1
|
Histologic evidence of periodontal regeneration in furcation defects: a systematic review. Clin Oral Investig 2019; 23:2861-2906. [PMID: 31165313 DOI: 10.1007/s00784-019-02964-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To systematically review the available histologic evidence on periodontal regeneration in class II and III furcations in animals and humans. MATERIALS AND METHODS A protocol including all aspects of a systematic review methodology was developed including definition of the focused question, defined search strategy, study inclusion criteria, determination of outcome measures, screening methods, data extraction and analysis, and data synthesis. The focused question was defined as follows: "What is the regenerative effect obtained by using or not several biomaterials as adjuncts to open flap surgery in the treatment of periodontal furcation defects as evaluated in animal and human histological studies?" SEARCH STRATEGY Using the MEDLINE database, the literature was searched for articles published up to and including September 2018: combinations of several search terms were applied to identify appropriate studies. Reference lists of review articles and of the included articles in the present review were screened. A hand search of the most important dental journals was also performed. CRITERIA FOR STUDY SELECTION AND INCLUSION Only articles published in English describing animal and human histological studies evaluating the effect of surgical treatment, with or without the adjunctive use of potentially regenerative materials (i.e., barrier membranes, grafting materials, growth factors/proteins, and combinations thereof) for the treatment of periodontal furcation defects were considered. Only studies reporting a minimum of 8 weeks healing following reconstructive surgery were included. The primary outcome variable was formation of periodontal supporting tissues [e.g., periodontal ligament, root cementum, and alveolar bone, given as linear measurements (in mm) or as a percentage of the instrumented root length (%)] following surgical treatment with or without regenerative materials, as determined histologically/histomorphometrically. Healing type and defect resolution (i.e., complete regeneration, long junctional epithelium, connective tissue attachment, connective tissue adhesion, or osseous repair) were also recorded. RESULTS In animals, periodontal regeneration was reported in class II and III defects with open flap debridement alone or combined with various types of bone grafts/bone substitues, biological factors, guided tissue regeneration, and different combinations thereof. The use of biological factors and combination approaches provided the best outcomes for class II defects whereas in class III defects, the combination approaches seem to offer the highest regenerative outcomes. In human class II furcations, the best outcomes were obtained with DFDBA combined with rhPDGF-BB and with GTR. In class III furcations, evidence from two case reports indicated very limited to no periodontal regeneration. CONCLUSIONS Within their limits, the present results suggest that (a) in animals, complete periodontal regeneration has been demonstrated in class II and class III furcation defects, and (b) in humans, the evidence for substantial periodontal regeneration is limited to class II furcations. CLINICAL RELEVANCE At present, regenerative periodontal surgery represents a valuable treatment option only for human class II furcation defects but not for class III furcations.
Collapse
|
2
|
Ripamonti U. Developmental pathways of periodontal tissue regeneration. J Periodontal Res 2018; 54:10-26. [DOI: 10.1111/jre.12596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
3
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. Cementogenesis and osteogenesis in periodontal tissue regeneration by recombinant human transforming growth factor-β3: a pilot studyin Papio ursinus. J Clin Periodontol 2016; 44:83-95. [DOI: 10.1111/jcpe.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Ruqayya Parak
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Oral Biological Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Roland M. Klar
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Caroline Dickens
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Raquel Duarte
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| |
Collapse
|
4
|
Ripamonti U. Redefining the induction of periodontal tissue regeneration in primates by the osteogenic proteins of the transforming growth factor-β supergene family. J Periodontal Res 2016; 51:699-715. [PMID: 26833268 DOI: 10.1111/jre.12356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 12/20/2022]
Abstract
The molecular bases of periodontal tissue induction and regeneration are the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family. These morphogens act as soluble mediators for the induction of tissues morphogenesis sculpting the multicellular mineralized structures of the periodontal tissues with functionally oriented ligament fibers into newly formed cementum. Human TGF-β3 (hTGF-β3 ) in growth factor-reduced Matrigel® matrix induces cementogenesis when implanted in class II mandibular furcation defects surgically prepared in the non-human primate Chacma baboon, Papio ursinus. The newly formed periodontal ligament space is characterized by running fibers tightly attached to the cementoid surface penetrating as mineralized constructs within the newly formed cementum assembling and initiating within the mineralized dentine. Angiogenesis heralds the newly formed periodontal ligament space, and newly sprouting capillaries are lined by cellular elements with condensed chromatin interpreted as angioblasts responsible for the rapid and sustained induction of angiogenesis. The inductive activity of hTGF-β3 in Matrigel® matrix is enhanced by the addition of autogenous morcellated fragments of the rectus abdominis muscle potentially providing myoblastic, pericytic/perivascular stem cells for continuous tissue induction and morphogenesis. The striated rectus abdominis muscle is endowed with stem cell niches in para/perivascular location, which can be dominant, thus imposing stem cell features or stemness to the surrounding cells. This capacity to impose stemness is morphologically shown by greater alveolar bone induction and cementogenesis when hTGF-β3 in Matrigel® matrix is combined with morcellated fragments of autogenous rectus abdominis muscle. The induction of periodontal tissue morphogenesis develops as a mosaic structure in which the osteogenic proteins of the TGF-β supergene family singly, synergistically and synchronously initiate and maintain tissue induction and morphogenesis. In primates, the presence of several homologous yet molecularly different isoforms with osteogenic activity highlights the biological significance of this apparent redundancy and indicates multiple interactions during embryonic development and bone regeneration in postnatal life. Molecular redundancy with associated different biological functionalities in primate tissues may simply represent the fine-tuning of speciation-related molecular evolution in anthropoid apes at the early Pliocene boundary, which resulted in finer tuning of the bone induction cascade.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Laboratory, Department of Oral Medicine & Periodontology, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Al‐Sharabi N, Xue Y, Udea M, Mustafa K, Fristad I. Influence of bone marrow stromal cell secreted molecules on pulpal and periodontal healing in replanted immature rat molars. Dent Traumatol 2015; 32:231-9. [DOI: 10.1111/edt.12246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Niyaz Al‐Sharabi
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Ying Xue
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Minora Udea
- Department of Oral and Maxillofacial Surgery University of Nagoya Nagoya Japan
| | - Kamal Mustafa
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Inge Fristad
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| |
Collapse
|
6
|
Li L, Zhu Z, Xiao W, Li L. Multi-walled carbon nanotubes promote cementoblast differentiation and mineralization through the TGF-β/Smad signaling pathway. Int J Mol Sci 2015; 16:3188-201. [PMID: 25648319 PMCID: PMC4346888 DOI: 10.3390/ijms16023188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Excretion of cementum by cementoblasts on the root surface is a process indispensable for the formation of a functional periodontal ligament. This study investigated whether carboxyl group-functionalized multi-walled carbon nanotubes (MWCNT-COOH) could enhance differentiation and mineralization of mammalian cementoblasts (OCCM-30) and the possible signaling pathway involved in this process. Cementoblasts were incubated with various doses of MWCNT-COOH suspension. Cell viability was detected, and a scanning electron microscopy (SEM) observed both the nanomaterials and the growth of cells cultured with the materials. Alizarin red staining was used to investigate the formation of calcium deposits. Real-time PCR and western blot were used to detect cementoblast differentiation and the underlying mechanisms through the expression of the osteogenic genes and the downstream effectors of the TGF-β/Smad signaling. The results showed that 5 µg/mL MWCNT-COOH had the most obvious effects on promoting differentiation without significant toxicity. Alp, Ocn, Bsp, Opn, Col1 and Runx2 gene expression was up-regulated. Smad2 and Smad3 mRNA was up-regulated, while Smad7 was first down-regulated on Day 3 and later up-regulated on Day 7. The elevated levels of phospho-Smad2/3 were also confirmed by western blot. In sum, the MWCNT-COOH promoted cementoblast differentiation and mineralization, at least partially, through interactions with the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Weixiong Xiao
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Li
- State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Re-evaluating the induction of bone formation in primates. Biomaterials 2014; 35:9407-22. [DOI: 10.1016/j.biomaterials.2014.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
8
|
Iwata T, Yamato M, Ishikawa I, Ando T, Okano T. Tissue engineering in periodontal tissue. Anat Rec (Hoboken) 2013; 297:16-25. [PMID: 24343910 DOI: 10.1002/ar.22812] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
Abstract
Periodontitis, a recognized disease worldwide, is bacterial infection-induced inflammation of the periodontal tissues that results in loss of alveolar bone. Once it occurs, damaged tissue cannot be restored to its original form, even if decontaminating treatments are performed. For more than half a century, studies have been conducted to investigate true periodontal regeneration. Periodontal regeneration is the complete reconstruction of the damaged attachment apparatus, which contains both hard tissue (alveolar bone and cementum) and soft tissue (periodontal ligament). Several treatments, including bone grafts, guided tissue regeneration with physical barriers for epithelial cells, and growth factors have been approved for clinical use; however, their indications and outcomes are limited. To overcome these limitations, the concept of "tissue engineering" was introduced. Combination treatment using cells, growth factors, and scaffolds, has been studied in experimental animal models, and some studies have been translated into clinical trials. In this review, we focus on recent progressive tissue engineering studies and discuss future perspectives on periodontal regeneration.
Collapse
Affiliation(s)
- Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Requicha JF, Viegas CA, Muñoz F, Reis RL, Gomes ME. Periodontal tissue engineering strategies based on nonoral stem cells. Anat Rec (Hoboken) 2013; 297:6-15. [PMID: 24293355 DOI: 10.1002/ar.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 01/09/2023]
Abstract
Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration.
Collapse
Affiliation(s)
- João Filipe Requicha
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal; Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
10
|
Reis ECC, Borges APB, del Carlo RJ, Oliveira PM, Sepúlveda RV, Fernandes NA, Martins LMA, Carvalho TB. Guided tissue regeneration using rigid absorbable membranes in the dog model of chronic furcation defect. Acta Odontol Scand 2013; 71:372-80. [PMID: 22587413 DOI: 10.3109/00016357.2012.680909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Absorbable membranes are used to promote the regeneration of periodontal defects by Guided Tissue Regeneration (GTR). However, their collapse into the defect is commonly reported, impairing regeneration. Therefore, absorbable but rigid membranes aiming at preventing such collapse were developed and analyzed in periodontal regeneration. MATERIALS AND METHODS Membranes were analyzed in class II furcation defects in dogs; procedures included periodontal disease induction, prophylaxis and GTR (treated groups) or open flap debridement alone (control group). For GTR, the membranes were made of either 25% hydroxyapatite (HA) in polyhydroxybutyrate matrix (PHB) or 35% HA in PHB. Animals were clinically evaluated for gingival recession, clinical attachment level (CAL) and biopsies were collected at 60 and 120 days. Bone volume, trabeculae number, trabecular thickness and trabecular separation were quantified by micro-computed tomography, followed by histology. RESULTS Membrane exposure was observed in both treated groups (25 and 35% HAP) from the 8(th) day after surgery, continuously progressing until 120 days. Mean CAL for all groups remained above normal values for dogs. Bone volumetric values were not significantly different. Partial formation of bone, cementum and periodontal ligament was observed in treated groups. An inflammatory infiltrate was observed in the dense connective tissue that partially filled the center of the treated defects with active osteoclasts on bone surface. CONCLUSION Although partial regeneration of the defect was observed, it was limited by wound contamination. Consequently, rigid absorbable membranes made of HA and PHB failed to improve the regeneration of class II furcation defects in dogs.
Collapse
|
11
|
Dickinson DP, Coleman BG, Batrice N, Lee J, Koli K, Pennington C, Susin C, Wikesjö UME. Events of wound healing/regeneration in the canine supraalveolar periodontal defect model. J Clin Periodontol 2013; 40:527-41. [PMID: 23461721 DOI: 10.1111/jcpe.12055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/28/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
AIM The objective of this research was to elucidate early events in periodontal wound healing/regeneration using histological and immunohistochemical techniques. METHODS Routine critical-size, supraalveolar, periodontal defects including a space-providing titanium mesh device were created in 12 dogs. Six animals received additional autologous blood into the defect prior to wound closure. One animal from each group was killed for analysis at 2, 5, 9, 14 days, and at 4 and 8 weeks. RESULTS Both groups behaved similarly. Periodontal wound healing/regeneration progressed through three temporal phases. Early phase (2-5 days): heterogeneous clot consolidation and cell activation in the periodontal ligament (PDL) and trabecular bone was associated with PDL regeneration and formation of a pre-osteoblast population. Intermediate phase (9-14 days): cell proliferation (shown by PCNA immunostaining)/migration led to osteoid/bone, PDL and cementum formation. Late phase (4-8 weeks): primarily characterized by tissue remodelling/maturation. Fibrous connective tissue from the gingival mucosa entered the wound early, competing with regeneration. By day 14, the wound space was largely filled with regenerative and reparative tissues. CONCLUSION Activation of cellular regenerative events in periodontal wound healing/regeneration is rapid; the general framework for tissue formation is broadly outlined within 14 days. Most bone formation apparently originates from endosteally derived pre-osteoblasts; the PDL possibly acting as a supplementary source, with a primary function likely being regulatory/homeostatic. Blood accumulation at the surgical site warrants exploration; supplementation may be beneficial.
Collapse
Affiliation(s)
- Douglas P Dickinson
- Laboratory for Applied Periodontal & Craniofacial Regeneration, Georgia Regents University College of Dental Medicine, Augusta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, Stevens M. Effects of different growth factors and carriers on bone regeneration: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 116:e405-23. [PMID: 22901644 DOI: 10.1016/j.oooo.2012.01.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/26/2011] [Accepted: 01/10/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The application and subsequent investigations in the use of varied osteogenic growth factors in bone regeneration procedures have grown dramatically over the past several years. Owing to this rapid gain in popularity and documentation, a review was undertaken to evaluate the in vivo effects of growth factors on bone regeneration. STUDY DESIGN Using related key words, electronic databases (Medline, Embase, and Cochrane) were searched for articles published from 1999 to April 2010 to find growth factor application in bone regeneration in human or animal models. RESULTS A total of 63 articles were matched with the inclusion criteria of this study. Bone morphogenetic protein 2 (BMP-2) was the most studied growth factor. Carriers for the delivery, experimental sites, and methods of evaluation were different, and therefore articles did not come to a general agreement. CONCLUSIONS Within the limitations of this review, BMP-2 may be an appropriate growth factor for osteogenesis.
Collapse
Affiliation(s)
- Arash Khojasteh
- Assistant Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Head, Division of Basic Sciences, Dental Research Center, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
13
|
Periodontal healing by periodontal ligament cell sheets in a teeth replantation model. Arch Oral Biol 2012; 57:169-76. [DOI: 10.1016/j.archoralbio.2011.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/17/2011] [Accepted: 08/13/2011] [Indexed: 11/24/2022]
|
14
|
Teare JA, Petit JC, Ripamonti U. Synergistic induction of periodontal tissue regeneration by binary application of human osteogenic protein-1 and human transforming growth factor-β3 in Class II furcation defects of Papio ursinus. J Periodontal Res 2011; 47:336-44. [DOI: 10.1111/j.1600-0765.2011.01438.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ripamonti U, Roden LC. Induction of bone formation by transforming growth factor-beta2 in the non-human primate Papio ursinus and its modulation by skeletal muscle responding stem cells. Cell Prolif 2010; 43:207-18. [PMID: 20546239 DOI: 10.1111/j.1365-2184.2010.00675.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Four adult non-human primates Papio ursinus were used to study induction of bone formation by recombinant human transforming growth factor-beta(2) (hTGF-beta(2)) together with muscle-derived stem cells. MATERIALS AND METHODS The hTGF-beta(2) was implanted in rectus abdominis muscles and in calvarial defects with and without addition of morcellized fragments of striated muscle, harvested from the rectus abdominis or temporalis muscles. Expression of osteogenic markers including osteogenic protein-1, bone morphogenetic protein-3 and type IV collagen mRNAs from generated specimens was examined by Northern blot analysis. RESULTS Heterotopic intramuscular implantation of 5 and 25 microg hTGF-beta(2) combined with 100 mg of insoluble collagenous bone matrix yielded large corticalized mineralized ossicles by day 30 with remodelling and induction of haematopoietic marrow by day 90. Addition of morcellized rectus abdominis muscle to calvarial implants enhanced induction of bone formation significantly by day 90. CONCLUSIONS In Papio ursinus, in marked contrast to rodents and lagomorphs, hTGF-beta(2) induced large corticalized and vascularized ossicles by day 30 after implantation into the rectus abdominis muscle. This striated muscle contains responding stem cells that enhance the bone induction cascade of hTGF-beta(2). Induction of bone formation by hTGF-beta(2) in the non-human primate Papio ursinus may occur as a result of expression of bone morphogenetic proteins on heterotopic implantation of hTGF-beta(2); the bone induction cascade initiated by mammalian TGF-beta proteins in Papio ursinus needs to be re-evaluated for novel molecular therapeutics for induction of bone formation in clinical contexts.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
16
|
Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery. J Craniofac Surg 2010; 20:1544-55. [PMID: 19816294 DOI: 10.1097/scs.0b013e3181b09ca6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Craniofacial skeletal reconstruction remains a challenging problem despite major molecular and surgical developments in the understanding of bone formation by induction. The induction of bone formation has been a critical topic of research across the planet. The bone induction principle identified important cues for tissue engineering of bone, namely, osteogenic soluble molecular signals, the bone morphogenetic and osteogenic proteins, and insoluble signals or substrata including biomimetic bioactive matrices and responding stem cells. In primates, and in primates only, the osteogenic soluble molecular signals that initiate the induction of bone formation additionally include the 3 mammalian transforming growth factor-beta (TGF-beta) isoforms, members of the TGF-beta supergene family. The mammalian TGF-beta isoforms, when implanted in the rectus abdominis muscle of the nonhuman primate Papio ursinus, induce rapid and substantial endochondral bone formation resulting in large corticalized ossicles by day 30 after heterotopic implantation; in calvarial defects of the same nonhuman primates, identical or higher doses of the TGF-beta protein do not induce bone formation because of the overexpression of Smad-6 and Smad-7, gene product inhibitors of the TGF-beta signaling pathway. The addition of minced fragments of autogenous rectus abdominis muscle partially restores the osteoinductive activity of the human TGF-beta3 isoform resulting in the induction of bone formation in the treated calvarial defects. Recombinant human TGF-beta3 delivered by Matrigel matrix and implanted in class II and III furcation defects of mandibular molars of P. ursinus induce periodontal tissue regeneration. The addition of minced fragments of autogenous rectus abdominis muscle significantly enhances cementogenesis. This review highlights the induction of bone formation by the osteogenic proteins of the TGF-beta superfamily in the nonhuman primate P. ursinus and reviews combinatorial applications of myoblastic/myogenic stem cell-based therapeutics for bone induction and morphogenesis. The recruitment of myoendothelial cells is also discussed in the light of the intrinsic and spontaneous induction of bone formation by smart biomaterial matrices that induce bone differentiation in heterotopic extraskeletal sites of P. ursinus without the exogenous application of the osteogenic soluble molecular signals of the TGF-beta superfamily.
Collapse
|
17
|
|
18
|
Ripamonti U, Petit JC. Bone morphogenetic proteins, cementogenesis, myoblastic stem cells and the induction of periodontal tissue regeneration. Cytokine Growth Factor Rev 2009; 20:489-99. [DOI: 10.1016/j.cytogfr.2009.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|