraction expands during osteogenic differentiation while vimentin and nestin expression remain high. For identification of stemness, functional studies rather than marker expressions are needed.
Collapse
Affiliation(s)
- Katalin Perczel-Kovách
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Orsolya Hegedűs
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Thanyaporn Sangngoen
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Karola Kálló
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary
| | - Martin C Steward
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary; School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Krisztina S Nagy
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| |
Collapse
|
8
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Kim K, Kang HE, Yook JI, Yu HS, Kim E, Cha JY, Choi YJ. Transcriptional Expression in Human Periodontal Ligament Cells Subjected to Orthodontic Force: An RNA-Sequencing Study. J Clin Med 2020; 9:jcm9020358. [PMID: 32012982 PMCID: PMC7073659 DOI: 10.3390/jcm9020358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study was performed to investigate the changes in gene expression in periodontal ligament (PDL) cells following mechanical stimulus through RNA sequencing. In this study, premolars extracted for orthodontic treatment were used. To stimulate the PDL cells, an orthodontic force of 100× g was applied to the premolar (experimental group; n = 11), whereas the tooth on the other side was left untreated (control group; n = 11). After the PDL cells were isolated from the extracted teeth, gene set enrichment analysis (GSEA), differentially expressed gene (DEG) analysis, and real-time PCR were performed to compare the two groups. GSEA demonstrated that gene sets related to the cell cycle pathway were upregulated in PDL. Thirteen upregulated and twenty downregulated genes were found through DEG analysis. Real-time PCR results confirmed that five upregulated genes (CC2D1B, CPNE3, OPHN1, TANGO2, and UAP-1) and six downregulated genes (MYOM2, PPM1F, PCDP1, ATP2A1, GPR171, and RP1-34H18.1-1) were consistent with RNA sequencing results. We suggest that, from among these eleven genes, two upregulated genes, CPNE3 and OPHN1, and one downregulated gene, PPM1F, play an important role in PDL regeneration in humans when orthodontic force is applied.
Collapse
Affiliation(s)
- Kyunam Kim
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Hee Eun Kang
- Vatech Co., Ltd. Hwaseong-si, Gyeonggi-do 18449, Korea;
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Hyung-Seog Yu
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Euiseong Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Jung-Yul Cha
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Yoon Jeong Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
- Correspondence: ; Tel.: +82-2-2228-3101; Fax: +82-2-363-3404
| |
Collapse
|
10
|
E-cadherin mediated cell-biomaterial interaction reduces migration of keratinocytes in-vitro. Colloids Surf B Biointerfaces 2019; 180:326-333. [DOI: 10.1016/j.colsurfb.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
|
11
|
Seciu AM, Craciunescu O, Stanciuc AM, Zarnescu O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev 2019; 28:963-973. [PMID: 31020906 DOI: 10.1089/scd.2019.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several therapeutic strategies are currently in development for severe periodontitis and other associated chronic inflammatory diseases. Guided tissue regeneration of the periodontium is based on surgical implantation of natural or synthetic polymers conditioned as membranes, injectable biomaterials (hydrogels), or three-dimensional (3D) matrices. Combinations of biomaterials with bioactive factors represent the next generation of regenerative strategy. Cell delivery strategy based on scaffold-cell constructs showed potential in periodontitis treatment. Bioengineering of periodontal tissues using cell sheets and genetically modified stem cells is currently proposed to complete existing (pre)clinical procedures for periodontal regeneration. 3D structures can be built using computer-assisted manufacturing technologies to improve the implant architecture effect on new tissue formation. The aim of this review was to summarize the advantages and drawbacks of biomimetic composite matrices used as biomaterials for periodontal tissue engineering. Their conditioning as two-dimensional or 3D scaffolds using conventional or emerging technologies was also discussed. Further biotechnologies are required for developing novel products tailored to stimulate periodontal regeneration. Additional preclinical studies will be useful to closely investigate the mechanisms and identify specific markers involved in cell-implant interactions, envisaging further clinical tests. Future therapeutic protocols will be developed based on these novel procedures and techniques.
Collapse
Affiliation(s)
- Ana-Maria Seciu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Oana Craciunescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Ana-Maria Stanciuc
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Otilia Zarnescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Liao C, Ou Y, Wu Y, Zhou Y, Liang S, Wang Y. Sclerostin inhibits odontogenic differentiation of human pulp‐derived odontoblast‐like cells under mechanical stress. J Cell Physiol 2019; 234:20779-20789. [PMID: 31025337 DOI: 10.1002/jcp.28684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Chufang Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yun Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| |
Collapse
|
13
|
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:419-442. [PMID: 29724156 DOI: 10.1089/ten.teb.2018.0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Collapse
Affiliation(s)
- Valérie Orti
- LBN, Université de Montpellier , Montpellier, France
| | | | | | - Orsolya Pall
- LBN, Université de Montpellier , Montpellier, France
| | | | | |
Collapse
|
14
|
Marrelli M, Codispoti B, Shelton RM, Scheven BA, Cooper PR, Tatullo M, Paduano F. Dental Pulp Stem Cell Mechanoresponsiveness: Effects of Mechanical Stimuli on Dental Pulp Stem Cell Behavior. Front Physiol 2018; 9:1685. [PMID: 30534086 PMCID: PMC6275199 DOI: 10.3389/fphys.2018.01685] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Dental pulp is known to be an accessible and important source of multipotent mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal stem cells (MSCs) reside in a niche, a complex microenvironment consisting of an extracellular matrix, other local cell types and biochemical stimuli that influence the decision between stem cell (SC) self-renewal and differentiation. In addition to biochemical factors, mechanical factors are increasingly recognized as key regulators in DPSC behavior and function. Thus, microenvironments can significantly influence the role and differentiation of DPSCs through a combination of factors which are biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it has been shown that DPSCs are sensitive to different types of force, such as uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed ultrasound as well as being responsive to biomechanical cues presented in the form of micro- and nano-scale surface topographies. To understand how DPSCs sense and respond to the mechanics of their microenvironments, it is essential to determine how these cells convert mechanical and physical stimuli into function, including lineage specification. This review therefore covers some aspects of DPSC mechanoresponsivity with an emphasis on the factors that influence their behavior. An in-depth understanding of the physical environment that influence DPSC fate is necessary to improve the outcome of their therapeutic application for tissue regeneration.
Collapse
Affiliation(s)
- Massimo Marrelli
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Bruna Codispoti
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Richard M. Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Marco Tatullo
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Francesco Paduano
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| |
Collapse
|
15
|
Yang H, Shu YX, Wang LY, Zou WL, Guo LY, Shao MY, Gao QH, Hu T. Effect of cyclic uniaxial compressive stress on human dental pulp cells in vitro. Connect Tissue Res 2018; 59:255-262. [PMID: 28816569 DOI: 10.1080/03008207.2017.1367773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Teeth are exposed to various forces during functional and parafunctional movements. These processes inevitably affect the dental pulp, and the mechanism of these influences has been the subject of many previous studies using different apparatuses and obtaining different results. In this study, we aimed to investigate the effects of compressive stress on the proliferation and differentiation of human dental pulp cells (hDPCs). MATERIALS AND METHODS A four-point bending strain system was adopted to apply low-density cyclic uniaxial compressive stress (2000 microstrain, 0.5 Hz) to hDPCs for 1.5, 3, 6, 12, and 24 h. The cell cycle progression and mRNA expression of differentiation-related genes (BMP2, ALP, DMP1, DSPP, COL I) were then examined to investigate the proliferation and differentiation of hDPCs. RESULTS The results showed that cyclic compressive stress changed the morphology of hDPCs after 12 and 24 h of mechanical loading; cell cycle progression was promoted, especially in the 24-h group (p < 0.05). The expression of BMP2 was significantly upregulated after 3 and 6 h of mechanical loading but declined in the 12- and 24-h groups, whereas the expression levels of DMP1 and DSPP were significantly upregulated in the 12- and 24-h loading groups (p < 0.05). CONCLUSIONS Dental pulp cells were sensitive to compressive stress, especially after 12 and 24 h of applied force. Proliferation and odontogenic differentiation were significantly promoted in this in vitro model.
Collapse
Affiliation(s)
- Hui Yang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Yi-Xuan Shu
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Lin-Yan Wang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Wen-Ling Zou
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Li-Yang Guo
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Mei-Ying Shao
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| | - Qian-Hua Gao
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China.,b Department of Stomatology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , China
| | - Tao Hu
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , P. R . China
| |
Collapse
|
16
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018; 13:207-218. [PMID: 29553875 DOI: 10.2217/rme-2017-0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
17
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018. [DOI: 10.2217/rme-2017-0112 10.2217/rme-2017-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
18
|
Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng 2018; 9:2041731417752766. [PMID: 29375756 PMCID: PMC5777558 DOI: 10.1177/2041731417752766] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.
Collapse
|
19
|
Prabha RD, Kraft DCE, Harkness L, Melsen B, Varma H, Nair PD, Kjems J, Kassem M. Bioactive nano‐fibrous scaffold for vascularized craniofacial bone regeneration. J Tissue Eng Regen Med 2017; 12:e1537-e1548. [DOI: 10.1002/term.2579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/05/2017] [Accepted: 09/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Rahul Damodaran Prabha
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | | | - Linda Harkness
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| | - Birte Melsen
- Section of Orthodontics, Department of DentistryAarhus University Aarhus Denmark
| | - Harikrishna Varma
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Prabha D. Nair
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST) Thiruvananthapuram Kerala India
| | - Jorgen Kjems
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Aarhus Denmark
| | - Moustapha Kassem
- Department of Endocrinology and MetabolismUniversity Hospital of Odense Odense Denmark
| |
Collapse
|
20
|
Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration. MATERIALS 2017; 10:ma10070831. [PMID: 28773189 PMCID: PMC5551874 DOI: 10.3390/ma10070831] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/22/2022]
Abstract
Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs (p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation (p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.
Collapse
|
21
|
Wang L, Zhou Z, Chen Y, Yuan S, Du Y, Ju X, Wu L, Wang X. The Alpha 7 Nicotinic Acetylcholine Receptor of Deciduous Dental Pulp Stem Cells Regulates Osteoclastogenesis During Physiological Root Resorption. Stem Cells Dev 2017; 26:1186-1198. [PMID: 28494644 DOI: 10.1089/scd.2017.0033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The physiological root resorption of deciduous teeth is a normal phenomenon, but the mechanisms underlying this process are still unclear. In this study, deciduous dental pulp stem cells (DDPSCs) and permanent dental pulp stem cells (DPSCs) were derived from deciduous teeth and normal permanent teeth at different stages of resorption. In the middle stage of root resorption, DDPSCs exhibited an increase in the ability to induce osteoclast differentiation. Activation of the alpha 7 nicotinic acetylcholine receptor (α7 nAChR) by secretory mammalian Ly-6 urokinase-type plasminogen activator receptor-associated protein 1 (SLURP-1) caused a significant increase in the expression levels of NF-κB, receptor activator of nuclear factor-kappa B ligand (RANKL), and the ratio of RANKL/osteoprotegerin (OPG). These effects were inhibited by alpha-bungarotoxin (α-BTX). Furthermore, the expression levels of RANKL/OPG were significantly reduced following inhibition of NF-κB. High-strength, dynamic positive pressure increased the expression of SLURP-1 and α7 nAChR in DDPSCs in the stable stage. These data indicated that mechanical stress stimulated the expression of SLURP-1 and α7 nAChR in DDPSCs. Additionally, SLURP-1 activated α7 nAChR, thereby upregulating the expression of NF-κB and enhancing its activity, thus regulating RANKL/OPG expression and affecting the ability of DDPSCs to influence osteoclastogenesis, which likely enhances root resorption and leads to the physiological loss of deciduous teeth.
Collapse
Affiliation(s)
- Lulu Wang
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Zhifei Zhou
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Yujiang Chen
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Shuai Yuan
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Yang Du
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Xinke Ju
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| | - Lizheng Wu
- 2 Department of Stomatology, Affiliated Hospital of Logistic University of People's Armed Police Forces , Tianjin, China
| | - Xiaojing Wang
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University , Xi'an, China
| |
Collapse
|
22
|
Chen YY, He ST, Yan FH, Zhou PF, Luo K, Zhang YD, Xiao Y, Lin MK. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue. Int J Oral Sci 2016; 8:213-222. [PMID: 27811845 PMCID: PMC5168414 DOI: 10.1038/ijos.2016.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/29/2022] Open
Abstract
Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China.,School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sheng-Teng He
- Department of Stomatology, Hainan Province Nongken Sanya Hospital, Sanya, China
| | - Fu-Hua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Peng-Fei Zhou
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Kai Luo
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan-Ding Zhang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Min-Kui Lin
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Jensen J, Tvedesøe C, Rölfing JHD, Foldager CB, Lysdahl H, Kraft DCE, Chen M, Baas J, Le DQS, Bünger CE. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. SICOT J 2016; 2:16. [PMID: 27163105 PMCID: PMC4849237 DOI: 10.1051/sicotj/2016004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.
Collapse
Affiliation(s)
- Jonas Jensen
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Department of Radiology, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - Claus Tvedesøe
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Department of Radiology, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - Jan Hendrik Duedal Rölfing
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Department of Orthopaedics, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - Helle Lysdahl
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - David Christian Evar Kraft
- Department of Orthodontics, School of Dentistry, Aarhus University Vennelyst Boulevard 9 8000 Aarhus C Denmark
| | - Muwan Chen
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Jorgen Baas
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| | - Dang Quang Svend Le
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cody Eric Bünger
- Orthopaedic Research Laboratory, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark ; Department of Orthopaedics, Aarhus University Hospital Noerrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
24
|
Ashri NY, Ajlan SA, Aldahmash AM. Dental pulp stem cells. Biology and use for periodontal tissue engineering. Saudi Med J 2015; 36:1391-9. [PMID: 26620980 PMCID: PMC4707394 DOI: 10.15537/smj.2015.12.12750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.
Collapse
Affiliation(s)
- Nahid Y Ashri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | |
Collapse
|
25
|
Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health 2015; 15:132. [PMID: 26510991 PMCID: PMC4624653 DOI: 10.1186/s12903-015-0113-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Background Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materials that act as signaling molecules to enhance periodontal regeneration. Mineral trioxide aggregate (MTA) has been proven to be biocompatible and appears to have some osteoconductive properties. The objective of this study was to evaluate the effects of EMD, MTA, and PDGF on DPSC osteogenic differentiation. Methods Human DPSCs were cultured in medium containing EMD, MTA, or PDGF. Control groups were also established. Evaluation of the achieved osteogenesis was carried out by computer analysis of alkaline phosphatase (ALP)-stained chambers, and spectrophotometric analysis of alizarin red S-stained mineralized nodules. Results EMD significantly increased the amounts of ALP expression and mineralization compared with all other groups (P < 0.05). Meanwhile, MTA gave variable results with slight increases in certain differentiation parameters, and PDGF showed no significant increase in the achieved differentiation. Conclusions EMD showed a very strong osteogenic ability compared with PDGF and MTA, and the present results provide support for its use in periodontal regeneration.
Collapse
|
26
|
Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines. Stem Cells Int 2015; 2015:378368. [PMID: 26106427 PMCID: PMC4464683 DOI: 10.1155/2015/378368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/01/2015] [Indexed: 12/22/2022] Open
Abstract
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials.
Collapse
|
27
|
Jensen J, Kraft DCE, Lysdahl H, Foldager CB, Chen M, Kristiansen AA, Rölfing JHD, Bünger CE. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 2014; 21:729-39. [PMID: 25252795 DOI: 10.1089/ten.tea.2014.0177] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and β-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×10(6) human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90(+), CD73(+), CD105(+), and CD14(-). DNA, ALP, and Ca(2+) assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca(2+) deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in even cell dispersion throughout the scaffold. In conclusion, DPSCs could be a possible alternate cell source for bone tissue engineering. The HT-PCL scaffold showed promising results in terms of promoting cell migration and osteogenic differentiation, which warrants future in vivo studies.
Collapse
Affiliation(s)
- Jonas Jensen
- 1 Orthopaedic Research Laboratory, Aarhus University Hospital , Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Today prospects for tissue engineering therapeutic approach in dentistry. ScientificWorldJournal 2014; 2014:151252. [PMID: 25379516 PMCID: PMC4212630 DOI: 10.1155/2014/151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/09/2014] [Indexed: 02/08/2023] Open
Abstract
In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.
Collapse
|
29
|
Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, Wall IB, Shi S, Kim HW. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res 2014; 93:1203-11. [PMID: 25139364 DOI: 10.1177/0022034514540682] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is an inflammatory disease that causes loss of the tooth-supporting apparatus, including periodontal ligament, cementum, and alveolar bone. A broad range of treatment options is currently available to restore the structure and function of the periodontal tissues. A regenerative approach, among others, is now considered the most promising paradigm for this purpose, harnessing the unique properties of stem cells. How to make full use of the body's innate regenerative capacity is thus a key issue. While stem cells and bioactive factors are essential components in the regenerative processes, matrices play pivotal roles in recapitulating stem cell functions and potentiating therapeutic actions of bioactive molecules. Moreover, the positions of appropriate bioactive matrices relative to the injury site may stimulate the innate regenerative stem cell populations, removing the need to deliver cells that have been manipulated outside of the body. In this topical review, we update views on advanced designs of biomatrices-including mimicking of the native extracellular matrix, providing mechanical stimulation, activating cell-driven matrices, and delivering bioactive factors in a controllable manner-which are ultimately useful for the regenerative therapy of periodontal tissues.
Collapse
Affiliation(s)
- J H Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - C H Park
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - R A Perez
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - H Y Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - J H Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - H H Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
| | - I B Wall
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - S Shi
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - H W Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
30
|
Ji J, Sun W, Wang W, Munyombwe T, Yang XB. The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model. Cell Tissue Res 2014; 358:123-33. [PMID: 24916612 DOI: 10.1007/s00441-014-1907-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1 × 10(7) hDPSCs were seeded into 1 ml 3% agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1 Hz, 3 × 30 min per day, n = 3). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1-3 weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption.
Collapse
Affiliation(s)
- Jun Ji
- Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Kolind K, Kraft D, Bøggild T, Duch M, Lovmand J, Pedersen FS, Bindslev DA, Bünger CE, Foss M, Besenbacher F. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomater 2014; 10:641-50. [PMID: 24252446 DOI: 10.1016/j.actbio.2013.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/07/2023]
Abstract
The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- K Kolind
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - D Kraft
- Department of Orthodontics, School of Dentistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - T Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - M Duch
- Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - J Lovmand
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - F S Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - D A Bindslev
- Department of Orthodontics, School of Dentistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - C E Bünger
- Department of Orthopaedic Surgery, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - M Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - F Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Senescent human periodontal ligament fibroblasts after replicative exhaustion or ionizing radiation have a decreased capacity towards osteoblastic differentiation. Biogerontology 2013; 14:741-51. [PMID: 23934584 DOI: 10.1007/s10522-013-9449-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/02/2013] [Indexed: 01/14/2023]
Abstract
Loss of teeth increases with age or after genotoxic treatments, like head and neck radiotherapy, due to periodontium breakdown. Periodontal ligament fibroblasts represent the main cell type in this tissue and are crucial for the maintenance of homeodynamics and for its regeneration. Here, we have studied the characteristics of human periodontal ligament fibroblasts (hPDLF) that became senescent after replicative exhaustion or after exposure to ionizing radiation, as well as their ability for osteoblastic differentiation. We found that senescent hPDLF express classical markers of senescence, as well as a catabolic phenotype, as shown by the decrease in collagen type I and the increase of MMP-2 expression. In addition, we observed a considerably decreased expression of the major transcription factor for osteoblastic differentiation, i.e. Runx2, a down-regulation which was found to be p53-dependent. In accordance to the above, senescent cells have a significantly decreased alkaline phosphatase gene expression and activity, as well as a reduced ability for osteoblastic differentiation, as found by Alizarin Red staining. Interestingly, cells from both type of senescence express similar characteristics, implying analogous functions in vivo. In conclusion, senescent hPDLF express a catabolic phenotype and express a significantly decreased ability towards an osteoblastic differentiation, thus probably affecting tissue development and integrity.
Collapse
|
33
|
Hata M, Naruse K, Ozawa S, Kobayashi Y, Nakamura N, Kojima N, Omi M, Katanosaka Y, Nishikawa T, Naruse K, Tanaka Y, Matsubara T. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A 2012; 19:625-33. [PMID: 23153222 DOI: 10.1089/ten.tea.2012.0099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dental pulp stem cells (DPSCs), which can differentiate into several types of cells, are subjected to mechanical stress by jaw movement and occlusal forces. In this study, we evaluated how the uniaxial mechanical stretch influences proliferation and differentiation of DPSCs. DPSCs were isolated and cultured from male Sprague-Dawley rats. Cultured DPSCs were identified by surface markers and the differentiation capabilities as adipocytes or osteoblasts. To examine the response to mechanical stress, uniaxial stretch was exposed to cultured DPSCs. We evaluated the impact of stretch on the intracellular signaling, proliferation, osteogenic differentiation, and gene expressions of DPSCs. Stretch increased the phosphorylation of Akt, ERK1/2, and p38 MAP kinase as well as the proliferation of DPSCs. The stretch-induced proliferation of DPSCs was abolished by the inhibition of the ERK pathway. On the other hand, stretch significantly decreased the osteogenic differentiation of DPSCs, but did not affect the adipogenic differentiation. We also confirmed mRNA expressions of osteocalcin and osteopontin were significantly suppressed by stretch. In conclusion, uniaxial stretch increased the proliferation of DPSCs, while suppressing osteogenic differentiation. These results suggest a crucial role of mechanical stretch in the preservation of DPSCs in dentin. Furthermore, mechanical stretch may be a useful tool for increasing the quantity of DPSCs in vitro for regenerative medicine.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kreja L, Liedert A, Schlenker H, Brenner RE, Fiedler J, Friemert B, Dürselen L, Ignatius A. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2575-2582. [PMID: 22729594 DOI: 10.1007/s10856-012-4710-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to prove the effect of cyclic uniaxial intermittent strain on the mRNA expression of ligament-specific marker genes in human mesenchymal stem cells (MSC) and anterior cruciate ligament-derived fibroblasts (ACL-fibroblasts) seeded onto a novel textured poly(L-lactide) scaffold (PLA scaffold). Cell-seeded scaffolds were mechanically stimulated by cyclic uniaxial stretching. The expression of ligament matrix gene markers: collagen types I and III, fibronectin, tenascin C and decorin, as well as the proteolytic enzymes matrix metalloproteinase MMP-1 and MMP-2 and their tissue specific inhibitors TIMP-1 and TIMP-2 was investigated by analysing the mRNA expression using reverse transcriptase polymerase chain reaction and related to the static control. In ACL-fibroblasts seeded on PLA, mechanical load induced up-regulation of collagen types I and III, fibronectin and tenascin C. No effect of mechanical stimulation on the expression of ligament marker genes was found in undifferentiated MSC seeded on PLA. The results indicated that the new textured PLA scaffold could transfer the mechanical load to the ACL-fibroblasts and improved their ligament phenotype. This scaffold might be suitable as a cell-carrying component of ACL prostheses.
Collapse
Affiliation(s)
- Ludwika Kreja
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sreenivas SD, Rao AS, Satyavani SS, Reddy BH, Vasudevan S. Where will the stem cells lead us? Prospects for dentistry in the 21 century. J Indian Soc Periodontol 2011; 15:199-204. [PMID: 22028504 PMCID: PMC3200012 DOI: 10.4103/0972-124x.85660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/03/2011] [Indexed: 12/20/2022] Open
Abstract
It is dentists’ dream to achieve bone repair with predictability, but without donor site morbidity as well as reconstruction of injured or pathologically damaged complex dental structures, however, this will no longer be a dream as these are being made into a reality using stem cell science. Stem cell science is clearly an intriguing and promising area of science. Stem cells have been isolated from a variety of embryonic and adult tissues. Dental stem cells are multipotent mesenchymal stem cells (MSCs) brought new enthusiasm among the researchers because of their easy accessibility, high quality and they don’t pose the same ethical concerns and controversy in comparison with embryonic stem cells. This review article provides brief insights about stem cell basics, the state of art in human dental stem cell research and its possible impact on future dentistry. Even though most of these modalities are still in infancy, it is evident that the 21st century dentist is going to play a critical role in the field of medicine. The aim of this article is to bring awareness among the dentists about the huge potential associated with the use of stem cells in a clinical setting, as well as proper understanding of related problems.
Collapse
Affiliation(s)
- S Durga Sreenivas
- Department of Oral and Maxillofacial Surgery, MNR Dental College and Hospital, Sangareddy, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
36
|
Jung HS, Lee DS, Lee JH, Park SJ, Lee G, Seo BM, Ko JS, Park JC. Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 2011; 42:227-35. [DOI: 10.1007/s10735-011-9327-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/12/2011] [Indexed: 11/24/2022]
|