1
|
Tohar R, Alali H, Ansbacher T, Brosh T, Sher I, Gafni Y, Weinberg E, Gal M. Collagenase Administration into Periodontal Ligament Reduces the Forces Required for Tooth Extraction in an Ex situ Porcine Jaw Model. J Funct Biomater 2022; 13:76. [PMID: 35735930 PMCID: PMC9225053 DOI: 10.3390/jfb13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Minimally invasive exodontia is among the long-sought-for development aims of safe dental medicine. In this paper, we aim, for the first time, to examine whether the enzymatic disruption of the periodontal ligament fibers reduces the force required for tooth extraction. To this end, recombinantly expressed clostridial collagenase G variant purified from Escherichia coli was injected into the periodontal ligament of mesial and distal roots of the first and second split porcine mandibular premolars. The vehicle solution was injected into the corresponding roots on the contralateral side. Following sixteen hours, the treated mandibles were mounted on a loading machine to measure the extraction force. In addition, the effect of the enzyme on the viability of different cell types was evaluated. An average reduction of 20% in the applied force (albeit with a large variability of 50 to 370 newton) was observed for the enzymatically treated roots, reaching up to 50% reduction in some cases. Importantly, the enzyme showed only a minor and transient effect on cellular viability, without any signs of toxicity. Using an innovative model enabling the analytical measurement of extraction forces, we show, for the first time, that the enzymatic disruption of periodontal ligament fibers substantially reduces the force required for tooth extraction. This novel technique brings us closer to atraumatic exodontia, potentially reducing intra- and post-operative complications and facilitating subsequent implant placement. The development of novel enzymes with enhanced activity may further simplify the tooth extraction process and present additional clinical relevance for the broad range of implications in the oral cavity.
Collapse
Affiliation(s)
- Ran Tohar
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
| | - Hen Alali
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
| | - Tamar Ansbacher
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
- Hadassah Academic College, Jerusalem 91010, Israel
| | - Tamar Brosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
| | - Inbal Sher
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
| | - Yossi Gafni
- Department of Orthodontics, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Evgeny Weinberg
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
- Department of Periodontology and Oral Implantology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maayan Gal
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (H.A.); (T.A.); (T.B.); (I.S.)
| |
Collapse
|
2
|
Relationship of mRNA Expression of Selected Genes in Peripheral Blood and Synovial Fluid in Cranial Cruciate Ligament Deficient Stifles of Dogs. Animals (Basel) 2022; 12:ani12060754. [PMID: 35327152 PMCID: PMC8944536 DOI: 10.3390/ani12060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The cranial cruciate ligament rupture is characterized by chronic inflammation, osteoarthritis of the stifle joint, and extracellular matrix degeneration of the ligament itself in dogs. Early pre-clinical cranial cruciate ligament alteration cannot be detected by clinical examination or standard radiography. Therefore, we assessed the possible relationship of inflammatory markers in peripheral blood and synovial fluid of affected stifle joints in comparison to a control. We also evaluated components of the extracellular matrix of ruptured ligaments and finally compared the tibial plateau angle and the anatomical-mechanical angle between groups. Some of the assessed inflammatory markers were significantly increased in both the peripheral blood and synovial fluid compared with the control, as were collagens. The tibial plateau angle was not significantly different; however, the anatomical-mechanical angle significantly increased in the ruptured ligaments. Our results suggest a possible positive relationship between inflammatory markers of blood and synovial fluid in cranial cruciate ligament deficient stifles compared to the control. These findings may support both local and systemic inflammation process at the same time during osteoarthritis progression. Based on this, it would be interesting to investigate the predictive osteoarthritis pathway of inflammatory cytokines, matrix metalloproteinases, and their effect on the extracellular matrix components of the cranial cruciate ligament in future studies. Abstract The cranial cruciate ligament rupture (CrCLR) is characterized by chronic inflammation and osteoarthritis (OA) of the stifle joint and extracellular matrix (ECM) degeneration of the ligament itself in dogs. Generally, OA may arise from chronic low-grade systemic inflammation. We assessed the possible relationship of inflammatory markers in the peripheral blood (PB) and synovial fluid (SF) of affected stifle joints in comparison to a control. Moreover, no study has shown the possible association between PB and SF levels of inflammatory markers in CrCLR stifles of dogs in veterinary medicine yet. We also evaluated components of ECM of CrCLR and finally compared the tibial plateau angle (TPA) and the anatomical-mechanical angle (AMA) between groups. Samples from PB and SF were examined for mRNA expression of interleukins, TNF-α and INF-γ. ECM components—collagen 1A1 and 3A1 and elastin—were examined for mRNA expression from SF. The level of relative expression for IL-1β, IL-8 and IFN-γ was significantly increased in both PB and SF in CrCLR stifles as compared with the control. Collagens were also significantly increased in CrCLR stifles. TPA was not significantly different; however, the AMA angle significantly increased in the CrCLR group. Our results suggest a possible relationship between PB and SF levels of inflammatory markers in CrCLR stifles of dogs.
Collapse
|
3
|
Fazaeli S, Mirahmadi F, Everts V, Smit TH, Koolstra JH, Ghazanfari S. Alteration of structural and mechanical properties of the temporomandibular joint disc following elastase digestion. J Biomed Mater Res B Appl Biomater 2020; 108:3228-3240. [PMID: 32478918 PMCID: PMC7586824 DOI: 10.1002/jbm.b.34660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 11/09/2022]
Abstract
The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load‐bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural–functional contribution of elastin in the temporomandibular joint disc. Using elastase, we selectively perturbed the elastin fiber network in porcine temporomandibular joint discs and investigated the structural, compositional, and mechanical regional changes through: (a) analysis of collagen and elastin fibers by immunolabeling and transmission electron microscopy; (b) quantitative analysis of collagen tortuosity, cell shape, and disc volume; (c) biochemical quantification of collagen, glycosaminoglycan and elastin content; and (d) cyclic compression test. Following elastase treatment, microscopic examination revealed fragmentation of elastin fibers across the temporomandibular joint disc, with a more pronounced effect in the intermediate regions. Also, biochemical analyses of the intermediate regions showed significant depletion of elastin (50%), and substantial decrease in collagen (20%) and glycosaminoglycan (49%) content, likely due to non‐specific activity of elastase. Degradation of elastin fibers affected the homeostatic configuration of the disc, reflected in its significant volume enlargement accompanied by remarkable reduction of collagen tortuosity and cell elongation. Mechanically, elastase treatment nearly doubled the maximal energy dissipation across the intermediate regions while the instantaneous modulus was not significantly affected. We conclude that elastin fibers contribute to the restoration and maintenance of the disc resting shape and actively interact with collagen fibers to provide mechanical resilience to the temporomandibular joint disc.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan H Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands.,Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Lin JD, Ryder M, Kang M, Ho SP. Biomechanical pathways of dentoalveolar fibrous joints in health and disease. Periodontol 2000 2020; 82:238-256. [PMID: 31850635 DOI: 10.1111/prd.12306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial and temporal adaptations within periodontal tissues and their interfaces result from functional loads. Functional loads can be physiologic and/or pathologic in nature. The prolonged effect of these loads can alter the overall biomechanics of a dentoalveolar fibrous joint (dentoalveolar joint) by changing the form of the tooth root and its socket. This "sculpting" of the tooth root and alveolar bony socket is a consequence of several mechano-biological changes that occur within the periodontal complex of a load-bearing dentoalveolar joint. These include changes in biochemical expressions, structure, elemental composition, and mechanical properties of alveolar bone, the underlying tissues of the roots of teeth, and their interfaces. These physicochemical changes in tissues continue to prompt mechano-responsive biochemical activities at the attachment sites of periodontal ligament (soft) with bone (hard), and ligament with cementum (hard), which are the entheses of a load-bearing dentoalveolar joint. Forces at soft-hard tissue attachment sites between disparate materials with different stiffness values theoretically generate strain singularities or discontinuities. These discontinuities under prolonged functional loading increase the probability for failure to occur specifically at the enthesial zones. However, in a normal dentoalveolar joint, gradual stiffness gradients exist from ligament to bone, and from ligament to cementum. The gradual transitions in stiffness from softer ligament (lower stiffness) to harder bone or cementum (higher stiffness) or vice versa optimize tissue and interfacial strains. Optimization of tissue and ligament-enthesial physical and chemical properties facilitates transmission of cyclic forces of varying magnitudes and frequencies that collectively maintain the overall biomechanics of a dentoalveolar joint. The objectives of this review are 3-fold: (i) to illustrate physicochemical adaptations at the periodontal ligament entheses of a human periodontal complex affected by subgingival calculus; (ii) to demonstrate how to "program" the hallmarks of periodontitis in small-scale vertebrates in vivo to generate spatiotemporal maps of physicochemical adaptations in a diseased dentoalveolar joint; and (iii) to correlate dentoalveolar joint biomechanics in healthy and diseased states to spatiotemporal maps of physicochemical adaptations within respective periodontal tissues. This interdisciplinary approach demonstrates that physicochemical adaptations within periodontal tissues using the mechanics of materials (tissue mechanics), materials science (tissue composition), and mechano-biology (matrix molecules) can help explain the mechano-adaptation of dentoalveolar joints in normal and diseased functional states. Multiscale biomechanics and mechano-biology approaches can provide insights into the functional competence of a diseased relative to a normal dentoalveolar joint. Insights gathered from interdisciplinary and multiscale biomechanics approaches include the following: (i) physiologic loads related to chewing maintain a balance between mineral-forming and-resorbing biochemical cellular events, resulting in gradual stiffness gradients at the periodontal ligament entheses, and, in turn, sustain the overall biomechanics of a normal "healthy" dentoalveolar joint; (ii) pathologic loads resulting from tissue degradation and physical changes to the periodontal complex promote an abrupt stiffness gradient at the periodontal ligament entheses. The shift from gradual to an abrupt stiffness gradient could prompt a shift in the biochemical cascades, exacerbate mechano-responsive biochemical expressions at periodontal ligament entheses farther away from the site of insult, and culminate in joint degradation; (iii) sustained pathologic function on periodontally diseased joints exacerbates degradation of periodontal ligament entheses providing insights into "rescue therapy", such as the use of an adequate "mechanocal dose" to regain joint function; and (iv) spatiotemporal maps of changes in biochemical expressions, and physicochemical properties of strain-dominated affected sites, including the periodontal ligament entheses, can guide anatomy-specific therapeutics for tissue regeneration and/or disease control with the purpose of regaining dentoalveolar joint function. Modulation of occlusal loads could minimize disease progression and potentially assist in regaining functional attachment of ligament to bone and/or ligament to cementum of the dentoalveolar joint. Elucidating mechanisms that drive the breakdown of the functionally active periodontal complex burdened with microbes will provide the required critical insights into regenerative medicine and/or biomimetic approaches that would facilitate rescue/regain of dentoalveolar joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Mark Ryder
- Division of Periodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Ortún-Terrazas J, Cegoñino J, Pérez Del Palomar A. In silico study of cuspid' periodontal ligament damage under parafunctional and traumatic conditions of whole-mouth occlusions. A patient-specific evaluation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105107. [PMID: 31629157 DOI: 10.1016/j.cmpb.2019.105107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Although traumatic loading has been associated with periodontal ligament (PDL) damage and therefore with several oral disorders, the damage phenomena and the traumatic loads involved are still unclear. The complex composition and extremely thin size of the PDL make experimentation difficult, requiring computational studies that consider the macroscopic loading conditions, the microscopic composition and fine detailed geometry of the tissue. In this study, a new methodology to analyse the damage phenomena in the collagen network and the extracellular matrix of the PDL caused by parafunctional and traumatic occlusal forces was proposed. METHODS The entire human mandible and a portion thereof containing a full cuspid tooth were separately modelled using finite element analysis based on computed tomography and micro-computed tomography images, respectively. The first model was experimentally validated by occlusion analysis and subjected to the muscle loads produced during hard and soft chewing, traumatic cuspid occlusion, grinding, clenching, and simultaneous grinding and clenching. The occlusal forces computed by the first model were subsequently applied to the single tooth model to evaluate damage to the collagen network and the extracellular matrix of the PDL. RESULTS Early occlusal contact on the left cuspid tooth guided the mandible to the more occluded side (16.5% greater in the right side) and absorbed most of the lateral load. The intrusive occlusal loads on the posterior teeth were 0.77-13.3% greater than those on the cuspid. According to our findings, damage to the collagen network and the extracellular matrix of the PDL could occur in traumatic and grinding conditions, mainly due to fibre overstretching (>60%) and interstitial fluid overpressure (>4.7 kPa), respectively. CONCLUSIONS Our findings provide important biomechanical insights into the determination of damage mechanisms which are caused by mechanical loading and the key role of the porous-fibrous behaviour of the PDL in parafunctional and traumatic loading scenarios. Besides, the 3D loading conditions computed from occlusal contacts will help future studies in the design of new orthodontics appliances and encourage the application of computing methods in medical practice.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Wan W, Cheng B, Zhang C, Ma Y, Li A, Xu F, Lin M. Synergistic Effect of Matrix Stiffness and Inflammatory Factors on Osteogenic Differentiation of MSC. Biophys J 2019; 117:129-142. [PMID: 31178039 PMCID: PMC6626830 DOI: 10.1016/j.bpj.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) in vivo reside in a complex microenvironment. Changes of both biochemical and biophysical cues in the microenvironment caused by inflammation affect the differentiation behaviors of MSCs. Most studies, however, only focus on either biochemical or biophysical cues, although the synergistic effect of matrix stiffness and inflammatory factors on osteogenic differentiation of MSCs has not been explored yet. Here, we showed that there was a matrix stiffness-dependent modulation in the osteogenic differentiation of human MSCs (hMSCs) with higher matrix stiffness favoring osteogenesis bias. However, when interleukin-1 β (IL-1β) was added, the osteogenic differentiation of hMSCs was suppressed, which was independent of increasing matrix stiffness. Both experimental observations and mathematical modeling confirmed that matrix stiffness and IL-1β could activate the ERK1/2 signaling and contribute to osteogenic differentiation. The p38 signaling activated by IL-1β has a strong role in inhibiting osteoblastic differentiation, thus diminishing the vital effect of ERK1/2 signaling. In addition, sensitivity analysis of the model parameters revealed that activation/deactivation dynamics of sensitive factors (e.g., FAK, ERK, and p38) also played a key role in the synergistic effect of matrix stiffness and IL-1β on the osteogenic differentiation of hMSCs. The outcomes of this study provide new insights into the synergistic effect of biochemical and biophysical microenvironments on regulating MSC differentiation.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
7
|
Birzle AM, Hobrack SMK, Martin C, Uhlig S, Wall WA. Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma. Biomech Model Mechanobiol 2019; 18:1383-1400. [PMID: 31053928 DOI: 10.1007/s10237-019-01151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
In this study, we present a method to experimentally quantify and numerically identify the constituent-specific material behavior of soft biological tissues. This allows the clear identification of the individual contributions of major load-bearing constituents and their interactions in the constitutive law. While the overall approach is applicable for many tissues, here it will be presented for the identification of a sophisticated constituent-specific material model of viable lung parenchyma. This material model will help to better model the effects of various lung diseases that feature altered fiber content in the lungs, such as emphysema or fibrosis. To experimentally quantify the mechanical properties of collagen, elastin, collagen-elastin-fiber interactions, and ground substance, we examined 18 collagenase and elastase treated rat lung parenchymal slices. The mechanical contributions of the collagen and elastin fibers in the living tissue were inferred from uniaxial tension tests comparing the behavior before and after the selective digestion of the respective fibers. In order to also obtain the mechanical influence of the ground substance, we consecutively treated the samples with both proteases. Collagen and elastin fibers are morphologically interconnected. Thus, a mechanical interaction between these fibers appears likely, but has not yet been experimentally verified. In this paper, we propose an experimental method to quantitatively assess the mechanical behavior of these collagen-elastin-fiber interactions. Based on our experiments, we have identified individual material models within a nonlinear continuum mechanics framework for each load-bearing component via an inverse analysis. The proposed constituent-specific material law can be incorporated into computational models of the respiratory system to simulate and even predict the behavior and alteration of the individual constituents and their effect on the whole respiratory system during normal and artificial breathing, in particular in the case of diseases that alter the fibers in the tissue.
Collapse
Affiliation(s)
- Anna M Birzle
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany.
| | - Sophie M K Hobrack
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany.,Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany
| |
Collapse
|
8
|
Elastase and metalloproteinase-9 concentrations in saliva in patients with chronic periodontitis. Cent Eur J Immunol 2014; 39:357-64. [PMID: 26155148 PMCID: PMC4439995 DOI: 10.5114/ceji.2014.45948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/14/2014] [Indexed: 01/19/2023] Open
Abstract
Elastase and metalloproteinase-9 (MMP-9) are two of numerous proteolytic enzymes released by neutrophilic granulocytes in the course of periodontitis. The aim of the study was to determine the concentrations of elastase and MMP-9 in saliva in patients with chronic periodontitis compared to healthy individuals. The enzyme-linked immunosorbent assay method was employed to determine the concentrations of elastase and MMP-9 in saliva in patients with chronic periodontitis and with pocket depth (PD) ≥ 6 mm and PD < 6 mm, as well as in saliva of healthy individuals. Significantly higher concentrations of elastase and MMP-9 were observed in patients with periodontitis compared to healthy individuals (p < 0.01). Also a significant difference in elastase concentration in saliva was observed between the PD ≥ 4 mm and PD < 6 mm groups and between the PD ≥ 6 mm and control groups, and statistically significant differences in MMP-9 concentrations between the PD ≥ 6 mm and control groups. No statistically significant differences were observed between the PD < 6 mm and control groups for elastase concentrations in saliva as well as between the PD ≥ 6 mm and PD < 6 mm groups, and also between the PD < 6 mm and control groups for MMP-9 concentrations in saliva. Elastase and MMP-9 concentrations in saliva can be considered as biochemical indicators of severity of periodontitis.
Collapse
|
9
|
Smith KD, Clegg PD, Innes JF, Comerford EJ. Elastin content is high in the canine cruciate ligament and is associated with degeneration. Vet J 2013; 199:169-74. [PMID: 24314717 PMCID: PMC6419147 DOI: 10.1016/j.tvjl.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022]
Abstract
Cruciate ligaments (CLs) are primary stabilisers of the knee joint and canine cranial cruciate ligament disease (CCLD) and rupture is a common injury. Elastin fibres, composed of an elastin core and fibrillin containing microfibrils, are traditionally considered minor components of the ligament extracellular matrix (ECM). However, their content and distribution in CLs is unknown. The purposes of this study were to determine the elastin content of canine CLs and to ascertain its relationship to other biochemical components and histological architecture. Macroscopically normal CLs were harvested from Greyhounds (n=11), a breed with a low risk of CCLD. Elastin, collagen and sulfated glycosaminoglycan content were measured and histological scoring systems were developed to quantify ECM changes using a modified Vasseur score (mVS) and oxytalan fibre (bundles of microfibrils) staining. Elastin contents were 9.86 ± 3.97% dry weight in the cranial CL and 10.79 ± 4.37% in the caudal CL, respectively, and did not alter with advancing histological degeneration. All CLs demonstrated mild degenerative changes, with an average mVS score of 11.9 ± 3.3 (maximum 24). Increasing degeneration of the ligament ECM showed a positive correlation (r=0.690, P<0.001) with increased oxytalan fibre staining within the ECM. Elastin is an abundant protein in CLs forming a greater proportion of the ligament ECM than previously reported. The appearance of oxytalan fibres in degenerative CL ECM may reflect an adaptive or reparative response to normal or increased loads. This finding is important for future therapeutic or ligament replacement strategies associated with cranial CL injury.
Collapse
Affiliation(s)
- K D Smith
- Faculty of Veterinary Medicine, Small Animal Hospital, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - P D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - J F Innes
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - E J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool CH64 7TE, UK.
| |
Collapse
|
10
|
Biomechanics of a bone-periodontal ligament-tooth fibrous joint. J Biomech 2012; 46:443-9. [PMID: 23219279 DOI: 10.1016/j.jbiomech.2012.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/23/2022]
Abstract
This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of the constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2mm/min were observed. However, for displacement rates greater than 0.2mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S(5 N)=290-523 N/mm) being significantly lower than those at 10 N (LR(5 N)=1-10 N/s) and higher (S(10 N-20 N)=380-684 N/mm; LR(10 N-20 N)=1-19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strains within the complex. We propose that such highly strained regions are "hot spots" that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading conditions.
Collapse
|
11
|
Jacobs NT, Smith LJ, Han WM, Morelli J, Yoder JH, Elliott DM. Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus. J Mech Behav Biomed Mater 2011; 4:1611-9. [PMID: 22098863 DOI: 10.1016/j.jmbbm.2011.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/28/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The intervertebral disc experiences combinations of compression, torsion, and bending that subject the disc substructures, particularly the annulus fibrosus (AF), to multidirectional loads and deformations. Combined tensile and shear loading is a particularly important loading paradigm, as compressive loads place the AF in circumferential hoop tension, and spine torsion or bending induces AF shear. Yet the anisotropy of AF mechanical properties in shear, as well as important structure-function mechanisms governing this response, are not well-understood. The objective of this study, therefore, was to investigate the effects of tissue orientation and enzymatic degradation of glycosaminoglycan (GAG) and elastin on AF shear mechanical properties. Significant anisotropy was found: the circumferential shear modulus, Gθz, was an order of magnitude greater than the radial shear modulus, Grθ. In the circumferential direction, prestrain significantly increased the shear modulus, suggesting an important role for collagen fiber stretch in shear properties for this orientation. While not significant and highly variable, ChABC treatment to remove GAG increased the circumferential shear modulus compared to PBS control (p=0.15). Together with the established literature for tensile loading of fiber-reinforced GAG-rich tissues, the trends for changes in shear modulus with ChABC treatment reflect complex, structure-function relationships between GAG and collagen that potentially occur over several hierarchical scales. Elastase digestion did not significantly affect shear modulus with respect to PBS control; further contributing to the notion that circumferential shear modulus is dominated by collagen fiber stretch. The results of this study highlight the complexity of the structure-function relationships that govern the mechanical response of the AF in radial and circumferential shear, and provide new and more accurate data for the validation of material models and tissue-engineered disc replacements.
Collapse
Affiliation(s)
- Nathan T Jacobs
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104-6081, United States
| | | | | | | | | | | |
Collapse
|
12
|
Komatsu K. Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. JOURNAL OF DENTAL BIOMECHANICS 2009; 2010. [PMID: 20948569 PMCID: PMC2951112 DOI: 10.4061/2010/502318] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022]
Abstract
The mechanical strength of the periodontal ligament (PDL) was first measured as force required to extract a tooth from its socket using human specimens. Thereafter, tooth-PDL-bone preparations have extensively been used for measurement of the mechanical response of the PDL. In vitro treatments of such specimens with specific enzymes allowed one to investigate into the roles of the structural components in the mechanical support of the PDL. The viscoelastic responses of the PDL may be examined by analysis of the stress-relaxation. Video polarised microscopy suggested that the collagen molecules and fibrils in the stretched fibre bundles progressively align along the deformation direction during the relaxation. The stress-relaxation process of the PDL can be well expressed by a function with three exponential decay terms. Analysis after in vitro digestion of the collagen fibres by collagenase revealed that the collagen fibre components may play an important role in the long-term relaxation component of the stress-relaxation process of the PDL. The dynamic measurements of the viscoelastic properties of the PDL have recently suggested that the PDL can absorb more energy in compression than in shear and tension. These viscoelastic mechanisms of the PDL tissue could reduce the risk of injury to the PDL.
Collapse
Affiliation(s)
- Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| |
Collapse
|