1
|
Aoki A, Mizutani K, Taniguchi Y, Lin T, Ohsugi Y, Mikami R, Katagiri S, Meinzer W, Iwata T. Current status of Er:YAG laser in periodontal surgery. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:1-14. [PMID: 38148873 PMCID: PMC10750110 DOI: 10.1016/j.jdsr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Lasers have numerous advantageous tissue interactions such as ablation or vaporization, hemostasis, bacterial killing, as well as biological effects, which induce various beneficial therapeutic effects and biological responses in the tissues. Thus, lasers are considered an effective and suitable device for treating a variety of inflammatory and infectious conditions of periodontal disease. Among various laser systems, the Er:YAG laser, which can be effectively and safely used in both soft and hard tissues with minimal thermal side effects, has been attracting much attention in periodontal therapy. This laser can effectively and precisely debride the diseased root surface including calculus removal, ablate diseased connective tissues within the bone defects, and stimulate the irradiated surrounding periodontal tissues during surgery, resulting in favorable wound healing as well as regeneration of periodontal tissues. The safe and effective performance of Er:YAG laser-assisted periodontal surgery has been reported with comparable and occasionally superior clinical outcomes compared to conventional surgery. This article explains the characteristics of the Er:YAG laser and introduces its applications in periodontal surgery including conventional flap surgery, regenerative surgery, and flapless surgery, based on scientific evidence from currently available basic and clinical studies as well as cases reports.
Collapse
Affiliation(s)
- Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yoichi Taniguchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Taniguchi Dental Clinic, Kita 7−17, 18-chome, Nango-dori, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University (CSMU), No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, No.110, Section 1, Jianguo N. Rd., South Dist, Taichung 402, Taiwan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
2
|
Liu G, Zhang L, Zhou X, Xue J, Xia R, Gan X, Lv C, Zhang Y, Mao X, Kou X, Shi S, Chen Z. Inducing the "re-development state" of periodontal ligament cells via tuning macrophage mediated immune microenvironment. J Adv Res 2024; 60:233-248. [PMID: 37597747 PMCID: PMC11156709 DOI: 10.1016/j.jare.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFβ and PI3K-Akt signaling pathway. CONCLUSION The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuejing Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Chunxiao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
| |
Collapse
|
3
|
Mundra S, Shetty PJ, Shetty NJ. Tilapia fish waste: An asset for tissue engineering - A review. J Indian Soc Periodontol 2023; 27:568-577. [PMID: 38434505 PMCID: PMC10906792 DOI: 10.4103/jisp.jisp_395_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2024] Open
Abstract
Fisheries and aquaculture output have exploded due to an alarming increase in consumption due to the global understanding of the nutritional advantages of fish. Inadvertently, the methods produce a massive amount of fish waste, posing a serious environmental threat. Recycling this waste has now become a major point of controversy that must be resolved. It is critical to emphasize the utility of discarded marine by-products for the creation of high-value commodities such as marine collagen (MC), which can be considered a sustainable solution. Because of its biocompatibility, biodegradability, safety, minimal immunogenicity, and low production costs, MC has various benefits over terrestrial collagen. Many academics have recently become interested in the use of MC as a scaffold. This review focuses on the intriguing contribution of MC in the production of MC-based scaffolds.
Collapse
Affiliation(s)
- Shalini Mundra
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Preetha J. Shetty
- Department of Biomedical Sciences, BBMS Program, College of Medicine Gulf Medical University, Ajman, UAE
| | - Neetha J. Shetty
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Abuarqoub D, Theeb LS, Omari MB, Hamadneh YI, Alrawabdeh JA, Aslam N, Jafar H, Awidi A. The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Eng Regen Med 2023; 20:251-270. [PMID: 36808303 PMCID: PMC10070593 DOI: 10.1007/s13770-022-00514-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 02/23/2023] Open
Abstract
The use of stem cells in regenerative medicine had great potential for clinical applications. However, cell delivery strategies have critical importance in stimulating the differentiation of stem cells and enhancing their potential to regenerate damaged tissues. Different strategies have been used to investigate the osteogenic potential of dental stem cells in conjunction with biomaterials through in vitro and in vivo studies. Osteogenesis has a broad implication in regenerative medicine, particularly for maxillofacial defects. This review summarizes some of the most recent developments in the field of tissue engineering using dental stem cells.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Laith S Theeb
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad B Omari
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Yazan I Hamadneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
5
|
Yu Y, Lv B, Wu J, Chen W. Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. Int J Nanomedicine 2023; 18:455-472. [PMID: 36718191 PMCID: PMC9884062 DOI: 10.2147/ijn.s386635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders are the second leading cause of disability worldwide, posing a huge global burden to the public sanitation system. Currently, tissue engineering-based approaches act as effective strategies, which are, however, challenging in limited application scenarios. Mussel-based biomimetic materials, exhibit numerous unique properties such as intense adhesion, biocompatibility, moisture resistance, and injectability, to name only a few, and have attracted extensive research interest. In particular, featuring state-of-the-art properties, mussel-inspired biomaterials have been widely explored in innumerable musculoskeletal disorder treatments including osteochondral defects, osteosarcoma, osteoarthritis, ligament rupture, and osteoporosis. Nevertheless, a comprehensive and timely discussion of their applications in musculoskeletal disorders is insufficient. In this review, we emphasize on (1) the main categories and characteristics of mussel foot proteins and their fundamental mechanisms for the spectacular adhesion in mussels; (2) the diverse synthetic methods and modification of various polymers; and (3) the emerging applications of mussel-biomimetic materials, the future perspectives, and challenges, especially in the area of musculoskeletal disorder. We envision that this review will provide a unique and insightful perspective to improve the development of a new generation of mussel biomimetic strategies.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Correspondence: Wei Chen, Email
| |
Collapse
|
6
|
Tan KS. Erbium-doped yttrium aluminum garnet laser and advanced platelet-rich fibrin+ in periodontal diseases: Two case reports and review of the literature. World J Clin Cases 2022; 10:12337-12344. [PMID: 36483816 PMCID: PMC9724513 DOI: 10.12998/wjcc.v10.i33.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The goal of periodontal disease treatment is to completely remove bacteria and promote wound healing. The erbium-doped yttrium aluminum garnet (Er:YAG) laser is commonly used to treat periodontal disease. Advanced platelet-rich fibrin+ (A-PRF+) secrets growth factors that accelerates soft- and hard-tissue regeneration and wound healing. Herein I present 2 cases of patients with oral diseases treated with a combination of Er:YAG laser and A-PRF+.
CASE SUMMARY Case 1 was a female with pocket depth bone loss over 8 mm and infection of tooth 31 and 41, and severe advanced periodontitis with grade III mobility. Case 2 was a male with tooth 22 root end apical swelling and infection and alveolar bony defects. Clinical outcomes were recorded at 6 and 36 mo. In case 1, the Er:YAG laser was used to perform open flap debridement (100 mJ/pulse, 15 Hz) and remove calculus and granulation tissue (50 mJ/pulse, 30 Hz). In case 2 the laser was used to create a semilunar full thickness flap incision (80 mJ/pulse, 20 Hz) and eliminate the pathogen (100 mJ/pulse, 15 Hz). In both patients, A-PRF+ mixed with bone was used to fill bone defects, and A-PRF+ autologous membranes were used to cover tension-free primary flaps. There was no recurrent infection at 36 mo, and tissue regeneration and would healing occurred.
CONCLUSION Debridement with an Er:YAG laser followed by treatment with A-PRF+ is effective for the treatment periodontal diseases with bone defects.
Collapse
Affiliation(s)
- Kai-Seng Tan
- Dentistry, Ritz Digital Dental Clinic, New Taipei 238, Taiwan
| |
Collapse
|
7
|
Metabolomics Research in Periodontal Disease by Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092864. [PMID: 35566216 PMCID: PMC9104832 DOI: 10.3390/molecules27092864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Periodontology is a newer field relative to other areas of dentistry. Remarkable progress has been made in recent years in periodontology in terms of both research and clinical applications, with researchers worldwide now focusing on periodontology. With recent advances in mass spectrometry technology, metabolomics research is now widely conducted in various research fields. Metabolomics, which is also termed metabolomic analysis, is a technology that enables the comprehensive analysis of small-molecule metabolites in living organisms. With the development of metabolite analysis, methods using gas chromatography–mass spectrometry, liquid chromatography–mass spectrometry, capillary electrophoresis–mass spectrometry, etc. have progressed, making it possible to analyze a wider range of metabolites and to detect metabolites at lower concentrations. Metabolomics is widely used for research in the food, plant, microbial, and medical fields. This paper provides an introduction to metabolomic analysis and a review of the increasing applications of metabolomic analysis in periodontal disease research using mass spectrometry technology.
Collapse
|
8
|
A histological evaluation of the mice oral mucosal tissue wounds excised with diode laser, Er:YAG laser, and cold scalpel. Lasers Med Sci 2022; 37:2707-2715. [PMID: 35298731 DOI: 10.1007/s10103-022-03544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Laser has been considered to show many favorable characteristics, including wound healing acceleration, hemostasis, biostimulation, and microbial inhibition. Previous studies have investigated the effect of laser treatment during the process of wound healing, with conflicting results. To date, there is still no unified conclusion on the effect and application principle of clinical laser therapy. This study evaluated the incision morphology, wound healing speed, and histological changes in mice oral mucosal wounds excised with diode laser, Er:YAG laser, and cold scalpel. The results showed that compared with the cold scalpel group, laser treatments caused more tissue thermal damage and carbonization, which led to a healing delay. However, lasers also showed some advantages, including hemostasis, regular incision, and immune response mobilization, suggesting that lasers may be beneficial in some specific cases, such as reducing intraoperative accidents and wound tissue laceration and controlling bleeding and postoperative infection. This study provides a theoretical basis for clarifying the effect of laser treatments and their clinical application principle.
Collapse
|
9
|
Yi G, Zhang S, Ma Y, Yang X, Huo F, Chen Y, Yang B, Tian W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther 2022; 13:41. [PMID: 35093186 PMCID: PMC8800263 DOI: 10.1186/s13287-022-02721-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. Methods Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. Results We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. Conclusions In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02721-6.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Kunimatsu R, Kimura A, Sakata S, Tsuka Y, Yoshimi Y, Abe T, Kado I, Yashima Y, Izumino J, Nakatani A, Kitagawa M, Miyauchi M, Takata T, Tanimoto K. Effects of baicalin on the proliferation and expression of OPG and RANKL in human cementoblast-lineage cells. J Dent Sci 2022; 17:162-169. [PMID: 35028034 PMCID: PMC8739232 DOI: 10.1016/j.jds.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background/purpose Baicalin, a natural bioactive flavonoid extracted from Scutellaria baicalensis Georgi, mediates bone metabolism, and recent studies have revealed that it has cell signaling properties. However, its biological functions in cementoblasts still remain unclear. This study therefore aimed to investigate the effects of baicalin on bone resorption markers, including osteoprotegerin (OPG) and receptor activator of nuclear factor-κβ ligand (RANKL), in human cementoblast-lineage cells, as well as their proliferation ability. Materials and methods Human cementoblast cell line (HCEM) cells were cultured and treated with 0, 0.01, 0.1, or 1 μM of baicalin. The proliferative capacity of cultured HCEM cells was analyzed using bromodeoxyuridine immunoassay and cell counting. The baicalin effect on OPG and RANKL expression was determined using quantitative polymerase chain reaction (qPCR) and western blotting. Furthermore, OPG expression was measured in 1 μM baicalin-treated HCEM cells in the presence or absence of the Wnt signaling pathway inhibitor, Dickkopf (Dkk)-1, using qPCR and western blotting. Results The addition of 0.01, 0.1, and 1 μM of baicalin did not significantly change the proliferative capacity of cultured HCEM cells. Compared with the non-supplemented group, baicalin increased and suppressed OPG and RANKL gene and protein expression, respectively, in a concentration-dependent manner. OPG mRNA and protein expression levels were increased by 1 μM baicalin, which was suppressed by Dkk-1 addition. Conclusion Baicalin enhanced OPG expression in HCEM cells through the Wnt/beta-catenin signaling pathway, which could contribute to periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Yashima
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jin Izumino
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Abstract
Periodontal disease is one of the most common diagnoses in small animal veterinary medicine. This infectious disease of the periodontium is characterized by the inflammation and destruction of the supporting structures of teeth, including periodontal ligament, cementum, and alveolar bone. Traditional periodontal repair techniques make use of open flap debridement, application of graft materials, and membranes to prevent epithelial downgrowth and formation of a long junctional epithelium, which inhibits regeneration and true healing. These techniques have variable efficacy and are made more challenging in veterinary patients due to the cost of treatment for clients, need for anesthesia for surgery and reevaluation, and difficulty in performing necessary diligent home care to maintain oral health. Tissue engineering focuses on methods to regenerate the periodontal apparatus and not simply to repair the tissue, with the possibility of restoring normal physiological functions and health to a previously diseased site. This paper examines tissue engineering applications in periodontal disease by discussing experimental studies that focus on dogs and other animal species where it could potentially be applied in veterinary medicine. The main areas of focus of tissue engineering are discussed, including scaffolds, signaling molecules, stem cells, and gene therapy. To date, although outcomes can still be unpredictable, tissue engineering has been proven to successfully regenerate lost periodontal tissues and this new possibility for treating veterinary patients is discussed.
Collapse
Affiliation(s)
- Emily Ward
- Eastside Veterinary Dentistry, Woodinville, WA, USA
| |
Collapse
|
12
|
Biomaterials for Periodontal and Peri-Implant Regeneration. MATERIALS 2021; 14:ma14123319. [PMID: 34203989 PMCID: PMC8232756 DOI: 10.3390/ma14123319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Periodontal and peri-implant regeneration is the technique that aims to restore the damaged tissue around teeth and implants. They are surrounded by a different apparatus, and according to it, the regenerative procedure can differ for both sites. During the last century, several biomaterials and biological mediators were proposed to achieve a complete restoration of the damaged tissues with less invasiveness and a tailored approach. Based on relevant systematic reviews and articles searched on PubMed, Scopus, and Cochrane databases, data regarding different biomaterials were extracted and summarized. Bone grafts of different origin, membranes for guided tissue regeneration, growth factors, and stem cells are currently the foundation of the routinary clinical practice. Moreover, a tailored approach, according to the patient and specific to the involved tooth or implant, is mandatory to achieve a better result and a reduction in patient morbidity and discomfort. The aim of this review is to summarize clinical findings and future developments regarding grafts, membranes, molecules, and emerging therapies. In conclusion, tissue engineering is constantly evolving; moreover, a tailor-made approach for each patient is essential to obtain a reliable result and the combination of several biomaterials is the elective choice in several conditions.
Collapse
|
13
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
14
|
Comprehensive and Sequential Gene Expression Analysis of Bone Healing Process Following Er:YAG Laser Ablation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:100-112. [DOI: 10.1089/photob.2020.4833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Nizami MZI, Nishina Y. Recent Advances in Stem Cells for Dental Tissue Engineering. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:281-324. [DOI: 10.1007/978-981-16-4420-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020; 163:9-18. [DOI: 10.1016/j.ijbiomac.2020.06.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
17
|
Ohsugi Y, Katagiri S, Hirota T, Niimi H, Hatasa M, Watanabe K, Shimohira T, Mizutani K, Kitazawa M, Matsuzawa A, Kadokura H, Yokose S, Iwata T, Aoki A. Laser irradiation decreases sclerostin expression in bone and osteogenic cells. FASEB J 2020; 34:12877-12893. [DOI: 10.1096/fj.202001032r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Kazuki Watanabe
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Moe Kitazawa
- Department of Epigenetics, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Hiroshi Kadokura
- Division of Endodontic and Operative Dentistry, Department of Restorative and Biomaterials Sciences, School of Dentistry Meikai University Saitama Japan
| | - Satoshi Yokose
- Division of Endodontic and Operative Dentistry, Department of Restorative and Biomaterials Sciences, School of Dentistry Meikai University Saitama Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
18
|
Proteome Analysis of Molecular Events in Oral Pathogenesis and Virus: A Review with a Particular Focus on Periodontitis. Int J Mol Sci 2020; 21:ijms21155184. [PMID: 32707841 PMCID: PMC7432693 DOI: 10.3390/ijms21155184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Some systemic diseases are unquestionably related to periodontal health, as periodontal disease can be an extension or manifestation of the primary disease process. One example is spontaneous gingival bleeding, resulting from anticoagulant treatment for cardiac diseases. One important aspect of periodontal therapy is the care of patients with poorly controlled disease who require surgery, such as patients with uncontrolled diabetes. We reviewed research on biomarkers and molecular events for various diseases, as well as candidate markers of periodontal disease. Content of this review: (1) Introduction, (2) Periodontal disease, (3) Bacterial and viral pathogens associated with periodontal disease, (4) Stem cells in periodontal tissue, (5) Clinical applications of mass spectrometry using MALDI-TOF-MS and LC-MS/MS-based proteomic analyses, (6) Proteome analysis of molecular events in oral pathogenesis of virus in GCF, saliva, and other oral Components in periodontal disease, (7) Outlook for the future and (8) Conclusions. This review discusses proteome analysis of molecular events in the pathogenesis of oral diseases and viruses, and has a particular focus on periodontitis.
Collapse
|
19
|
Chala M, Anagnostaki E, Mylona V, Chalas A, Parker S, Lynch E. Adjunctive Use of Lasers in Peri-Implant Mucositis and Peri-Implantitis Treatment: A Systematic Review. Dent J (Basel) 2020; 8:dj8030068. [PMID: 32635258 PMCID: PMC7560070 DOI: 10.3390/dj8030068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this systematic review is to compare the effectiveness of lasers in the treatment of implant mucositis and peri-implantitis compared to conventional treatment (non-surgical or surgical: resective or regenerative). METHODS Sources of PubMed, Cochrane and Google Scholar search engines were used on articles published from 1997 to 2020 in English, with selected keyword criteria applied. Nine randomized controlled trials (RCTs) were selected. RESULTS All included studies were considered of "high quality" according to the quality assessment scale. The comparative assessment of the RCTs was done twice for each RCT based on the type of treatment and according to wavelength. There is strong scientific evidence that, regarding non-surgical treatment, adjunct laser application can provide better results only in the short term (three months). Regarding the surgical approach, the method of decontamination plays a subordinate role. All wavelengths/applications presented similar results. CONCLUSION Within the limitations of this study, the adjunctive use of lasers in the treatment of peri-implant inflammation is effective for up to three months; there is no strong evidence regarding the long term benefit compared to conventional treatment.
Collapse
Affiliation(s)
- Marianna Chala
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
- Correspondence:
| | - Eugenia Anagnostaki
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | - Valina Mylona
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | | | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
- School of Dental Medicine, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
Jiang B, Tang R, Zheng D, Yang Y, Li Y, Yang R, Liu L, Yan H. Evaluation of the Efficacy of Ultrapulsed CO 2 Laser in Chronic Wounds. Lasers Surg Med 2020; 53:443-449. [PMID: 32548904 DOI: 10.1002/lsm.23283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Chronic wound repair is a major problem in wound treatment. Recently, several studies have suggested that carbon dioxide (CO2 ) laser can be used to improve the healing of chronic wounds. The aim of the present study was to preliminarily investigate the efficacy of laser debridement in treating chronic wound through a comparison of traditional instrument/surgical debridement with the ultrapulsed CO2 laser debridement in terms of wound healing, wound infection control, and wound blood perfusion. STUDY DESIGN/MATERIALS AND METHODS Patients with chronic wound admitted to the Wound Repair Clinic at The Affiliated Hospital of Southwest Medical University (Luzhou, China) between February 2019 and May 2019 were enrolled. They were randomly divided into two groups. The patients in one group were treated with traditional sharp instrument/surgical debridement (RT group; number of wounds: 28), while the patients in the other group were treated with ultrapulsed CO2 laser debridement (LT group; number of wounds: 26). An intergroup comparison was performed based on parameters, such as wound healing, wound infection control, and changes in wound blood perfusion. RESULTS The wound healing rate and the total time to achieve healing were significantly better in the LT group versus the RT group at 7, 14, 21, and 28 days after treatment. The wound exudation scores were significantly higher in the LT group versus the RT group at 7, 14, and 28 days after treatment. The positive rate of pre-debridement bacterial culture was significantly lower in the LT group versus the RD group at 14 and 28 days after treatment. The percentage of wound perfusion/normal periwound skin perfusion was significantly higher in the LT group versus the RT group at 1, 7, and 14 days after treatment. CONCLUSION For the treatment of chronic refractory wounds, the ultrapulsed CO2 laser exhibits higher accuracy, more effectively controls wound infection, promotes an increase in wound blood perfusion, and achieves faster wound healing compared with traditional sharp instrument/surgical debridement. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Rui Tang
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Danyu Zheng
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuting Yang
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ying Li
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ruxi Yang
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ligang Liu
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hong Yan
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
21
|
Kusakci-Seker B, Demirayak-Akdemir M. The effect of non-thermal atmospheric pressure plasma application on wound healing after gingivectomy. Int Wound J 2020; 17:1376-1383. [PMID: 32462820 DOI: 10.1111/iwj.13379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 01/24/2023] Open
Abstract
Recent studies have indicated the potential benefits of Non-thermal atmospheric pressure plasma (NTAPP) as a novel therapeutic approach. The purpose of the current study was thus to assess the effect of NTAPP on gingival wound healing. Fifteen patients with bilaterally symmetrical gingival hyperplasia were included in the study. After gingivectomy and gingivoplasty, the left-hand side of the symmetrical surgical area was irradiated with NTAPP (plasma jet kINPen 11). Digital photographs of the gingival wounds were taken at baseline and days 3, 7, and 14. Wound epithelialisation was evaluated. Landry Wound Healing Index (WHI) scores and visual analogue scale (VAS) scores were also recorded. There were significant differences between the epithelialisation of the NTAPP-treated sites and the control sites after the surgical procedures. The NTAPP-treated sites had significantly smaller stained surface areas compared with the control sites on the 3rd, 7th , and 14th days (P < .05). The NTAPP-treated sites had better WHI scores than the control sites throughout the follow-up period (P < .05). It can be concluded that NTAPP enhances epithelialisation and stimulates wound healing after gingivectomy and gingivoplasty. However, further clinical studies with larger sample sizes are needed to determine the exact benefits of NTAPP for gingival wound healing.
Collapse
Affiliation(s)
- Basak Kusakci-Seker
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melike Demirayak-Akdemir
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
22
|
Xiang M, Zhu M, Yang Z, He P, Wei J, Gao X, Song J. Dual-Functionalized Apatite Nanocomposites with Enhanced Cytocompatibility and Osteogenesis for Periodontal Bone Regeneration. ACS Biomater Sci Eng 2020; 6:1704-1714. [PMID: 33455384 DOI: 10.1021/acsbiomaterials.9b01893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of biomimetic bone graft materials for periodontal tissue engineering is a field of topical interest. In this study, we designed a dual-functionalized apatite nanocomposite, which could integrate multiple molecular cues for manipulating the fate of periodontal ligament stem cells (PDLSCs). Briefly, inspired by mussels, a biomimetic nanohydroxyapatite was fabricated using a polydopamine structure as a template (named as tHA) and then surface-modified with bone-forming peptide-1 (BFP-1) and vascular endothelial growth factor-mimicking peptide (QK) via a single step of catechol chemistry. Our study showed that the biofunctions of tethered peptides were not compromised on the surface of apatite nanoparticles. Because of the synergistic effect of BFP-1 and QK peptides, the dual-functionalized apatite nanocomposite showed improved cytocompatibility compared to controls. Moreover, it can boost the proliferation and osteogenic differentiation of PDLSCs, indicating excellent bioactivity of tHA-BFP/QK nanoparticles on cell fate decision. More importantly, animal experiments showed that dual-functionalized apatite nanocomposites could dramatically promote the regeneration of periodontal bone. It is concluded that our work provides an instructive insight into the design of biomimetic apatite nanocomposites, which holds a great potential for applications in periodontal bone repair.
Collapse
Affiliation(s)
- MingLi Xiang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Mengyuan Zhu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zun Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ping He
- Dazhou Central Hospital, Dazhou 635000, SiChuan, China
| | - Jingjing Wei
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
23
|
Wang P, Wang W, Geng T, Liu Y, Zhu S, Liu Z, Yuan C. EphrinB2 regulates osteogenic differentiation of periodontal ligament stem cells and alveolar bone defect regeneration in beagles. J Tissue Eng 2019; 10:2041731419894361. [PMID: 31897285 PMCID: PMC6918499 DOI: 10.1177/2041731419894361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023] Open
Abstract
EphrinB2, a membrane protein regulating bone homeostasis, has been demonstrated to induce osteogenic gene expression in periodontal ligament fibroblasts. The aim of this study was to explore the effects of ephrinB2 on osteogenic differentiation of periodontal ligament stem cells and on alveolar bone regeneration in vivo. We assessed the osteogenic gene expression and osteogenic differentiation potential of ephrinB2-modified human and canine periodontal ligament stem cells, in which ephrinB2 expression was upregulated via lentiviral vector transduction. EphrinB2-modified canine periodontal ligament stem cells combined with PuraMatrix were delivered to critical-sized alveolar bone defects in beagles to evaluate bone regeneration. Results showed that ephrinB2 overexpression enhanced osteogenic gene transcription and mineral deposition in both human and canine periodontal ligament stem cells. Animal experiments confirmed that ephrinB2-modified canine periodontal ligament stem cells + PuraMatrix resulted in greater trabecular bone volume per tissue volume and trabecular thickness compared with other groups. Our study demonstrated that ephrinB2 promoted osteogenic differentiation of periodontal ligament stem cells and alveolar bone repair in beagles, highlighting its therapeutic potential for the treatment of alveolar bone damage.
Collapse
Affiliation(s)
- Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengyu Geng
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shaoyue Zhu
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zongxiang Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Application of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets for Periodontal Regeneration. Int J Mol Sci 2019; 20:ijms20112796. [PMID: 31181666 PMCID: PMC6600219 DOI: 10.3390/ijms20112796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disorder that causes destruction of the periodontal attachment apparatus including alveolar bone, the periodontal ligament, and cementum. Dental implants have been routinely installed after extraction of periodontitis-affected teeth; however, recent studies have indicated that many dental implants are affected by peri-implantitis, which progresses rapidly because of the failure of the immune system. Therefore, there is a renewed focus on periodontal regeneration aroundnatural teeth. To regenerate periodontal tissue, many researchers and clinicians have attempted to perform periodontal regenerative therapy using materials such as bioresorbable scaffolds, growth factors, and cells. The concept of guided tissue regeneration, by which endogenous periodontal ligament- and alveolar bone-derived cells are preferentially proliferated by barrier membranes, has proved effective, and various kinds of membranes are now commercially available. Clinical studies have shown the significance of barrier membranes for periodontal regeneration; however, the technique is indicated only for relatively small infrabony defects. Cytokine therapies have also been introduced to promote periodontal regeneration, but the indications are also for small size defects. To overcome this limitation, ex vivo expanded multipotent mesenchymal stromal cells (MSCs) have been studied. In particular, periodontal ligament-derived multipotent mesenchymal stromal cells are thought to be a responsible cell source, based on both translational and clinical studies. In this review, responsible cell sources for periodontal regeneration and their clinical applications are summarized. In addition, recent transplantation strategies and perspectives about the cytotherapeutic use of stem cells for periodontal regeneration are discussed.
Collapse
|
25
|
Lee JH, Park YS, Kim YT, Kim DH, Jeong SN. Assessment of early discomfort and wound healing outcomes after periodontal surgery with and without enamel matrix derivative: an observational retrospective case-control study. Clin Oral Investig 2019; 24:229-237. [DOI: 10.1007/s00784-019-02941-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
|
26
|
Ohsugi Y, Aoki A, Mizutani K, Katagiri S, Komaki M, Noda M, Takagi T, Kakizaki S, Meinzer W, Izumi Y. Evaluation of bone healing following Er:YAG laser ablation in rat calvaria compared with bur drilling. JOURNAL OF BIOPHOTONICS 2019; 12:e201800245. [PMID: 30324711 DOI: 10.1002/jbio.201800245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
The Er:YAG laser is currently used for bone ablation. However, the effect of Er:YAG laser irradiation on bone healing remains unclear. The aim of this study was to investigate bone healing following ablation by laser irradiation as compared with bur drilling. Rat calvarial bone was ablated using Er:YAG laser or bur with water coolant. Er:YAG laser effectively ablated bone without major thermal changes. In vivo micro-computed tomography analysis revealed that laser irradiation showed significantly higher bone repair ratios than bur drilling. Scanning electron microscope analysis showed more fibrin deposition on laser-ablated bone surfaces. Microarray analysis followed by gene set enrichment analysis revealed that IL6/JAK/STAT3 signaling and inflammatory response gene sets were enriched in bur-drilled bone at 6 hours, whereas the E2F targets gene set was enriched in laser-irradiated bone. Additionally, Hspa1a and Dmp1 expressions were increased and Sost expression was decreased in laser-irradiated bone compared with bur-drilled bone. In granulation tissue formed after laser ablation, Alpl and Gblap expressions increased compared to bur-drilled site. Immunohistochemistry showed that osteocalcin-positive area was increased in the laser-ablated site. These results suggest that Er:YAG laser might accelerate early new bone formation with advantageous surface changes and cellular responses for wound healing, compared with bur-drilling.
Collapse
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motohiro Komaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Highly Advanced Stomatology, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Masahiro Noda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toru Takagi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Kakizaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater 2019; 10:E3. [PMID: 30609698 PMCID: PMC6463184 DOI: 10.3390/jfb10010003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases involve injuries to the supporting structures of the tooth and, if left untreated, can lead to the loss of the tooth. Regenerative periodontal therapies aim, ideally, at healing all the damaged periodontal tissues and represent a significant clinical and societal challenge for the current ageing population. This review provides a picture of the currently-used biomaterials for periodontal regeneration, including natural and synthetic polymers, bioceramics (e.g., calcium phosphates and bioactive glasses), and composites. Bioactive materials aim at promoting the regeneration of new healthy tissue. Polymers are often used as barrier materials in guided tissue regeneration strategies and are suitable both to exclude epithelial down-growth and to allow periodontal ligament and alveolar bone cells to repopulate the defect. The problems related to the barrier postoperative collapse can be solved by using a combination of polymeric membranes and grafting materials. Advantages and drawbacks associated with the incorporation of growth factors and nanomaterials in periodontal scaffolds are also discussed, along with the development of multifunctional and multilayer implants. Tissue-engineering strategies based on functionally-graded scaffolds are expected to play an ever-increasing role in the management of periodontal defects.
Collapse
Affiliation(s)
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
28
|
Tsuchida S, Satoh M, Takiwaki M, Nomura F. Current Status of Proteomic Technologies for Discovering and Identifying Gingival Crevicular Fluid Biomarkers for Periodontal Disease. Int J Mol Sci 2018; 20:ijms20010086. [PMID: 30587811 PMCID: PMC6337088 DOI: 10.3390/ijms20010086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Periodontal disease is caused by bacteria in dental biofilms. To eliminate the bacteria, immune system cells release substances that inflame and damage the gums, periodontal ligament, or alveolar bone, leading to swollen bleeding gums, which is a sign of gingivitis. Damage from periodontal disease can cause teeth to loosen also. Studies have demonstrated the proteomic approach to be a promising tool for the discovery and identification of biochemical markers of periodontal diseases. Recently, many studies have applied expression proteomics to identify proteins whose expression levels are altered by disease. As a fluid lying in close proximity to the periodontal tissue, the gingival crevicular fluid (GCF) is the principal target in the search for periodontal disease biomarkers because its protein composition may reflect the disease pathophysiology. Biochemical marker analysis of GCF is effective for objective diagnosis in the early and advanced stages of periodontal disease. Periodontal diseases are also promising targets for proteomics, and several groups, including ours, have applied proteomics in the search for GCF biomarkers of periodontal diseases. This search is of continuing interest in the field of experimental and clinical periodontal disease research. In this article, we summarize the current situation of proteomic technologies to discover and identify GCF biomarkers for periodontal diseases.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| |
Collapse
|
29
|
Di Vito A, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In Vitro Long-Term Expansion and High Osteogenic Potential of Periodontal Ligament Stem Cells: More Than a Mirage. Cell Transplant 2018; 28:129-139. [PMID: 30369260 PMCID: PMC6322134 DOI: 10.1177/0963689718807680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament displays a reservoir of mesenchymal stem cells which can account for periodontal regeneration. Despite the numerous studies directed at the definition of optimal culture conditions for long-term expansion of periodontal ligament stem cells (PDLSCs), no consensus has been reached as to what is the ideal protocol. The aim of the present study was to determine the optimal medium formulation for long-term expansion and stemness maintenance of PDLSCs, in order to obtain a sufficient number of cells for therapeutic approaches. For this purpose, the effects of three different culture medium formulations were evaluated on PDLSCs obtained from three periodontal ligament samples of the same patient: minimum essential medium Eagle, alpha modification (α-MEM), Dulbecco's modified Eagle's medium (DMEM), both supplemented with 10% fetal bovine serum (FBS), and a new medium formulation, Ham's F12 medium, supplemented with 10% FBS, heparin 0.5 U/ml, epidermal growth factor (EGF) 50 ng/ml, fibroblast growth factor (FGF) 25 ng/ml, and bovine serum albumin (BSA) 1% (enriched Ham's F12 medium; EHFM). PDLSCs grown in EHFM displayed a higher PE-CD73 mean fluorescence intensity compared with cells maintained in α-MEM and DMEM, even at later passages. Cells maintained in EHFM displayed an increased population doubling and a reduced population doubling time compared with cells grown in DMEM or α-MEM. α-MEM, DMEM and EHFM with added dexamethasone, 2-phospho-L-ascorbic acid, and β-glycerophosphate were all able to promote alkaline phosphatase activity; however, no calcium deposition was detected in PDLSCs cultured in EHFM-differentiation medium. When EHFM-, α-MEM- and DMEM-expanded PDLSCs were transferred to a commercial culture medium for the osteogenesis, mineralization became much more evident in confluent monolayers of EHFM-expanded PDLSCs compared with DMEM and α-MEM. The results suggest EHFM is the optimal medium formulation for growth and stemness maintenance of primary PDLSCs. Moreover, EHFM confers higher osteogenic potential to PDLSCs compared with cells maintained in the other culture media. Overall, the results of the present work confirmed the advantages of using EHFM for long-term expansion of mesenchymal cells in vitro and the preservation of high osteogenic potential.
Collapse
Affiliation(s)
- Anna Di Vito
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Amerigo Giudice
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Natalia Malara
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Francesco Bennardo
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Leonzio Fortunato
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
30
|
Shavandi A, Bekhit AEDA, Saeedi P, Izadifar Z, Bekhit AA, Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials 2018; 167:91-106. [PMID: 29567389 PMCID: PMC5973878 DOI: 10.1016/j.biomaterials.2018.03.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Polyphenols are micronutrients obtained from diet that have been suggested to play an important role in health. The health benefits of polyphenols and their protective effects in food systems as antioxidant compounds are well known and have been extensively investigated. However, their functional roles as a "processing cofactor" in tissue engineering applications are less widely known. This review focuses on the functionality of polyphenols and their application in biomaterials. Polyphenols have been used to stabilize collagen and to improve its resistance to degradation in biological systems. Therefore, they have been proposed to improve the performance of biomedical devices used in cardiovascular systems by improving the mechanical properties of grafted heart valves, enhancing microcirculation through the relaxation of the arterial walls and improving the capillary blood flow and pressure resistance. Polyphenols have been found to stimulate bone formation, mineralization, as well as the proliferation, differentiation, and the survival of osteoblasts. These effects are brought about by the stimulatory effect of polyphenols on osteoblast cells and their protective effect against oxidative stress and inflammatory cytokines. In addition, polyphenols inhibit the differentiation of the osteoclast cells. Collectively, these actions lead to promote bone formation and to reduce bone resorption, respectively. Moreover, polyphenols can increase the cross-linking of dentine and hence its mechanical stability. Overall, polyphenols provide interesting properties that will stimulate further research in the bioengineering field.
Collapse
Affiliation(s)
- Amin Shavandi
- Department of Food Science, University of Otago, Dunedin, New Zealand.
| | | | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Zohreh Izadifar
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, Sumi K, Nakajima K, Kimura A, Hiraki T, Abe T, Naoto H, Yanoshita M, Tanimoto K. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci 2018; 33:959-966. [PMID: 29302842 DOI: 10.1007/s10103-017-2426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm2. Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm2. Laser irradiation at a dose of 2.85 J/cm2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm2. Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Hidemi Gunji
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Awada
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Keisuke Sumi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hirose Naoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
32
|
Aboushady IM, Salem ZA, Sabry D, Mohamed A. Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent 2018; 10:e7-e13. [PMID: 29670709 PMCID: PMC5899816 DOI: 10.4317/jced.53957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regenerate missing tissues and treat diseases. Hence, the current work aimed to compare the proliferation rate and the osteogenic differentiation potential of bone marrow MSCs (BMSCs), gingival MSCs (GMSCs) and submandibular MSCs (SMSCs). Material and Methods MSCs derived from bone marrow, gingiva and submandibular salivary gland were isolated and cultured from rats. The proliferation capacity was judged by MTT proliferation Assay. Osteogenic differentiation was assessed by Alzarin red stain and quantitative RT-PCR was performed for Runx-2 and MMP-13. Results The highest significant proliferation was estimated in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). All studied cell types formed mineralized nodules as stained with Alizarin Red stain at the 3rd passage of differentiation. However, BMSCs seemed to generate the highest level of mineralization compared to GMSCs and SMSCs. RT-PCR revealed that the expression of Runx-2 and MMP-13 mRNAs was significantly increased in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). Conclusions BMSCs displayed maximum osteogenesis results followed by the GMSCs and lastly by the SGSCs. Thus, it could be recommended that GMSCs can be used as a second choice after BMSCs when bone tissue reconstruction is needed. Key words:Mesenchymal stem cells, osteogenic differentiation, Runx-2, MMP-13.
Collapse
Affiliation(s)
- Iman M Aboushady
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Zeinab A Salem
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Dina Sabry
- MD, MS, Professor of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| | - Abbas Mohamed
- MD, MS, Lecturer of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| |
Collapse
|
33
|
Tansriratanawong K, Wongwan P, Ishikawa H, Nakahara T, Wongravee K. Cellular responses of periodontal ligament stem cells to a novel synthesized form of calcium hydrogen phosphate with a hydroxyapatite-like surface for periodontal tissue engineering. J Oral Sci 2018; 60:428-437. [DOI: 10.2334/josnusd.17-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo
| | - Pawinee Wongwan
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, Nippon Dental University School of Life Dentistry at Tokyo
| | - Kanet Wongravee
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| |
Collapse
|
34
|
Wang L, Wu F, Song Y, Duan Y, Jin Z. Erythropoietin induces the osteogenesis of periodontal mesenchymal stem cells from healthy and periodontitis sources via activation of the p38 MAPK pathway. Int J Mol Med 2017; 41:829-835. [PMID: 29207066 PMCID: PMC5752238 DOI: 10.3892/ijmm.2017.3294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin (Epo), a hematopoietic hormone, has multiple biological functions. Recently, the positively osteogenic effects of Epo on mesenchymal stem cells (MSCs) have attracted broad interest. However, the effects of Epo on the osteogenesis of human periodontal ligament tissue‑derived mesenchymal stem cells (hPDLSCs) and periodontitis mesenchymal stem cells (pPDLSCs) from patients with periodontitis remain unknown. In the present study, osteogenic effects of Epo on hPDLSCs and pPDLSCs were investigated, and the results suggested that the effects were mediated by promoting the expression of runt related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin. Using Alizarin Red and ALP staining, it was demonstrated that Epo exerted positive osteogenic effects on hPDLSCs and pPDLSCs. Additionally, Epo upregulated the proliferation of hPDLSCs and pPDLSCs, based on flow cytometric analyses of the cell cycle. To determine the underlying mechanism, the role of the p38 mitogen‑activated protein kinase (MAPK) pathway, which is associated with the osteogenesis of hPDLSCs and pPDLSCs, was investigated further. Epo increases p38 phosphorylation (the target of the MAPK pathway) in hPDLSCs and pPDLSCs. Furthermore, when the cells were treated with SB203580, an inhibitor of the p38 MAPK pathway, the osteogenic effects of Epo on hPDLSCs and pPDLSCs were attenuated. In conclusion, Epo may upregulate the bone formation ability of hPDLSCs and pPDLSCs via the p38 MAPK pathways.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Wu
- Laparoscopic Surgery Department, The 451st Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Yang Song
- Department of Stomatology, The 323rd Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Yinzhong Duan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zoulin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
35
|
Ma Y, Ji Y, Zhong T, Wan W, Yang Q, Li A, Zhang X, Lin M. Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACS Biomater Sci Eng 2017; 3:3534-3545. [PMID: 33445388 DOI: 10.1021/acsbiomaterials.7b00601] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is an inflammatory disease worldwide that may result in periodontal defect (especially alveolar bone defect) and even tooth loss. Stem-cell-based approach combined with injectable hydrogels has been proposed as a promising strategy in periodontal treatments. Stem cells fate closely depends on their extracellular matrix (ECM) characteristics. Hence, it is necessary to engineer an appropriate injectable hydrogel to deliver stem cells into the defect while serving as the ECM during healing. Therefore, stem cell-ECM interaction should be studied for better stem cell transplantation. In this study, we developed a bioprinting-based strategy to study stem cell-ECM interaction and thus screen an appropriate ECM for in vivo repair of alveolar bone defect. Periodontal ligament stem cells (PDLSCs) were encapsulated in injectable, photocrosslinkable composite hydrogels composed of gelatin methacrylate (GelMA) and poly(ethylene glycol) dimethacrylate (PEGDA). PDLSC-laden GelMA/PEGDA hydrogels with varying composition were efficiently fabricated via a 3D bioprinting platform by controlling the volume ratio of GelMA-to-PEGDA. PDLSC behavior and fate were found to be closely related to the engineered ECM composition. The 4/1 GelMA/PEGDA composite hydrogel was selected since the best performance in osteogenic differentiation in vitro. Finally, in vivo study indicated a maximal and robust new bone formation in the defects treated with the PDLSC-laden hydrogel with optimized composition as compared to the hydrogel alone and the saline ones. The developed approach would be useful for studying cell-ECM interaction in 3D and paving the way for regeneration of functional tissue.
Collapse
Affiliation(s)
| | | | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | | | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | | | | |
Collapse
|
36
|
Gu H, Boonanantanasarn K, Kang M, Kim I, Woo KM, Ryoo HM, Baek JH. Morinda citrifolia Leaf Extract Enhances Osteogenic Differentiation Through Activation of Wnt/β-Catenin Signaling. J Med Food 2017; 21:57-69. [PMID: 28981378 DOI: 10.1089/jmf.2017.3933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Morinda citrifolia (Noni) leaf is an herbal medicine with application in the domestic treatment of a broad range of conditions, including bone fracture and luxation. However, the basic mechanism underlying the stimulation of osteogenic differentiation by Noni leaf extract remains poorly understood. This study aimed to examine the effect of this extract on osteogenic differentiation and the mechanism by which Noni leaf extract enhances osteogenic differentiation. Aqueous extract of Noni leaves was prepared, and rutin and kaempferol-3-O-rutinoside were identified to be two of its major components. C2C12 and human periodontal ligament (hPDL) cells were used to study the effect of Noni. Noni did not show cytotoxicity at a concentration range of 0.015%-1.0% (w/v%) and significantly enhanced the activity of alkaline phosphatase (ALP) and expression levels of osteoblast differentiation markers, including Runx2, ALP, osterix, and osteocalcin, bone morphogenetic protein 2, Wnt3a, and β-catenin. In addition, Noni enhanced the matrix mineralization of hPDL cells. In the signaling pathways, Noni increased the phosphorylation levels of Akt and GSK3β and nuclear translocation and transcriptional activity of β-catenin, which were attenuated by the addition of Dkk-1, a Wnt inhibitor, or LY294002, a PI3K inhibitor. These results suggest that Noni leaf extract enhances osteogenic differentiation through the PI3K/Akt-dependent activation of Wnt/β-catenin signaling. Noni leaf extract might be a novel alternative medicine for bone and periodontal regeneration in patients with periodontal diseases.
Collapse
Affiliation(s)
- Hanna Gu
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul, Korea
| | - Kanitsak Boonanantanasarn
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul, Korea
| | - Moonkyu Kang
- 2 R&D Center , MAYJUNE Life & Health Co., Inc., Seoul, Korea
| | - Ikhwi Kim
- 3 Elcubio Co., Ltd. , Daejeon, Korea
| | - Kyung Mi Woo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul, Korea
| | - Hyun-Mo Ryoo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul, Korea
| | - Jeong-Hwa Baek
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul, Korea
| |
Collapse
|
37
|
Cobb CM. Lasers and the treatment of periodontitis: the essence and the noise. Periodontol 2000 2017; 75:205-295. [DOI: 10.1111/prd.12137] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J Periodontal Res 2017. [PMID: 28635007 DOI: 10.1111/jre.12477] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The periodontal ligament (PDL) connects the tooth root and alveolar bone. It is an aligned fibrous network that is interposed between, and anchored to, both mineralized surfaces. Periodontal disease is common and reduces the ability of the PDL to act as a shock absorber, a barrier for pathogens and a sensor of mastication. Although disease progression can be stopped, current therapies do not primarily focus on tissue regeneration. Functional regeneration of PDL may be achieved using innovative techniques, such as tissue engineering. However, the complex fibrillar architecture of the PDL, essential to withstand high forces, makes PDL tissue engineering very challenging. This challenge may be met by studying PDL anatomy and development. Understanding PDL anatomy, development and maintenance provides clues regarding the specific events that need to be mimicked for the formation of this intricate tissue. Owing to the specific composition of the PDL, which develops by self-organization, a different approach than the typical combination of biomaterials, growth factors and regenerative cells is necessary for functional PDL engineering. Most specifically, the architecture of the new PDL to be formed does not need to be dictated by textured biomaterials but can emerge from the local mechanical loading conditions. Elastic hydrogels are optimal to fill the space properly between tooth and bone, may house cells and growth factors to enhance regeneration and allow self-optimization by the alignment to local stresses. We suggest that cells and materials should be placed in a proper mechanical environment to initiate a process of self-organization resulting in a functional architecture of the PDL.
Collapse
Affiliation(s)
- T de Jong
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - A D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - V Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - T H Smit
- Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL, Koshy G, Coluzzi DJ, White JM, Abiko Y, Ishikawa I, Izumi Y. Periodontal and peri-implant wound healing following laser therapy. Periodontol 2000 2017; 68:217-69. [PMID: 25867988 DOI: 10.1111/prd.12080] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 12/18/2022]
Abstract
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.
Collapse
|
40
|
Jia L, Gu W, Zhang Y, Ji Y, Liang J, Wen Y, Xu X. The Crosstalk between HDPSCs and HUCMSCs on Proliferation and Osteogenic Genes Expression in Coculture System. Int J Med Sci 2017; 14:1118-1129. [PMID: 29104466 PMCID: PMC5666543 DOI: 10.7150/ijms.19814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives: The present study established a non-contact coculture system in vitro, aiming to investigate the crosstalk between human dental pulp stem cells (hDPSCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) on proliferation activity and osteogenic genes expression through paracrine. Materials and methods: The stemness of hDPSCs and hUCMSCs were identified by flow cytometric analysis and multipotential differentiation assays. With the help of transwell inserts, the non-contact coculture system in vitro was established between hDPSCs and hUCMSCs. EdU labeling analysis and Western Blot were used to detect the proliferation activity. The mRNA and protein levels of osteogenic genes were evaluated by RT-PCR and Western Blot. The expression of elements in Akt/mTOR signaling pathway were detected by Western Blot. Results: Both hDPSCs and hUCMSCs were positive to MSCs specific surface markers and had multi-differentiation potential. The proportion of EdU-positive cells increased and the expression of CDK6 and CYCLIN A were up-regulated in cocultured hDPSCs. Both prior coculture and persistent coculture improved mRNA and protein levels of osteogenic genes in hDPSCs. While in cocultured hUCMSCs, no statistical differences were observed on proliferation and osteogenesis. The phosphorylation of Akt and mTOR was up-regulated in cocultured hDPSCs. Conclusions: The crosstalk between hDPSCs and hUCMSCs in coculture system increased the proliferation activity and enhanced osteogenic genes expression in hDPSCs. Akt/mTOR signaling pathway might take part in the enhancing effects in both cell proliferation and gene expression.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Weiting Gu
- Qilu hospital of Shandong University, Jinan, China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Yawen Ji
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Jin Liang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Yong Wen
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| |
Collapse
|
41
|
Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther 2016; 7:168. [PMID: 27842561 PMCID: PMC5109898 DOI: 10.1186/s13287-016-0417-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022] Open
Abstract
Background Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. Methods We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Results Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. Conclusions In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0417-x) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Aydemir Turkal H, Demirer S, Dolgun A, Keceli HG. Evaluation of the adjunctive effect of platelet-rich fibrin to enamel matrix derivative in the treatment of intrabony defects. Six-month results of a randomized, split-mouth, controlled clinical study. J Clin Periodontol 2016; 43:955-964. [PMID: 27396428 DOI: 10.1111/jcpe.12598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
AIM This study aimed to compare the results obtained with enamel matrix derivative (EMD) and EMD + platelet-rich fibrin (PRF) in the treatment of intrabony defects (IBDs) in chronic periodontitis patients. MATERIALS AND METHODS Using a split-mouth design, 28 paired IBDs were randomly treated either with EMD or with EMD + PRF. Clinical and radiographic measurements including clinical attachment level (CAL), probing depth (PD), gingival recession (GR), defect depth (DD), defect width (DW) and defect angle (DA) were recorded at baseline (BL) and at six months following therapy. RESULTS BL clinical and radiographic measurements were similar for EMD and EMD + PRF groups. Although postsurgical measurements revealed significant reduction for PD and CAL in both groups, no intergroup difference was detected. When EMD and EMD + PRF groups were compared, defect fill was not also statistically different. CONCLUSIONS Both therapies resulted in significant clinical improvement in IBD treatment. Addition of PRF did not improve the clinical and radiographic outcomes.
Collapse
Affiliation(s)
- Humerya Aydemir Turkal
- Periodontology Department, Faculty of Dentistry, Gaziosmanpasa University, Tokat, Turkey
| | - Serhat Demirer
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Anil Dolgun
- Biostatistics Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Huseyin Gencay Keceli
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
43
|
Panduwawala CP, Zhan X, Dissanayaka WL, Samaranayake LP, Jin L, Zhang C. In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three-dimensional cell sheet constructs. J Periodontal Res 2016; 52:408-418. [PMID: 27495271 DOI: 10.1111/jre.12405] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic periodontitis causes damage to tooth-supporting tissues, resulting in tooth loss in adults. Recently, cell-sheet-based approaches have been studied to overcome the limitations of conventional cytotherapeutic procedures for periodontal regeneration. The purpose of the present study was to investigate the regenerative potential of periodontal ligament stem cells (PDLSCs) and human umbilical vein endothelial cells (HUVECs) in three-dimensional (3D) cell sheet constructs for periodontal regeneration in vivo. MATERIAL AND METHODS PDLSCs, HUVECs or co-cultures of both cells were seeded onto temperature-responsive culture dishes, and intact cell sheets were fabricated. Cell sheets were wrapped around the prepared human roots in three different combinations and implanted subcutaneously into immunodeficient mice. RESULTS Histological evaluation revealed that after 2, 4 and 8 wk of implantation, periodontal ligament-like tissue arrangements were observed around the implanted roots in experimental groups compared with controls. Vascular lumens were also observed in periodontal compartments of HUVEC-containing groups. Periodontal ligament regeneration, cementogenesis and osteogenesis were evident in the experimental groups at both weeks 4 and 8, as shown by immunostaining for periostin and bone sialoprotein. Human cells in the transplanted cell sheets were stained by immunohistochemistry for the presence of human mitochondria. CONCLUSIONS The 3D cell sheet-based approach may be potentially beneficial and is thus encouraged for future regenerative periodontal therapy.
Collapse
Affiliation(s)
- C P Panduwawala
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - X Zhan
- Periodontology, Fujian Medical University School of Stomatology, Fujian, China
| | - W L Dissanayaka
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - L P Samaranayake
- Oral Microbiomics and Infection, School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| | - L Jin
- Periodontology and Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C Zhang
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
44
|
Assessment of cellular materials generated by co-cultured ‘inflamed’ and healthy periodontal ligament stem cells from patient-matched groups. Exp Cell Res 2016; 346:119-29. [DOI: 10.1016/j.yexcr.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/30/2022]
|
45
|
Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies. Cell Tissue Res 2016; 366:311-328. [PMID: 27301447 DOI: 10.1007/s00441-016-2437-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
In this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation. Cells that were dually stimulated also formed more colonies compared to untreated cells but their proliferation did not increase. Importantly, the hypoxic pretreatment of PDLSCs enhanced cell differentiation as determined by elevated RUNX-2 and ALP protein expression. In this context, the inflammatory stimulus impaired cell OCN protein expression, while dual stimuli led to decreased RUNX-2 and OCN mRNA levels. Although preconditioning PDLSCs with inflammatory and/or hypoxic pretreatments resulted in no differences in the production of matrix proteins, hypoxic pretreatment led to the generation of thicker cell sheets; the inflammatory stimulus weakened the ability of cells to form sheets. All the resultant cell sheets exhibited clear bone regeneration following ectopic transplantation as well as in periodontal defect models; the amount of new bone formed by hypoxia-preconditioned cells was significantly greater than that formed by inflammatory stimulus- or dual-stimuli-treated cells or by nonpreconditioned cells. The regeneration of new cementum and periodontal ligaments was only identified in the hypoxia-stimulus and no-stimulus cell groups. Our findings suggest that PDLSCs that undergo short-term hypoxic pretreatment show improved cellular behavior in vitro and enhanced regenerative potential in vivo. The preconditioning of PDLSCs via combined treatments or an inflammatory stimulus requires further investigation.
Collapse
|
46
|
Cobb CM. Commentary: Is There Clinical Benefit From Using a Diode or Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Periodontitis? J Periodontol 2016; 87:1117-31. [PMID: 27181116 DOI: 10.1902/jop.2016.160134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite a quarter of a century of laser research, there is a persistent debate regarding the efficacy of dental lasers in the treatment of periodontitis or periodontal maintenance therapy. There are many claims and much hyperbole surrounding the use of lasers, either as a monotherapy or adjunctive to scaling and root planing, to treat periodontitis. There is little evidence that using a diode or neodymium:yttrium-aluminum-garnet laser adds clinical value over and above conventional non-surgical or surgical periodontal treatment. There is a significant need for better designed human clinical trials. Data from such trials should be analyzed according to initial probing depth and characteristics of the treated sites, such as non-molar, molar flat surfaces, and molar furcations, and evaluated for long-term post-treatment results.
Collapse
Affiliation(s)
- Charles M Cobb
- Department of Periodontics, University of Missouri-Kansas City, Kansas City, MO
| |
Collapse
|
47
|
Fisher PD, Clemens J, Zach Hilt J, Puleo DA. Multifunctional poly(β-amino ester) hydrogel microparticles in periodontal in situ forming drug delivery systems. ACTA ACUST UNITED AC 2016; 11:025002. [PMID: 26947556 DOI: 10.1088/1748-6041/11/2/025002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In situ forming implants (ISIs) formed from poly(lactic-co-glycolic acid) (PLGA) have been commercialized for local drug delivery to treat periodontitis, but drug release from these bulk materials is typically subject to an initial burst. In addition, PLGA has inferior material properties for the dynamic mechanical environment of gingival tissue. In this work, poly(β-amino ester) (PBAE) hydrogel microparticles were incorporated into a PLGA matrix to provide several new functions: mechanical support, porosity, space-filling, and controlled co-delivery of antimicrobial and osteogenic drugs. First, the effects of PBAE microparticles on ISI architecture and material properties throughout degradation were investigated. Second, the influence of PBAE microparticles on drug release kinetics was quantified. Over a 15 d period, ISIs containing PBAE microparticles possessed greater porosity, ranging from 42-80%, compared to controls, which ranged from 24-54% (p < 0.001), and these ISIs also developed significantly greater accessible volume to simulated cell-sized spheres after 5 d or more of degradation (p < 0.001). PBAE-containing ISIs possessed a more uniform microarchitecture, which preserved mechanical resilience after cyclical loading (p < 0.001), and the materials swelled to fill the injected space, which significantly increased interfacial strength in an artificial periodontal pocket (p < 0.0001). PBAE microparticles eliminated the burst of freely-mixed simvastatin compared to 36% burst from controls (p < 0.0001), and high-dose doxycycline release was prolonged from 2 d to 7 d by pre-loading drug into the microparticles. PBAE-containing PLGA ISIs are more effective space-filling scaffolds and offer improved release kinetics compared to existing ISIs used to treat periodontitis.
Collapse
Affiliation(s)
- Paul D Fisher
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
48
|
Lin T, Kawamura R, Aoki A, Ichinose S, Mizutani K, Taniguchi Y, Eguro T, Saito N, Izumi Y. Energy output reduction and surface alteration of quartz tips following Er:YAG laser contact irradiation on soft and hard tissues in vitro. Dent Mater J 2016; 35:51-62. [PMID: 26830823 DOI: 10.4012/dmj.2015-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Though the Er:YAG laser (ErL) has been used in periodontal therapy, the irradiated tip damage has not been studied in detail. In this study, the change in the energy output, surface morphology, and temperature of quartz tips was evaluated following contact irradiation. Soft tissue, calculus on extracted human teeth, and porcine bone were irradiated by ErL for 60 min at 14.2 or 28.3 J/cm(2)/pulse and 20 Hz with or without water spray. The energy output ratio declined the most in the calculus group, followed by the bone and soft tissue groups with and/or without water spray. Carbon contamination was detected in all groups, and contamination by P, Ca, and/or other inorganic elements was observed in the calculus and bone groups. The rate of energy output reduction and the degree of surface alteration/contamination is variously influenced by the targeting tissue, temperature elevation of the tip and water spray.
Collapse
Affiliation(s)
- Taichen Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maymon-Gil T, Weinberg E, Nemcovsky C, Weinreb M. Enamel Matrix Derivative Promotes Healing of a Surgical Wound in the Rat Oral Mucosa. J Periodontol 2016; 87:601-9. [PMID: 26777768 DOI: 10.1902/jop.2016.150567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enamel matrix proteins (EMPs) play a role in enamel formation and the development of the periodontium. Sporadic clinical observations of periodontal regeneration treatments with enamel matrix derivative (EMD), a commercial formulation of EMPs, suggest that it also promotes post-surgical healing of soft tissues. In vitro studies showed that EMD stimulates various cellular effects, which could potentially enhance wound healing. This study examines the in vivo effects of EMD on healing of an oral mucosa surgical wound in rats. METHODS A bilateral oral mucosa wound was created via a crestal incision in the anterior edentulous maxilla of Sprague-Dawley rats. Full-thickness flaps were raised, and, after suturing, EMD was injected underneath the soft tissues on one side, whereas the EMD vehicle was injected in the contralateral side. Animals were sacrificed after 5 or 9 days, and the wound area was subjected to histologic and immunohistochemical analysis of the epithelial gap, number of macrophages, blood vessels, proliferating cells, and collagen content in the connective tissue (CT). Gene expression analysis was also conducted 2 days post-surgery. RESULTS EMD had no effect on the epithelial gap of the wound. On both days 5 and 9, EMD treatment increased significantly the number of blood vessels and the collagen content. EMD also enhanced (by 20% to 40%) the expression of transforming growth factors β1 and β2, vascular endothelial growth factor, interleukin-1β, matrix metalloproteinase-1, versican, and fibronectin. CONCLUSION EMD improves oral mucosa incisional wound healing by promoting formation of blood vessels and collagen fibers in CT.
Collapse
Affiliation(s)
- Tal Maymon-Gil
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University
| | - Miron Weinreb
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
50
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|