1
|
Makkar H, Lim CT, Tan KS, Sriram G. Modeling periodontal host-microbe interactions using vascularized gingival connective tissue equivalents. Biofabrication 2023; 15:045008. [PMID: 37473752 DOI: 10.1088/1758-5090/ace935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Gingival connective tissue and its vasculature play a crucial role in the host's immune response against the periodontal microbiome and serve as a bridge between the oral and systemic environments. However, there is a lack of representative models that mimic the complex features of vascularized gingival connective tissue and its interaction with the periodontal microbiome, hindering our understanding of periodontal health and disease. Towards this pursuit, we present the characterization of vascularized gingival connective tissue equivalents (CTEs) as a model to study the interactions between oral biofilm colonizers and gingival tissues in healthy and diseased states. Whole-mount immunolabeling and label-free confocal reflectance microscopy of human fibrin-based matrix embedded with gingival fibroblasts and microvascular endothelial cells demonstrated the generation of bi-cellular vascularized gingival CTEs. Next, we investigated the response of the vascularized gingival CTEs to early, intermediate, and late oral biofilm colonizers. Despite colonization, the early colonizers did not elicit any significant change in the production of the cytokines and chemokines by the CTEs representative of the commensal and homeostatic state. In contrast, intermediate and late colonizers representing a transition to a diseased state exhibited connective tissue and vascular invasion, and elicited a differential immune response accompanied by increased monocyte migration. The culture supernatants produced by the vascularized gingival CTEs in response to early and intermediate colonizers polarized macrophages towards an immunomodulatory M2-like phenotype which activates and protects the host, while the late colonizers polarized towards a pro-inflammatory M1-like phenotype. Lastly,in silicoanalysis showed a high strength of associations between the proteins and transcripts investigated with periodontitis and vascular diseases. In conclusion, the vascularized gingival CTEs provide a biomimeticin vitroplatform to study host-microbiome interactions and innate immune response in periodontal health and diseased states, which potentially paves the way toward the development and assessment of novel periodontal therapeutics.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| |
Collapse
|
2
|
Saha A, Kamble P, Mangalekar SB. Comparative Evaluation of Conventional Therapy With and Without Use of Diode Laser (DL) in the Treatment of Chronic Generalized Periodontitis: A Clinico-Microbiological Study. Cureus 2023; 15:e35720. [PMID: 37016638 PMCID: PMC10066870 DOI: 10.7759/cureus.35720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Chronic periodontitis is caused by a persistent and expanding interaction between a subgingival pathogenic microbial biofilm and the host immune system. The host's reaction to local factors directly influences the inflammation and bone loss that result from these interactions. Depending on variables like the severity of soft tissue damage and bone loss, treatment options can range from nonsurgical to surgical. Nonsurgical treatments are frequently used as the first-line therapy for inflammatory periodontal disease. In fact, careful scaling and root planing (SRP), a nonsurgical treatment, has been extensively studied and shown to be a highly predictable and effective therapy. According to recent research, using a diode laser (DL) in addition to standard SRP may reduce bacterial count and reinfection significantly. Laser therapy could be helpful in treating periodontal disease because of its antibacterial and detoxifying effects. The goal of this study is to investigate whether using a DL in addition to conventional flap surgery enhances patient outcomes for those with chronic generalized periodontitis. MATERIALS AND METHODS The 12 participants in this split-mouth trial with chronic generalized periodontitis were the main subject of the study. All of them had probing pocket depths (PPDs) of at least 5 mm after the initial phase of treatment. Each patient in the control group (Group A) and test group (Group B) received a conventional flap after being randomly assigned to one of the groups. Group B underwent a conventional flap with a 980 nm DL, whereas those in Group A did not receive any DL therapy. Periodontal pockets in both groups were evaluated at baseline, 45 days, and 90 days after a sub-gingival plaque test. Quantitative real-time polymerase chain reactions were used to examine the presence of red complex organisms in the plaque sample. RESULTS From baseline to 45 days and then to 90 days, clinical attachment loss (CAL), plaque index (PI), and gingival index (GI) all significantly decreased. However, results from 45 days to 90 days were statistically non-significant, with the exception of the GI, where Group B results were significantly different from Group A results from 45 days to 90 days. On the other hand, when a DL was combined with conventional flap surgery in the test group, the quantity of red complex bacteria was significantly decreased. CONCLUSION When DL was used in conjunction with conventional flap surgery, the results showed that CAL, PI, and GI were all significantly reduced while the quantity of red complex bacteria was also significantly decreased.
Collapse
|
3
|
The Role and Involvement of Stem Cells in Periodontology. Biomedicines 2023; 11:biomedicines11020387. [PMID: 36830924 PMCID: PMC9953576 DOI: 10.3390/biomedicines11020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Periodontitis is a widespread inflammatory condition, characterized by a progressive deterioration of the supporting structures of the teeth. Due to the complexity of periodontal tissue and the surrounding inflammatory microenvironment, the repair of lesions at this level represents a continuous challenge. The regeneration of periodontal tissues is considered a promising strategy. Stem cells have remarkable properties, such as immunomodulatory potential, proliferation, migration, and multilineage differentiation. Thus, they can be used to repair tissue damage and reduce inflammation, potentially leading to periodontal regeneration. Among the stem cells used for periodontal regeneration, we studied dental mesenchymal stem cells (DMSCs), non-dental stem cells, and induced pluripotent stem cells (IPSCs). Although these cells have well documented important physiological characteristics, their use in contemporary practice to repair the affected periodontium is still a challenge.
Collapse
|
4
|
Stem cell microencapsulation maintains stemness in inflammatory microenvironment. Int J Oral Sci 2022; 14:48. [PMID: 36216801 PMCID: PMC9551082 DOI: 10.1038/s41368-022-00198-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with FeIII/tannic acid coordination network to obtain spheroid@[FeIII-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.
Collapse
|
5
|
Peridontitis as a Risk Factor for Attention Deficit Hyperactivity Disorder: Possible Neuro-inflammatory Mechanisms. Neurochem Res 2022; 47:2925-2935. [PMID: 35764847 DOI: 10.1007/s11064-022-03650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Periodontitis is a condition caused mostly by the creation of a biofilm by the bacterium P. gingivalis, which releases toxins and damages the tooth structure. Recent research studies have reported association between dental health and neuropsychiatric illnesses. Neuroinflammation triggered by the first systemic inflammation caused by the bacterium present in the oral cavities is a plausible explanation for such a relationship. Substantial amount of evidence supports the role of neuroinflammation and dysfunction of the dopaminergic system in the pathology of ADHD (Attention deficit hyperactivity disorders). Recent epidemiological, microbiological and inflammatory findings strengthen that, periodontal bacteria, which cause systemic inflammation can contribute to neuroinflammation and finally ADHD. Although both diseases are characterized by inflammation, the specific pathways and crosslink's between periodontitis and ADHD remain unknown. Here, the authors describe the inflammatory elements of periodontitis, how this dental illness causes systemic inflammation, and how this systemic inflammation contributes to deteriorating neuroinflammation in the evolution of ADHD. Therefore, the aim of this review is to present possible links and mechanisms that could confirm the evidence of this association.
Collapse
|
6
|
AlJasser R, AlAqeely R, AlKenani M, AlQahtani S, AlZahrani A, Lambarte R. The effect of systemic Isotretinoin on salivary tissue inhibitors of metalloproteinases 1 and 2 and salivary flow rate in periodontal disease. Saudi J Biol Sci 2022; 29:148-153. [PMID: 35002402 PMCID: PMC8716862 DOI: 10.1016/j.sjbs.2021.08.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 10/31/2022] Open
Abstract
AIMS To evaluate and compare changes in salivary flow rate and salivary levels of TIMP-1 and TIMP-2 in individuals taking oral Isotretinoin (INN) with those who do not take INN. To assess the variation in TIMP-1 and TIMP-2 as well as salivary flow rate observed at different stages of periodontal disease in comparison to those observed in the case of healthy periodontium. MATERIALS AND METHODS An examiner-blind case-control study involving 180 human adults divided into six groups based on their periodontal status. Clinical parameters, including pocket depth, clinical attachment level, and bleeding on probing were measured at six sites per tooth. Whole unstimulated saliva samples were collected from all subjects to evaluate salivary flow rate (SFR). Salivary TIMP-1 and TIMP-2 levels were detected using enzyme-linked immunosorbent assay (ELISA). Data were analyzed using IBM SPSS Software. The Kruskal Wallis test and Mann-Whitney U-tests were employed to verify any significant differences between the groups for all parameters. Multi-regression analysis was performed for each parameter tested in each group. All tests were compared at a significance level of 0.05. RESULTS SFR was statistically significantly lower among all INN groups in comparison to the control groups (P < 0.001). TIMP-1 and TIMP-2 were significantly higher in all INN groups in comparison to the control groups, in both gingivitis cases (P = 0.004, P < 0.0001 respectively) and periodontitis cases (P < 0.0001). CONCLUSION Although INN reduces salivary flow rate, the findings of the present study revealed that it had an anti-inflammatory effect in periodontal biomarkers. Specifically, it was positively correlated with an elevation of salivary TIMP-1 and TIMP-2. Hence, INN might be a future additive medication to be further evaluated for the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Reham AlJasser
- Department of Periodontics and Community Dentistry, Dental College, King Saud University, 11545 Riyadh, Saudi Arabia, Arabia
| | - Razan AlAqeely
- Department of Periodontics and Community Dentistry, Dental College, King Saud University, 11545 Riyadh, Saudi Arabia, Arabia
| | - Manal AlKenani
- Saudi Board of Periodontics Program, 12211 Riyadh, Saudi Arabia
| | | | | | - Rhodanne Lambarte
- Mollecular and Cell Biology Laboratory Prince Naif bin Abdul Aziz Health Research Center, College of Dentistry, Dental College, King Saud University, 11545 Riyadh, Saudi Arabia, Arabia
| |
Collapse
|
7
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
8
|
Immunomodulatory Properties of Stem Cells in Periodontitis: Current Status and Future Prospective. Stem Cells Int 2020; 2020:9836518. [PMID: 32724318 PMCID: PMC7366217 DOI: 10.1155/2020/9836518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the sixth-most prevalent chronic inflammatory disease and gradually devastates tooth-supporting tissue. The complexity of periodontal tissue and the local inflammatory microenvironment poses great challenges to tissue repair. Recently, stem cells have been considered a promising strategy to treat tissue damage and inflammation because of their remarkable properties, including stemness, proliferation, migration, multilineage differentiation, and immunomodulation. Several varieties of stem cells can potentially be applied to periodontal regeneration, including dental mesenchymal stem cells (DMSCs), nonodontogenic stem cells, and induced pluripotent stem cells (iPSCs). In particular, these stem cells possess extensive immunoregulatory capacities. In periodontitis, these cells can exert anti-inflammatory effects and regenerate the periodontium. Stem cells derived from infected tissue possess typical stem cell characteristics with lower immunogenicity and immunosuppression. Several studies have demonstrated that these cells can also regenerate the periodontium. Furthermore, the interaction of stem cells with the surrounding infected microenvironment is critical to periodontal tissue repair. Though the immunomodulatory capabilities of stem cells are not entirely clarified, they show promise for therapeutic application in periodontitis. Here, we summarize the potential of stem cells for periodontium regeneration in periodontitis and focus on their characteristics and immunomodulatory properties as well as challenges and perspectives.
Collapse
|
9
|
Barros FCD, Sampaio JN, Figueredo CMDS, Carneiro S, Fischer RG. Higher Prevalence of Periodontitis and Decayed, Missing and Filled Teeth in Patients with Psoriasis. Eur J Dent 2020; 14:366-370. [PMID: 32542631 PMCID: PMC7440955 DOI: 10.1055/s-0040-1713465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The aim of this study is to describe the prevalence and severity of periodontitis and decayed, missing and filled teeth (DMFT) index in patients with psoriasis. As a secondary aim, verify if periodontitis was a risk indicator for psoriasis. MATERIALS AND METHODS A total of 69 patients diagnosed with psoriasis (48.7 ± 14.6 years) and 74 healthy controls (40.3 ± 12.9 years) participated in the study. Probing pocket depth, clinical attachment loss (CAL), bleeding on probing, plaque index, and DMFT index were measured in all subjects. Periodontitis was defined as the presence of at least three interproximal sites with CAL ≥3 mm in different teeth and severe periodontitis should involve at least two interproximal sites in different teeth with CAL ≥5 mm. STATISTICAL ANALYSIS The Mann-Whitney test was used to analyze the demographics and the clinical data. The significance level was 5%. A multivariate logistic regression was conducted, and the odds ratio were calculated to express the risk to develop psoriasis. RESULTS Patients with psoriasis had significantly more sites with CAL ≥3 mm (p < 0.03) and CAL ≥5 mm (p < 0.0001), less sites with plaque (p < 0.0001), fewer teeth (p < 0.0001), and a high DMFT index (p < 0.02) as compared with controls. Severe periodontitis was significantly more frequent (87.1% × 58.1%) and was a risk indicator for psoriasis after adjusting for sex, age, race, and smoking habits (odds ratio: 3.7, 95% confidence interval: 1.5-9.0, p < 0.003). CONCLUSION Patients with psoriasis have higher prevalence of severe periodontitis and higher DMFT than control patients. Severe periodontitis may be a risk indicator for psoriasis.
Collapse
Affiliation(s)
- Fabiana Cervo de Barros
- Department of Periodontology, Faculty of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil.,Faculty of Dentistry, Arthur Sá Earp Neto University (FASE), Petrópolis, Brazil
| | - Janaina Nunes Sampaio
- Department of Periodontology, Faculty of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Marcelo da Silva Figueredo
- Department of Periodontology, Faculty of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil.,Division of Periodontology, School of Dentistry and Oral Health, Griffith University, Queensland, Australia
| | - Sueli Carneiro
- Department of Dermatology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo Guimarães Fischer
- Department of Periodontology, Faculty of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and Chemokines in Periodontitis. Eur J Dent 2020; 14:483-495. [PMID: 32575137 PMCID: PMC7440949 DOI: 10.1055/s-0040-1712718] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a common inflammatory periodontal disease affecting a wide range of population all over the world. The causing bacteria releases chemicals which activate the innate immune system to release proinflammatory cytokines contributing to more progression. This activates the acquired immune system leading to more progression of periodontitis. As the immune response goes on, released cytokines and chemokines can damage the periodontal ligaments, gingiva, and alveolar bone. There are many types of cytokines and chemokines in periodontitis. Cytokines are peptide mediators who are responsible for cell signaling and communication. Chemokines are a large subfamily of cytokines having the ability to coordinate leukocyte recruitment and activation. This paper is a narrative review of the literature.This review ensures that inflammatory mediators in the case of periodontitis can cause a noticeable damage in the whole apparatus of the periodontium. It causes soft tissue inflammation and bone damage affected by the mediators of both innate and acquired immune system.The inflammatory process is accompanied by large network of cytokines and chemokines. There is high expression of proinflammatory cytokines such as interleukin (IL)-1α, IL-1β, IL-6, IL-12, tumor necrosis factor (TNF)-α, and regulatory cytokines such as IL-4, IL-1(RA) receptor antagonist, IL-10, and induced protein (IP)-10. There is also increased production of cytokines IL-10, IL-12, interferon-γ, IP-10, IL-1RA, and IL-4. Cytokines IL-17, IL-6, IL-1β, TNF-α, macrophage colony-stimulating factor, and prostaglandin E
2
trigger the osteoclast activity causing bone resorption.
Collapse
Affiliation(s)
- Doaa Elsayed Ramadan
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ninuk Hariyani
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.,Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Retno Indrawati
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indeswati Diyatri
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Montenegro SCL, Retamal-Valdes B, Bueno-Silva B, Duarte PM, Faveri M, Figueiredo LC, Feres M. Do patients with aggressive and chronic periodontitis exhibit specific differences in the subgingival microbial composition? A systematic review. J Periodontol 2020; 91:1503-1520. [PMID: 32233092 DOI: 10.1002/jper.19-0586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/15/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions grouped the diseases previously recognized as chronic (CP) or aggressive (AgP) periodontitis under a single category named periodontitis. The rationale for this decision was the lack of specific patterns of immune-inflammatory response or microbial profiles associated with CP or AgP. However, no previous studies have compiled the results of all studies comparing subgingival microbial data between these clinical conditions. Thus, this systematic review aimed to answer the following focused question: "Do patients with AgP periodontitis present differences in the subgingival microbiota when compared with patients with CP?" METHODS A systematic review was conducted according to the PRISMA statement. The MEDLINE, EMBASE, and Cochrane databases were searched up to June 2019 for studies of any design (except case reports, case series, and reviews) comparing subgingival microbial data from patients with CP and AgP. RESULTS A total of 488 articles were identified and 56 were included. Thirteen studies found Aggregatibacter actinomycetemcomitans elevated in AgP in comparison with CP, while Fusobacterium nucleatum, Parvimonas micra, and Campylobacter rectus were elevated in AgP in a few studies. None of these species were elevated in CP. However, the number of studies not showing statistically significant differences between CP and AgP was always higher than that of studies showing differences. CONCLUSION These results suggested an association of A. actinomycetemcomitans with AgP, but neither this species nor the other species studied to date were unique to or could differentiate between CP and AgP (PROSPERO #CRD42016039385).
Collapse
Affiliation(s)
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil.,Department of Periodontology, School of Advanced Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
12
|
Lee HA, Park MH, Song Y, Na HS, Chung J. Role of
Aggregatibacter actinomycetemcomitans‐
induced autophagy in inflammatory response. J Periodontol 2020; 91:1682-1693. [DOI: 10.1002/jper.19-0639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Hyun Ah Lee
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
| | - Mi Hee Park
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Yuri Song
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Hee Sam Na
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Jin Chung
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| |
Collapse
|
13
|
Azevedo AM, Carvalho Rocha LP, de Faria Amormino SA, Cavalieri Gomes C, Ornelas Dutra W, Santiago Gomez R, da Costa JE, Rocha Moreira P. DNA methylation profile of genes related to immune response in generalized periodontitis. J Periodontal Res 2020; 55:426-431. [PMID: 31943216 DOI: 10.1111/jre.12726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Epigenetic events, as the DNA methylation, may be related to development of inflammatory diseases. Due to the important role of host's response in the pathogenesis of periodontitis, the purpose of the present study was to investigate the methylation profile of genes related to immune response in gingival tissues from patients with generalized periodontitis (GP) compared to healthy individuals. METHODS Gingival tissues were collected from 20 individuals with GP and 20 healthy individuals. Genomic DNA was extracted and submitted to enzymatic digestions. An initial screening using a panel of genes involved with the response immune was performed in pools containing six samples of each group. Genes that presented different levels of methylation between the groups were selected for individual assays for validation. RESULTS The array results showed an unmethylated profile in the majority of genes evaluated in both groups. MALT1, LTB, and STAT5 genes presented a profile of partial methylation in the control compared with GP group. Validation individual assays using a larger number of samples (n = 20, each group) confirmed the hypomethylation of STAT5 in the GP group compared with control group (P < .001). CONCLUSION Generalized periodontitis is associated with hypomethylation of the STAT5 gene. Further studies are necessary to evaluate the functional impact these findings.
Collapse
Affiliation(s)
- Andrea Mara Azevedo
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Paulo Carvalho Rocha
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Eustáquio da Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
TOKER H, YUCE HBALCI, YILDIRIM A, TEKİN MB, GEVREK F. The effect of colchicine on alveolar bone loss in ligature-induced periodontitis. Braz Oral Res 2019; 33:e001. [DOI: 10.1590/1807-3107bor-2019.vol33.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
|
15
|
Naiff P, Carneiro V, Guimarães MDC. Importance of Mechanical Periodontal Therapy in Patients with Diabetes Type 2 and Periodontitis. Int J Dent 2018; 2018:6924631. [PMID: 30356347 PMCID: PMC6176290 DOI: 10.1155/2018/6924631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is an infectious and inflammatory disease of high prevalence worldwide and constitutes a significant oral health problem. It can lead to tooth loss. In addition, the local inflammatory process can cause the release of inflammatory mediators in the bloodstream and, consequently, contribute to the emergence of systemic effects as cardiovascular and diabetic complications. The purpose of this mini review is to alert health professionals about the risk that periodontitis represents for the onset or exacerbation of complications in individuals with type 2 diabetes mellitus and to emphasize that the mechanical treatment of periodontal disease and reestablishment of oral health are essential for the metabolic control of these patients. The periodontal therapy may help to reduce the risk of systemic complications in diabetes patients. Proper dental management should be suggested by health professionals, mainly from physicians to their patients, in order to improve the health conditions in these individuals.
Collapse
Affiliation(s)
- Priscilla Naiff
- Ph.D. Student, Faculty of Health Sciences, University of Brasilia, Distrito Federal, Brazil
| | - Valéria Carneiro
- Ph.D. Professor at Periodontics Division, University of Brasilia, Distrito Federal, Brazil
| | | |
Collapse
|
16
|
Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A, Ledesma-Martínez E, Mendoza-Núñez VM. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review. Int J Mol Sci 2018; 19:E944. [PMID: 29565801 PMCID: PMC5979585 DOI: 10.3390/ijms19040944] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC) can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.
Collapse
Affiliation(s)
- Beatriz Hernández-Monjaraz
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, 09230 Mexico City, Mexico.
| | - Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| |
Collapse
|
17
|
LLANOS AH, SILVA CGB, ICHIMURA KT, REBEIS ES, GIUDICISSI M, ROMANO MM, SARAIVA L. Impact of aggressive periodontitis and chronic periodontitis on oral health-related quality of life. Braz Oral Res 2018; 32:e006. [DOI: 10.1590/1807-3107bor-2018.vol32.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
|
18
|
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol 2017; 87:125-130. [PMID: 29289808 DOI: 10.1016/j.archoralbio.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Periodontal diseases are a class of non-resolving inflammatory diseases, initiated by a pathogenic subgingival biofilm, in a susceptible host, which if left untreated can result in soft and hard tissue destruction. Oral epithelial cells are the first line of defense against microbial infection within the oral cavity, whereby they can sense the environment through innate immune receptors including toll-like receptors (TLRs). Therefore, oral epithelial cells directly and indirectly contribute to mucosal homeostasis and inflammation, and disruption of this homeostasis or over-activation of innate immunity can result in initiation and/or exacerbation of localized inflammation as observed in periodontal diseases. Dynamics of TLR signaling outcomes are attributable to several factors including the cell type on which it engaged. Indeed, our previously published data indicates that oral epithelial cells respond in a unique manner when compared to canonical immune cells stimulated in a similar fashion. Thus, the objective of this study was to evaluate the role of oral epithelial cell innate sensing on periodontal disease, using a murine poly-microbial model in an epithelial cell specific knockout of the key TLR-signaling molecule MyD88 (B6K5Cre.MyD88plox). Following knockdown of MyD88 in the oral epithelium, mice were infected with Porphorymonas gingivalis and Aggregatibacter actinomycetemcomitans by oral lavage 4 times per week, every other week for 6 weeks. Loss of oral epithelial cell MyD88 expression resulted in exacerbated bone loss, soft tissue morphological changes, soft tissue infiltration, and soft tissue inflammation following polymicrobial oral infection. Most interestingly while less robust, loss of oral epithelial cell MyD88 also resulted in mild but statistically significant soft tissue inflammation and bone loss even in the absence of a polymicrobial infection. Together these data demonstrate that oral epithelial cell MyD88-dependent TLR signaling regulates the immunological balance within the oral cavity under conditions of health and disease.
Collapse
Affiliation(s)
- Andrea E Delitto
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Fernanda Rocha
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ann M Decker
- Department of Periodontology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Byron Amador
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Heather L Sorenson
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
19
|
Van der Velden U. What exactly distinguishes aggressive from chronic periodontitis: is it mainly a difference in the degree of bacterial invasiveness? Periodontol 2000 2017; 75:24-44. [DOI: 10.1111/prd.12202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Mehlotra RK, Hall NB, Willie B, Stein CM, Weinberg A, Zimmerman PA, Vernon LT. Associations of Toll-Like Receptor and β-Defensin Polymorphisms with Measures of Periodontal Disease (PD) in HIV+ North American Adults: An Exploratory Study. PLoS One 2016; 11:e0164075. [PMID: 27727278 PMCID: PMC5058471 DOI: 10.1371/journal.pone.0164075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Polymorphisms in toll-like receptor (TLR) and β-defensin (DEFB) genes have been recognized as potential genetic factors that can influence susceptibility to and severity of periodontal diseases (PD). However, data regarding associations between these polymorphisms and PD are still scarce in North American populations, and are not available in HIV+ North American populations. In this exploratory study, we analyzed samples from HIV+ adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms (SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Porphyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia [Tf]) and 3 clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and bleeding on probing [BOP]). In all subjects combined, 2 SNPs in TLR1 were significantly associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of the 2 SNPs in TLR1 was significantly associated with Td in Caucasians. In addition, another SNP in TLR1 and a SNP in TLR6 were also significantly associated with Td and Pg, respectively, in Caucasians. All 3 periodontopathogen levels were significantly associated with PPD and BOP, but none was associated with REC. Instrumental variable analysis showed that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen levels. However, associations between the 3 periodontopathogen levels and PPD or BOP were not driven by associations with these identified SNPs. No association was found between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR polymorphisms, particularly TLR1 and TLR6 polymorphisms, in PD in HIV+ North Americans.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| | - Noemi B. Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barne Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lance T. Vernon
- Department of Pediatric and Community Dentistry, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| |
Collapse
|
21
|
da Motta RJG, Tirapelli C, Juns da Silva R, Villafuerte KRV, Almeida LY, Ribeiro-Silva A, León JE. Immature, but Not Mature, Dendritic Cells Are More Often Present in Aggressive Periodontitis Than Chronic Periodontitis: An Immunohistochemical Study. J Periodontol 2016; 87:1499-1507. [PMID: 27389962 DOI: 10.1902/jop.2016.150729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dendritic cells (DCs) form a key link between innate and adaptive immune responses. The aim of this study is to analyze presence and distribution of immature (im) and mature (m) DCs in gingival tissue samples obtained from patients diagnosed with aggressive periodontitis (AgP), chronic periodontitis (CP), and clinically healthy periodontium (control group). METHODS Gingival tissue samples obtained from patients with: 1) AgP (aged <35 years); 2) CP (aged ≥35 years); and 3) control group (aged >18 years) (n = 10 per group) were collected. Two-way analysis of variance and posterior Fisher least significant difference test were used to observe differences between the means of cells positively marked for imDC (S100, CD1a, and CD207) and mDC (CD208) immunomarkers. RESULTS imDCs were more numerous in AgP than CP and control groups, being statistically significant only for S100+ cells. Conversely, mDCs were visualized in higher numbers in CP than AgP and control groups (both P <0.05). Considering frequency of immunostained cells, the number of S100+ cells was greater than CD207+ and CD1a+ cells, followed by a lesser number of CD208+ cells, in all groups. CONCLUSIONS Considering that the ability of DCs to regulate immunity is dependent on DC maturation, results suggest that predominance of imDCs appears to be involved in AgP pathogenesis, probably due to lack of ability to induce immune cell activation. Further studies are necessary to elucidate the role of DC maturation in regulating immune responses in periodontal disease.
Collapse
Affiliation(s)
- Raphael J G da Motta
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Tirapelli
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Juns da Silva
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly R V Villafuerte
- Department of Oral and Maxillofacial Surgery and Periodontology, University of São Paulo
| | - Luciana Y Almeida
- Department of Diagnosis and Surgery, Araraquara Dental School, University Estadual Paulista, São Paulo, Brazil
| | | | - Jorge E León
- Department of Stomatology, University of São Paulo
| |
Collapse
|
22
|
Plaza K, Kalinska M, Bochenska O, Meyer-Hoffert U, Wu Z, Fischer J, Falkowski K, Sasiadek L, Bielecka E, Potempa B, Kozik A, Potempa J, Kantyka T. Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins. J Biol Chem 2016; 291:18753-64. [PMID: 27354280 DOI: 10.1074/jbc.m116.722942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, a chronic inflammation driven by dysbiotic subgingival bacterial flora, is linked on clinical levels to the development of a number of systemic diseases and to the development of oral and gastric tract tumors. A key pathogen, Porphyromonas gingivalis, secretes gingipains, cysteine proteases implicated as the main factors in the development of periodontitis. Here we hypothesize that gingipains may be linked to systemic pathologies through the deregulation of kallikrein-like proteinase (KLK) family members. KLKs are implicated in cancer development and are clinically utilized as tumor progression markers. In tissues, KLK activity is strictly controlled by a limited number of tissue-specific inhibitors, including SPINK6, an inhibitor of these proteases in skin and oral epithelium. Here we identify gingipains as the only P. gingivalis proteases responsible for SPINK6 degradation. We further show that gingipains, even at low nanomolar concentrations, cleaved SPINK6 in concentration- and time-dependent manner. The proteolysis was accompanied by loss of inhibition against KLK13. We also mapped the cleavage by Arg-specific gingipains to the reactive site loop of the SPINK6 inhibitor. Moreover, we identified a significant fraction of SPINK6-sensitive proteases in healthy saliva and confirmed the ability of gingipains to inactivate SPINK6 under ex vivo conditions. Finally, we demonstrate the double-edge action of gingipains, which, in addition, can activate KLKs because of gingipain K-mediated proteolytic processing of the zymogenic proform of KLK13. Altogether, the results indicate the potential of P. gingivalis to disrupt the control system of KLKs, providing a possible mechanistic link between periodontal disease and tumor development.
Collapse
Affiliation(s)
| | | | - Oliwia Bochenska
- Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, and
| | - Ulf Meyer-Hoffert
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | - Zhihong Wu
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | - Jan Fischer
- the Department of Dermatology, University Clinic Schleswig-Holstein, 24105 Kiel, Germany, and
| | | | | | | | - Barbara Potempa
- the Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky 40202
| | - Andrzej Kozik
- Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, and
| | - Jan Potempa
- From the Departments of Microbiology and the Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky 40202
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
23
|
Puppi D, Migone C, Grassi L, Pirosa A, Maisetta G, Batoni G, Chiellini F. Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. POLYM INT 2016. [DOI: 10.1002/pi.5101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Chiara Migone
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Lucia Grassi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Alessandro Pirosa
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Federica Chiellini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| |
Collapse
|
24
|
Cavalla F, Biguetti CC, Colavite PM, Silveira EV, Martins W, Letra A, Trombone APF, Silva RM, Garlet GP. TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection. Virulence 2016; 6:293-304. [PMID: 25832120 DOI: 10.1080/21505594.2015.1029828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis.
Collapse
Affiliation(s)
- Franco Cavalla
- a Departamento de Ciencias Biológicas; Faculdade de Odontologia de Bauru Universidade de São Paulo (FOB/USP) ; Bauru , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jaedicke KM, Preshaw PM, Taylor JJ. Salivary cytokines as biomarkers of periodontal diseases. Periodontol 2000 2015; 70:164-83. [DOI: 10.1111/prd.12117] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/15/2022]
|
26
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
27
|
Souza E, Medeiros AC, Gurgel BC, Sarmento C. Antimicrobial photodynamic therapy in the treatment of aggressive periodontitis: a systematic review and meta-analysis. Lasers Med Sci 2015; 31:187-96. [DOI: 10.1007/s10103-015-1836-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
28
|
Wallet MA, Calderon NL, Alonso TR, Choe CS, Catalfamo DL, Lalane CJ, Neiva KG, Panagakos F, Wallet SM. Triclosan alters antimicrobial and inflammatory responses of epithelial cells. Oral Dis 2015; 19:296-302. [PMID: 24079913 DOI: 10.1111/odi.12001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Periodontal diseases are a class of pathologies wherein oral microbes induce harmful immune responses in a susceptible host. Therefore, an agent that can both reduce microbial burden and lessen pathogenesis of localized inflammation would have beneficial effects in periodontal disease; 2,4,4-trichloro-2-hydroxydiphenyl-ether [triclosan] is currently used in oral care products owing to broad spectrum antimicrobial and anti-inflammatory properties. OBJECTIVE To determine effects of triclosan on the response of oral epithelial cells to stimulation with the inflammatory microbial product lipopolysaccharide (LPS), a ligand for toll-like receptor 4 [TLR4]. MATERIALS/METHODS Primary human oral epithelial cells were stimulated with LPS in the presence and/or absence of triclosan after which expression of pro-inflammatory cytokines, β-defensins, micro-RNAs [miRNAs], or TLR-signaling pathway proteins were evaluated. RESULTS Here, we demonstrate that triclosan is a potent inhibitor of oral epithelial cell LPS-induced pro-inflammatory responses by inducing miRNA regulation of the TLR-signaling pathway. Triclosan was not a pan-suppresser of oral epithelial cell responses as β-defensin 2 [βD2] and βD3 were upregulated by triclosan following LPS-stimulation. CONCLUSIONS These data demonstrate both a novel antimicrobial mechanism by which triclosan improves plaque control and an additional anti-inflammatory property, which could have beneficial effects in periodontal disease resolution.
Collapse
Affiliation(s)
- M A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
30
|
Botero JE, Rösing CK, Duque A, Jaramillo A, Contreras A. Periodontal disease in children and adolescents of Latin America. Periodontol 2000 2014; 67:34-57. [DOI: 10.1111/prd.12072] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 01/08/2023]
|
31
|
Willi M, Belibasakis GN, Bostanci N. Expression and regulation of triggering receptor expressed on myeloid cells 1 in periodontal diseases. Clin Exp Immunol 2014; 178:190-200. [PMID: 24924298 DOI: 10.1111/cei.12397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an inflammatory infectious disease that destroys the tooth-supporting tissues. It is caused by multi-species subgingival biofilms that colonize the tooth surface. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia (i.e. 'red complex' bacteria) are characteristic subgingival biofilm species. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a cell surface receptor of the immunoglobulin superfamily, with a role in the amplification of proinflammatory cytokine production during infection. This study aimed to investigate TREM-1 mRNA expression in gingival tissues from patients with chronic periodontitis, generalized aggressive periodontitis and healthy subjects and its correlation with the levels of periodontal pathogens in the tissue. A further aim was to investigate the regulation of TREM-1 in human monocytic cells (MM6) challenged with an in-vitro subgingival biofilm model. Gingival tissue TREM-1 expression was increased in both chronic and aggressive periodontitis, compared to health, and correlated with the levels of the 'red complex' species in the tissue. No significant differences were detected between the two forms of periodontitis. Biofilm-challenged MM6 cells exhibited higher TREM-1 expression and secretion compared to controls, with partial involvement of the 'red complex'. Engagement or inhibition of TREM-1 affected the capacity of the biofilms to stimulate interleukin (IL)-1β, but not IL-8, secretion by the cells. In conclusion, this study reveals that TREM-1 tissue expression is enhanced in periodontal disease, and correlates with the level of periodontal pathogens. It also provides a mechanistic insight into the regulation of TREM-1 expression and the associated IL-1β production in biofilm-challenged monocytes.
Collapse
Affiliation(s)
- M Willi
- Section of Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Schmidt J, Jentsch H, Stingu CS, Sack U. General immune status and oral microbiology in patients with different forms of periodontitis and healthy control subjects. PLoS One 2014; 9:e109187. [PMID: 25299619 PMCID: PMC4192146 DOI: 10.1371/journal.pone.0109187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022] Open
Abstract
Objective Immunological processes in the etiopathogenesis of periodontitis, especially the aggressive form, are not well understood. This study examined clinical as well as systemic immunological and local microbiological features in healthy controls and patients with different forms of periodontitis. Materials and Methods 14 healthy subjects, 15 patients diagnosed with aggressive periodontitis, and 11 patients with chronic periodontitis were recruited. Periodontal examination was performed and peripheral blood was collected from each patient. Lymphocyte populations as well as the release of cytokines by T-helper cells were determined by flow cytometry and enzyme linked immunosorbent spot assay. Subgingival plaque samples were taken from each individual and immediately cultivated for microbiological examination. Results When stimulating peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide, a higher IL-1β release was found in patients with moderate chronic periodontitis compared to the other groups (p<0.01). Numbers of B-cells, naïve and transitional B-cells, memory B-cells, and switched memory B-cells were within the reference range for all groups, but patients with chronic periodontitis showed the highest percentage of memory B-cells without class switch (p = 0.01). The subgingival plaque differed quantitatively as well as qualitatively with a higher number of Gram-negative anaerobic species in periodontitis patients. Prevotella denticola was found more often in patients with aggressive periodontitis (p<0.001) but did not show an association to any of the systemic immunological findings. Porphyromonas gingivalis, which was only found in patients with moderate chronic periodontitis, seems to be associated with an activation of the systemic immune response. Conclusion Differences between aggressive periodontitis and moderate chronic periodontitis are evident, which raises the question of an inadequate balance between systemic immune response and bacterial infection in aggressive periodontitis.
Collapse
Affiliation(s)
- Jana Schmidt
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Holger Jentsch
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Abstract
Porphyromonas gingivalis is a leading pathogen in chronic periodontitis, a disease process involving progressive destruction of the tissues that support the teeth. Recently, the organism has been reported to produce a unique bacterial enzyme, P. gingivalis peptidyl-arginine deiminase (PPAD), which has the ability to convert arginine residues in proteins to citrulline. Protein citrullination alters protein structure and function; hence, PPAD may be involved in deregulation of the host’s signalling network and immune evasion. Further, accumulating evidence suggests a role for autoimmunity against citrullinated proteins in the development of rheumatoid arthritis (RA). As inflammatory conditions in the lungs of cigarette smokers contribute to the breakdown of immune tolerance to citrullinated epitopes, chronic exposure to citrullinated proteins at periodontitis sites may also predispose susceptible individuals to the development of autoantibodies and the initiation of RA. In this review, we discuss evidence that PPAD may represent a mechanistic link between periodontitis and RA, diseases that are known to be significantly associated at the epidemiological level.
Collapse
|
34
|
Lorenzi T, Niţulescu EA, Zizzi A, Lorenzi M, Paolinelli F, Aspriello SD, Baniţă M, Crăiţoiu Ş, Goteri G, Barbatelli G, Lombardi T, Di Felice R, Marzioni D, Rubini C, Castellucci M. The novel role of HtrA1 in gingivitis, chronic and aggressive periodontitis. PLoS One 2014; 9:e96978. [PMID: 24979214 PMCID: PMC4076180 DOI: 10.1371/journal.pone.0096978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
Proteolytic tissue degradation is a typical phenomenon in inflammatory periodontal diseases. HtrA1 (High temperature requirement A 1) has a serine protease activity and is able to degrade fibronectin whose fragments induce the expression and secretion of several matrix metalloproteinases (MMPs). The aim of this study was to investigate for the first time if HtrA1 has a role in gingivitis and in generalized forms of chronic and aggressive periodontitis. Expression of HtrA1 was investigated in 16 clinically healthy gingiva, 16 gingivitis, 14 generalized chronic periodontitis and 10 generalized aggressive periodontitis by immunohistochemistry and real-time PCR. Statistical comparisons were performed by the Kruskall-Wallis test. Significantly higher levels of HtrA1 mRNA and protein expression were observed in pathological respect to healthy tissues. In particular, we detected an increase of plasma cell HtrA1 immunostaining from gingivitis to chronic and aggressive periodontitis, with the higher intensity in aggressive disease. In addition, we observed the presence of HtrA1 in normal and pathological epithelium, with an increased expression, particularly in its superficial layer, associated with increasingly severe forms of periodontal disease. We can affirm that HtrA1 expression in plasma cells could be correlated with the destruction of pathological periodontal tissue, probably due to its ability to trigger the overproduction of MMPs and to increase the inflammatory mediators TNF-α and IL-1β by inhibition of TGF-β. Moreover, epithelial HtrA1 immunostaining suggests a participation of the molecule in the host inflammatory immune responses necessary for the control of periodontal infection.
Collapse
Affiliation(s)
- Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | - Antonio Zizzi
- Pathological Anatomy, Department of Medical Sciences and Public Health, Università Politecnica delle Marche, United Hospitals, Ancona, Italy
| | - Maria Lorenzi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Paolinelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Simone Domenico Aspriello
- Department of Clinical Specialistic and Dental Sciences, Periodontology, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Baniţă
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ştefania Crăiţoiu
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Gaia Goteri
- Pathological Anatomy, Department of Medical Sciences and Public Health, Università Politecnica delle Marche, United Hospitals, Ancona, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Tommaso Lombardi
- Laboratory of Oral and Maxillofacial Pathology, Division of Stomatology and Oral Surgery, University of Geneva, Geneva, Switzerland
| | - Roberto Di Felice
- Private Dental Practice, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Corrado Rubini
- Pathological Anatomy, Department of Medical Sciences and Public Health, Università Politecnica delle Marche, United Hospitals, Ancona, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
35
|
Teughels W, Dhondt R, Dekeyser C, Quirynen M. Treatment of aggressive periodontitis. Periodontol 2000 2014; 65:107-33. [PMID: 24738589 DOI: 10.1111/prd.12020] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
Despite etiological differences between aggressive and chronic periodontitis, the treatment concept for aggressive periodontitis is largely similar to that for chronic periodontitis. The goal of treatment is to create a clinical condition that is conducive to retaining as many teeth as possible for as long as possible. When a diagnosis has been made and risk factors have been identified, active treatment is commenced. The initial phase of active treatment consists of mechanical debridement, either alone or supplemented with antimicrobial drugs. Scaling and root planing has been shown to be effective in improving clinical indices, but does not always guarantee long-term stability. Antimicrobials can play a significant role in controlling aggressive periodontitis. Few studies have been published on this subject for localized aggressive periodontitis, but generalized aggressive periodontitis has been subject to more scrutiny. Studies have demonstrated that systemic antibiotics as an adjuvant to scaling and root planing are more effective in controlling disease compared with scaling and root planing alone or with supplemental application of local antibiotics or antiseptics. It has also become apparent that antibiotics ought to be administered with, or just after, mechanical debridement. Several studies have shown that regimens of amoxicillin combined with metronidazole or regimens of clindamycin are the most effective and are preferable to regimens containing doxycycline. Azithromycin has been shown to be a valid alternative to the regimen of amoxicillin plus metronidazole. A limited number of studies have been published on surgical treatment in patients with aggressive periodontitis, but the studies available show that the effect can be comparable with the effect on patients with chronic periodontitis, provided that proper oral hygiene is maintained, a strict maintenance program is followed and modifiable risk factors are controlled. Both access surgery and regenerative techniques have shown good results in patients with aggressive periodontitis. Once good periodontal health has been obtained, patients must be enrolled in a strict maintenance program that is directed toward controlling risk factors for disease recurrence and tooth loss. The most significant risk factors are noncompliance with regular maintenance care, smoking, high gingival bleeding index and poor plaque control. There is no evidence to suggest that daily use of antiseptic agents should be part of the supportive periodontal therapy for aggressive periodontitis.
Collapse
|
36
|
Naiff PF, Ferraz R, Cunha CF, Orlandi PP, Boechat AL, Bertho ÁL, Dos-Santos MC. Immunophenotyping in Saliva as an Alternative Approach for Evaluation of Immunopathogenesis in Chronic Periodontitis. J Periodontol 2014; 85:e111-20. [DOI: 10.1902/jop.2013.130412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Taylor JJ. Protein biomarkers of periodontitis in saliva. ISRN INFLAMMATION 2014; 2014:593151. [PMID: 24944840 PMCID: PMC4040190 DOI: 10.1155/2014/593151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022]
Abstract
Periodontitis is a chronic inflammatory condition of the tissues that surround and support the teeth and is initiated by inappropriate and excessive immune responses to bacteria in subgingival dental plaque leading to loss of the integrity of the periodontium, compromised tooth function, and eventually tooth loss. Periodontitis is an economically important disease as it is time-consuming and expensive to treat. Periodontitis has a worldwide prevalence of 5-15% and the prevalence of severe disease in western populations has increased in recent decades. Furthermore, periodontitis is more common in smokers, in obesity, in people with diabetes, and in heart disease patients although the pathogenic processes underpinning these links are, as yet, poorly understood. Diagnosis and monitoring of periodontitis rely on traditional clinical examinations which are inadequate to predict patient susceptibility, disease activity, and response to treatment. Studies of the immunopathogenesis of periodontitis and analysis of mediators in saliva have allowed the identification of many potentially useful biomarkers. Convenient measurement of these biomarkers using chairside analytical devices could form the basis for diagnostic tests which will aid the clinician and the patient in periodontitis management; this review will summarise this field and will identify the experimental, technical, and clinical issues that remain to be addressed before such tests can be implemented.
Collapse
Affiliation(s)
- John J. Taylor
- Institute of Cellular Medicine & Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK
| |
Collapse
|
38
|
Hwang AM, Stoupel J, Celenti R, Demmer RT, Papapanou PN. Serum Antibody Responses to Periodontal Microbiota in Chronic and Aggressive Periodontitis: A Postulate Revisited. J Periodontol 2014; 85:592-600. [DOI: 10.1902/jop.2013.130172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Kebschull M, Demmer RT, Grün B, Guarnieri P, Pavlidis P, Papapanou PN. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res 2014; 93:459-68. [PMID: 24646639 DOI: 10.1177/0022034514527288] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The currently recognized principal forms of periodontitis-chronic and aggressive-lack an unequivocal, pathobiology-based foundation. We explored whether gingival tissue transcriptomes can serve as the basis for an alternative classification of periodontitis. We used cross-sectional whole-genome gene expression data from 241 gingival tissue biopsies obtained from sites with periodontal pathology in 120 systemically healthy nonsmokers with periodontitis, with available data on clinical periodontal status, subgingival microbial profiles, and serum IgG antibodies to periodontal microbiota. Adjusted model-based clustering of transcriptomic data using finite mixtures generated two distinct clusters of patients that did not align with the current classification of chronic and aggressive periodontitis. Differential expression profiles primarily related to cell proliferation in cluster 1 and to lymphocyte activation and unfolded protein responses in cluster 2. Patients in the two clusters did not differ with respect to age but presented with distinct phenotypes (statistically significantly different whole-mouth clinical measures of extent/severity, subgingival microbial burden by several species, and selected serum antibody responses). Patients in cluster 2 showed more extensive/severe disease and were more often male. The findings suggest that distinct gene expression signatures in pathologic gingival tissues translate into phenotypic differences and can provide a basis for a novel classification.
Collapse
Affiliation(s)
- M Kebschull
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lisboa RA, Andrade MV, Cunha-Melo JR. Zimography is an effective method for detection of matrix metalloproteinase 2 (MMP-2) activity in cultured human fibroblasts. Acta Cir Bras 2014; 28:216-20. [PMID: 23503864 DOI: 10.1590/s0102-86502013000300010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To describe a method to characterize the gelatinase activity of cultured human periodontal fibroblasts stimulated with Pam3Cys and E. coli LPS, ligands of TLR2 and TLR4 respectively, and by centrifugation of the cultures, simulating an orthodontic force. METHODS To study MMP-2 activity, primary cultures of human periodontal fibroblasts were stimulated with the addition of TLRs 2 and 4 ligands and the application of mechanical force by centrifugation at 141 x g for 30 min. Supernatant media was collected 24 hours later to perform protein quantification and zymography. RESULTS MMP-2 activity suffered an increase in cultures co-stimulated with TLRs 2 and 4 ligands alone or with the presence of mechanical force application compared to basal levels. CONCLUSION Zymography, one of the several methods to study MMPs activities, is a simple, qualitative and efficient method based on electrophoresis of bis-acrylamide gels copolymerized with a protein substrate.
Collapse
|
41
|
Ikuta T, Inagaki Y, Tanaka K, Saito T, Nakajima Y, Bando M, Kido JI, Nagata T. Gene polymorphism of β-defensin-1 is associated with susceptibility to periodontitis in Japanese. Odontology 2013; 103:66-74. [PMID: 24276427 DOI: 10.1007/s10266-013-0139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
Periodontitis is a multifactorial disease associated with genetic and environmental factors. Single-nucleotide polymorphisms (SNPs) are associated with susceptibility to common diseases such as diabetes and periodontitis. Although the oral cavity is exposed to various organisms, the conditions are well controlled by innate and acquired immune systems. Antimicrobial peptides (AMPs) play an important role in the innate immune system; however, the association of AMP-SNPs with periodontitis has not been fully elucidated. This study investigated the relationship between AMP-SNPs and periodontitis in Japanese. One hundred and five Japanese subjects were recruited, which included patients with aggressive, severe, moderate and mild periodontitis, and age-matched healthy controls. Genomic DNA was isolated from peripheral blood and genotypes of SNPs of β-defensin-1 and lactoferrin genes (DEFB1: rs1799946, rs1800972 and rs11362; and LTF: rs1126478) were investigated using the PCR-Invader assay. Protein level of AMPs in gingival crevicular fluid (GCF) was quantified by ELISA. Case-control studies revealed that the -44 CC genotype of DEFB1 (rs1800972) was associated with periodontitis (OR 2.51), particularly with severe chronic periodontitis (OR 4.15) and with combined severe and moderate chronic periodontitis (OR 4.04). No statistical differences were found in other genotypes. The β-defensin-1 concentrations in GCF were significantly lower in subjects with the -44 CC genotype of DEFB1 than in those without this genotype. No significant differences between GCF concentrations of AMPs and other genotypes were detected. The -44 CC genotype of the β-defensin-1 gene (DEFB1 rs1800972) may be associated with susceptibility to chronic periodontitis in Japanese.
Collapse
Affiliation(s)
- Takahisa Ikuta
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nakib S, Han J, Li T, Joshipura K, Qureshi AA. Periodontal disease and risk of psoriasis among nurses in the United States. Acta Odontol Scand 2013; 71:1423-9. [PMID: 23374087 DOI: 10.3109/00016357.2013.766360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Periodontal disease has been associated with systemic inflammation and may be a risk factor for autoimmune diseases. This study evaluated the association between periodontal disease and the risk of incident psoriasis in a large prospective cohort study. MATERIAL AND METHODS Self-reported history of periodontal bone loss, from 1998-2008, was evaluated as a risk factor for incident psoriasis among 60,457 women in the Nurses' Health Study. Secondary analyses examined associations between history of tooth loss and number of natural teeth and psoriasis risk. Cox proportional hazards models were used to assess multivariate estimates, adjusting for age, cigarette smoking, body mass index, alcohol intake and physical activity. RESULTS An increased multivariate risk of psoriasis was observed for those with mild periodontal bone loss (RR = 1.35, 95% CI = 1.03-1.75) and moderate-to-severe periodontal bone loss (RR = 1.49, 95% CI = 1.08-2.05), as compared to those without periodontal bone loss, after adjusting for age, cigarette smoking, body mass index, alcohol intake, physical activity and tooth loss. Number of natural teeth and tooth loss were not associated with risk of psoriasis in this study. CONCLUSION This study shows that a history of periodontal bone loss may increase risk of subsequent psoriasis. A limitation of this study is that it is based on self-reported measures.
Collapse
Affiliation(s)
- Sarah Nakib
- Department of Dermatology, Johns Hopkins Medical Center , Baltimore, MD , USA
| | | | | | | | | |
Collapse
|
43
|
de Araújo RF, Souza TO, de Moura LM, Torres KP, de Souza LB, Alves MDSCF, Rocha HO, de Araújo AA. Atorvastatin decreases bone loss, inflammation and oxidative stress in experimental periodontitis. PLoS One 2013; 8:e75322. [PMID: 24130702 PMCID: PMC3794930 DOI: 10.1371/journal.pone.0075322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to determine the effects of Atorvastatin treatment, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, in periodontal disease. Male Wistar albino rats were randomly divided into five groups of ten rats each: (1) non-ligated treatment (NL), (2) ligature only (L), (3) ligature plus 1 mg/kg Atorvastatin daily for 10 days, (4) ligature plus 5 mg/kg Atorvastatin daily for 10 days, and (5) ligature plus 10 mg/kg Atorvastatin daily for 10 days. Following the treatment course, the periodontal tissue of the animals was analyzed by Measurement of alveolar bone loss, Histopathology and immunohistochemistry to determine of the expression of COX-2, MMP-2, MMP9, and RANKL/RANK/OPG. ELISA assay was used to quantitate the levels of IL-1β, IL-10, TNF-α, myeloperoxidase, malondialdehyde, and glutathione. The periodontal group treated with 10 mg/kg of Atorvastatin (3.9±0.9 mm; p<0.05) showed reverse the alveolar bone loss caused Experimental Periodontal Disease compared to (L) (7.02±0.17 mm). The periodontal group treated with 10 mg/kg of Atorvastatin showed a significant reduction in MPO and MDA (p<0.05) compared to ligature only group (L). Similarly in this group, the levels of the proinflammatory cytokines IL-1β and TNF-α were significantly decreased (p<0.05). Furthermore, MMP-2, MMP-9, RANKL/RANK, and COX-2 were all downregulated by Atorvastatin treatment, while OPG expression was increased. The findings support a role of Atorvastatin for reducing the bone loss, inflammatory response, oxidative stress, and expression of extracellular matrix proteins, while reducing RANK/RANKL and increase OPG in periodontal disease.
Collapse
Affiliation(s)
- Raimundo Fernandes de Araújo
- Postgraduation Program in Functional and Structural Biology/Postgraduation Program Health Science/Department of Morphology, UFRN, Natal, RN, Brazil
| | | | - Lígia Moreno de Moura
- Department of Dentistry/UNP, Postgraduation Program Public Health, UFRN, Natal, RN, Brazil
| | | | | | | | | | - Aurigena Antunes de Araújo
- Postgraduation Program Public Health/Postgraduation Program in Pharmaceutical Science/UFRN, Natal, RN, Brazil
- * E-mail:
| |
Collapse
|
44
|
Lisboa RA, Andrade MV, Cunha-Melo JR. Toll-like receptor activation and mechanical force stimulation promote the secretion of matrix metalloproteinases 1, 3 and 10 of human periodontal fibroblasts via p38, JNK and NF-kB. Arch Oral Biol 2013; 58:731-9. [PMID: 23332208 DOI: 10.1016/j.archoralbio.2012.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/25/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are known to play a key role during orthodontic treatment leading to periodontal remodelling and tooth movement. MMPs may be induced by mechanical forces. However, the role played by toll-like receptors (TLRs) in modulating the effects of the mechanical force on periodontal fibroblasts is not known. To investigate the interaction between mechanical force and TLR stimulation, primary cultures of human periodontal fibroblasts were submitted to centrifugation in the presence of LPS and Pam3Cys, which are known TLR-4 and TLR-2 ligands, respectively. The expression of MMP-1, -2, -3, -8, -9, -10 and -13; TIMP (Tissue Inhibitor of Metalloproteinases) -1, -2 and -4; TNF-α (Tumour Necrosis Factor alpha); IL-1β (Interleukin 1 beta); ERK 1/2 (Extracellular Signal-Regulated Kinase 1/2); p38; JNK (c-jun N-terminal Kinase); IRAK1 (Interleukin-1 Receptor-Associated Kinase); and NF-κB (Nuclear Factor kappa B) were measured by antibody array, ELISA and immunoblotting methods. The activation of TLRs associated with centrifugation induced an increase in the secretion of MMPs 1, 3 and 10, with no increase in TNF-α or IL-1β. An increase in the phosphorylation of the MAP kinases p38 and JNK and the transcription factor NF-κB, without an increase in TIMPs was also observed. These findings suggest that the secretion of MMPs by cultured periodontal fibroblasts that is induced by combined TLR activation and mechanical force stimulation is regulated via the p38, JNK and NF-κB pathways. The increased secretion of MMPs by TLR activation may be an important factor that should be considered during orthodontic treatment.
Collapse
Affiliation(s)
- Rodolfo Assis Lisboa
- Department of Pathology, School of Medicine, Universidade Federal de Minas Gerais (UFMG), 30130-100 Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
45
|
Dokić J, Tomić S, Marković M, Milosavljević P, Colić M. Mesenchymal stem cells from periapical lesions modulate differentiation and functional properties of monocyte-derived dendritic cells. Eur J Immunol 2013; 43:1862-72. [PMID: 23616249 DOI: 10.1002/eji.201243010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 01/09/2023]
Abstract
Immunoregulatory mechanisms within periapical lesions (PLs) are as of yet unexplored. Considering the crucial role of DCs in controlling the immune response within PLs, the immunomodulatory properties of mesenchymal stem cells (MSCs), and the colocalization of MSCs and DCs in situ, we wondered whether MSCs from PLs modulate the development and functions of DCs. Using a model of monocyte-derived DCs, we showed that PL-MSCs inhibited differentiation of DCs via soluble factors, of which IL-6 had a minor effect, but did not impair their subsequent maturation induced by pro-inflammatory cytokines. However, upon maturation such DCs favored the production of Th2/Th17 cytokines by allogenic CD4(+) lymphocytes in coculture, compared with mature DCs differentiated without PL-MSCs. PL-MSC-differentiated DCs, cultivated with pro-inflammatory cytokines and PL-MSCs, although phenotypically mature, exhibited poor allostimulatory activity, induced anergy, Th2 polarization, differentiation of suppressive CD4(+) CD25(high) CD39(+) Treg-cell subsets via IDO-1-, ILT-3-, and ILT-4-dependent mechanisms, and increased production of TGF-β in the coculture. In contrast, DCs cultivated with PL-MSCs only during maturation stimulated proliferation and Th1 polarization of CD4(+) T cells in an IL-12-independent manner. In conclusion, PL-MSCs significantly modulate the development and functions of DCs, depending on the phase of DCs development during which the interaction occurs.
Collapse
Affiliation(s)
- Jelena Dokić
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
46
|
Level of information about the relationship between diabetes mellitus and periodontitis--results from a nationwide diabetes information program. Eur J Med Res 2013; 18:6. [PMID: 23497572 PMCID: PMC3605295 DOI: 10.1186/2047-783x-18-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/15/2013] [Indexed: 02/08/2023] Open
Abstract
Background A comprehensive knowledge about the mutual influence between diabetes and periodontitis is decisive for the successful treatment of both diseases. The present investigation aimed at assessing the diabetic and periodontal conditions and, in particular, the degree of knowledge about the relationship between diabetes and periodontitis. Methods During a diabetes information program, 111 nondiabetics (ND), 101 type 1 diabetics (T1D), and 236 type 2 diabetics (T2D) were subject to a medical and dental examination and completed a self-administered questionnaire. Medical examination included measurements of glycated hemoglobin (HbA1c), blood glucose (BG), and body mass index (BMI). Full-mouth examination consisted of the assessment of the decayed, missing, filled teeth index (DMFT) and the periodontal screening index (PSI). Chi-square test, ANOVA, t test of independent samples, univariate and multivariate logistic regression models with variable selection strategies were used for statistical analyses. Due to the exploratory character of the investigation a value of P ≤0.05 was considered to be statistically substantial. Results T2D had a significantly higher PSI when compared to T1D and ND (t test: P <0.001; P = 0.005). Approximately 90% of T2D suffered from periodontitis. In addition, diabetics with periodontitis showed a significantly higher BMI when compared to diabetics without periodontitis (multivariate logistic regression: P = 0.002). Almost 60% of all investigated subjects were not informed about the mutual influence between diabetes and periodontitis. T2D had almost as little information about the increased risk for periodontitis as ND. Conclusions The data of the present investigation suggest that there is a strong association between type 2 diabetes and chronic periodontitis. The lack of awareness of the mutual influence between diabetes and periodontitis, especially in T2D, demonstrates that this topic is still neglected in dental and diabetic treatment.
Collapse
|
47
|
Koutouzis T, Catania D, Neiva K, Wallet SM. Innate Immune Receptor Expression in Peri-Implant Tissues of Patients With Different Susceptibility to Periodontal Diseases. J Periodontol 2013; 84:221-9. [DOI: 10.1902/jop.2012.120061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Nowak M, Krämer B, Haupt M, Papapanou PN, Kebschull J, Hoffmann P, Schmidt-Wolf IG, Jepsen S, Brossart P, Perner S, Kebschull M. Activation of invariant NK T cells in periodontitis lesions. THE JOURNAL OF IMMUNOLOGY 2013; 190:2282-91. [PMID: 23365081 DOI: 10.4049/jimmunol.1201215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Periodontitis is one of the most prevalent human inflammatory diseases. The major clinical phenotypes of this polymicrobial, biofilm-mediated disease are chronic and aggressive periodontitis, the latter being characterized by a rapid course of destruction that is generally attributed to an altered immune-inflammatory response against periodontal pathogens. Still, the biological basis for the pathophysiological distinction of the two disease categories has not been well documented yet. Type I NKT cells are a lymphocyte subset with important roles in regulating immune responses to either tolerance or immunity, including immune responses against bacterial pathogens. In this study, we delineate the mechanisms of NKT cell activation in periodontal infections. We show an infiltration of type I NKT cells in aggressive, but not chronic, periodontitis lesions in vivo. Murine dendritic cells infected with aggressive periodontitis-associated Aggregatibacter actinomycetemcomitans triggered a type I IFN response followed by type I NKT cell activation. In contrast, infection with Porphyromonas gingivalis, a principal pathogen in chronic periodontitis, did not induce NKT cell activation. This difference could be explained by the absence of a type I IFN response to P. gingivalis infection. We found these IFNs to be critical for NKT cell activation. Our study provides a conceivable biological distinction between the two periodontitis subforms and identifies factors required for the activation of the immune system in response to periodontal bacteria.
Collapse
Affiliation(s)
- Michael Nowak
- Department of Prostate Cancer Research, Institute of Pathology, University of Bonn, Bonn 53127, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Periodontitis is a highly prevalent, biofilm-mediated chronic inflammatory disease that results in the loss of the tooth-supporting tissues. It features two major clinical entities: chronic periodontitis, which is more common, and aggressive periodontitis, which usually has an early onset and a rapid progression. Natural killer (NK) cells are a distinct subgroup of lymphocytes that play a major role in the ability of the innate immune system to steer immune responses. NK cells are abundant in periodontitis lesions, and NK cell activation has been causally linked to periodontal tissue destruction. However, the exact mechanisms of their activation and their role in the pathophysiology of periodontitis are elusive. Here, we show that the predominant NK cell-activating molecule in periodontitis is CD2-like receptor activating cytotoxic cells (CRACC). We show that CRACC induction was significantly more pronounced in aggressive than chronic periodontitis and correlated positively with periodontal disease severity, subgingival levels of specific periodontal pathogens, and NK cell activation in vivo. We delineate how Aggregatibacter actinomycetemcomitans, an oral pathogen that is causally associated with aggressive periodontitis, indirectly induces CRACC on NK cells via activation of dendritic cells and subsequent interleukin 12 (IL-12) signaling. In contrast, we demonstrate that fimbriae from Porphyromonas gingivalis, a principal pathogen in chronic periodontitis, actively attenuate CRACC induction on NK cells. Our data suggest an involvement of CRACC-mediated NK cell activation in periodontal tissue destruction and point to a plausible distinction in the pathobiology of aggressive and chronic periodontitis that may help explain the accelerated tissue destruction in aggressive periodontitis.
Collapse
|
50
|
Nguyen-Hieu T. Microbial sampling process can change results of microbiological analysis in periodontitis diagnosis. A minireview. ACTA ACUST UNITED AC 2012. [PMID: 23188761 DOI: 10.1111/jicd.12010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This minireview aims to verify the supposition that the microbial sampling process can change results of microbiological analysis in periodontitis diagnosis. The literature search via Pubmed yielded 52 appropriate articles for analysis. Of which 38% (20/52) described that the sampling sites were isolated from saliva, whereas 62% (32/52) did not. Also, 29% (15/52) declared that the microbial sampling was performed before probing pocket depth (PPD), whereas 71% (37/52) did not. Comparison of the results of microbiological analysis in these studies showed that the bacteria most frequently detected in periodontal pockets was variable. Therefore, a sampling process that includes both the microbial sample being taken before PPD and saliva isolation of the sampling sites is needed to ensure the accuracy of microbiological analysis in periodontitis diagnosis.
Collapse
Affiliation(s)
- Tung Nguyen-Hieu
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France.
| |
Collapse
|