1
|
Lopes MES, Marcantonio CC, Salmon CR, Mofatto LS, Nociti Junior FH, Eick S, Deschner J, Cirelli JA, Nogueira AVB. Effects of periodontal disease on the proteomic profile of the periodontal ligament. J Proteomics 2025; 314:105384. [PMID: 39800186 DOI: 10.1016/j.jprot.2025.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into control and experimental periodontitis groups. The PDL was isolated using laser capture microdissection and protein extracts were analyzed by mass spectrometry. Data analysis utilized specialized software, and Gene Ontology enrichment analysis identified significant protein functions. The data are available via ProteomeXchange with identifier PXD055817. Proteins such as SerpinB1, C5, and Lgals3 were validated through immunohistochemistry, and their gene expression was examined in an in vitro human PDL cell line. This study identified 1326 proteins, with 156 unique to the control group, 294 unique to the periodontitis group, and 876 common to both groups. Enrichment analysis revealed that proteins associated with the regulation of enzyme activity and RNA binding were significantly represented in the periodontitis group. There were increased levels of SerpinB1, C5, and Lgals3 in the periodontitis group based on proteomic and immunohistochemical analyses. Furthermore, these targets showed increased gene expression in stimulated human PDL cells. This study provides insights into the periodontitis-related alterations in the protein composition of the PDL and PDL cells, identifying both novel and previously known disease-associated proteins. SIGNIFICANCE: The periodontal ligament plays a crucial role in oral functions by providing structural support to the tooth. Due to the presence of undifferentiated mesenchymal cells, research into its regenerative capacity is ongoing. Pathological conditions can affect these functions and protein composition. Currently, there is a lack of comprehensive research specifically focusing on evaluating the periodontal ligament in both healthy and diseased states. This pioneering study screened for protein alterations and the mechanisms related to periodontitis. The possibility of using proteomic analysis to evaluate the protein alterations that occur in periodontitis, a disease with a high global incidence, could provide therapeutic targets and new biomarkers for future clinical studies.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; Dental School, Centro Universitário N. Sra do Patrocínio - CEUNSP, Itu, São Paulo, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Francisco Humberto Nociti Junior
- ADA Forsyth Institute, Cambridge, MA, USA; Dental School, São Leopoldo Mandic, Department of Research, Campinas, São Paulo, Brazil
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Napiórkowska-Baran K, Darwish S, Kaczor J, Treichel P, Szymczak B, Szota M, Koperska K, Bartuzi Z. Oral Diseases as a Manifestation of Inborn Errors of Immunity. J Clin Med 2024; 13:5079. [PMID: 39274292 PMCID: PMC11396297 DOI: 10.3390/jcm13175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Oral findings such as inflammation, ulcerations, or lesions can indicate serious systemic diseases and should prompt suspicion of acquired chronic conditions or inborn errors of immunity (IEIs). Currently, there are approximately 500 disease entities classified as IEIs, with the list expanding annually. The awareness of the existence of such conditions is of paramount importance, as patients with these disorders frequently necessitate the utilization of enhanced diagnostic techniques. This is exemplified by patients with impaired antibody production, in whom conventional serological methods may prove to be undiagnostic. Patients with IEI may require distinct therapeutic approaches or antimicrobial prophylaxis throughout their lives. An accurate diagnosis and, more importantly, early identification of patients with immune deficiencies is crucial to ensure the quality and longevity of their lives. It is important to note that the failure to establish a proper diagnosis or to provide adequate treatment could also have legal implications for medical professionals. The article presents IEIs, which may manifest in the oral cavity, and their diagnosis alongside therapeutic procedures.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Justyna Kaczor
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Maciej Szota
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| |
Collapse
|
3
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
4
|
Liao Z, Zhao T, Wang N, Chen J, Sun W, Wu J. Transcriptome Analysis of Monocytes and Fibroblasts Provides Insights Into the Molecular Features of Periodontal Ehlers-Danlos Syndrome. Front Genet 2022; 13:834928. [PMID: 35571048 PMCID: PMC9095904 DOI: 10.3389/fgene.2022.834928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal Ehlers–Danlos syndrome (pEDS) is a rare hereditary disorder characterized by severe early-onset periodontitis with premature tooth loss, pretibial hyperpigmentation, and skin fragility. It is caused by mutant variants in the C1R and C1S genes that result in C4 cleavage and local complement cascade activation, as well as other possible consequences. However, the exact functional consequences of this activation remain unclear. To shed light on molecular mechanisms underlying pEDS and to identify novel molecular targets that may expand treatment strategies, we performed transcriptome profiling by RNA sequencing of monocytes and gingival fibroblasts from two patients with pEDS. Compared to normal controls, differential expression of genes was found only in monocytes but not gingival fibroblasts. Most of the significant genes were enriched in biological processes such as neutrophil-mediated immunity, response to bacterium, TNF-α and IL-17 pathway which are related to inflammation response and immune response. In disease ontology enrichment analysis, genes related to periodontal host defense, inflammatory response, skin disease, and vascular development, including MMP9, VEGFA, IL10, IL1A, IL1B, IL2RA, and IL6, were significantly enriched and also validated by qPCR and ELISA. Overall, the present study provides the transcriptomic data of pEDS for the first time and the distinct molecular features in monocytes of pEDS might serve as a tool to better understand the disease.
Collapse
Affiliation(s)
- Zhuoyi Liao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ningxiang Wang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Stomatology, Nanjing Hospital of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jiaqi Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Toy CR, Song H, Nagaraja HN, Scott J, Greco J, Zhang X, Yu CY, Tumlin JA, Rovin BH, Hebert LA, Birmingham DJ. The Influence of an Elastase-Sensitive Complement C5 Variant on Lupus Nephritis and Its Flare. Kidney Int Rep 2021; 6:2105-2113. [PMID: 34386659 PMCID: PMC8344111 DOI: 10.1016/j.ekir.2021.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction A C5 polymorphism (rs17611, 2404G>A) exists where the G allele associates with enhanced C5a-like production by neutrophil elastase. This cohort study investigated the influence of this polymorphism as a risk factor for lupus nephritis (LN), and on C5a and membrane attack complex (MAC) levels in LN during flare. Methods A cohort of lupus patients (n = 155) was genotyped for the 2404G>A polymorphism. A longitudinal LN subset (n = 66) was tested for plasma and urine levels of C5a and MAC 4 and/or 2 months before and at nonrenal or LN flare. Results The 2404G allele and 2404-GG genotype were associated with LN in black, but not white, lupus patients. In the longitudinal cohort, neither urine nor plasma C5a levels changed at nonrenal flare regardless of 2404G>A genotype or race. Urine (but not plasma) C5a levels increased at LN flare independent of race, more so in 2404-GG patients where 8 of 30 LN flares exhibited very high C5a levels. Higher proteinuria and serum creatinine levels also occurred in these eight flares. Urine (but not plasma) MAC levels also increased at LN flare in 2404-GG patients and correlated with urine C5a levels. Conclusions The C5 2404-G allele/GG genotype is a potential risk factor for LN uniquely in black lupus patients. The GG genotype is associated with sharp increases in urine C5a and MAC levels in a subset of LN flares that correspond to higher LN disease indices. The lack of corresponding changes in plasma suggests these increases reflect intrarenal complement activation.
Collapse
Affiliation(s)
- Chris R Toy
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Huijuan Song
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Haikady N Nagaraja
- Division of Biostatistics, Ohio State University College of Public Health, Columbus, Ohio, USA
| | - Julia Scott
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Jessica Greco
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaolan Zhang
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Chack-Yung Yu
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, and Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | - James A Tumlin
- NephroNet Clinical Research Consortium, Atlanta, Georgia, USA
| | - Brad H Rovin
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Lee A Hebert
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Daniel J Birmingham
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
6
|
Luntzer K, Lackner I, Weber B, Mödinger Y, Ignatius A, Gebhard F, Mihaljevic SY, Haffner-Luntzer M, Kalbitz M. Increased Presence of Complement Factors and Mast Cells in Alveolar Bone and Tooth Resorption. Int J Mol Sci 2021; 22:ijms22052759. [PMID: 33803323 PMCID: PMC7967164 DOI: 10.3390/ijms22052759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is the inflammatory destruction of the tooth-surrounding and -supporting tissue, resulting at worst in tooth loss. Another locally aggressive disease of the oral cavity is tooth resorption (TR). This is associated with the destruction of the dental mineralized tissue. However, the underlying pathomechanisms remain unknown. The complement system, as well as mast cells (MCs), are known to be involved in osteoclastogenesis and bone loss. The complement factors C3 and C5 were previously identified as key players in periodontal disease. Therefore, we hypothesize that complement factors and MCs might play a role in alveolar bone and tooth resorption. To investigate this, we used the cat as a model because of the naturally occurring high prevalence of both these disorders in this species. Teeth, gingiva samples and serum were collected from domestic cats, which had an appointment for dental treatment under anesthesia, as well as from healthy cats. Histological analyses, immunohistochemical staining and the CH-50 and AH-50 assays revealed increased numbers of osteoclasts and MCs, as well as complement activity in cats with TR. Calcifications score in the gingiva was highest in animals that suffer from TR. This indicates that MCs and the complement system are involved in the destruction of the mineralized tissue in this condition.
Collapse
Affiliation(s)
- Kathrin Luntzer
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
- Small Animal Clinic Ravensburg Evidensia GmbH, Eywiesenstraße 4, 88212 Ravensburg, Germany
| | - Ina Lackner
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | - Birte Weber
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | - Yvonne Mödinger
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Anita Ignatius
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Florian Gebhard
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
| | | | - Melanie Haffner-Luntzer
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Institute of Orthopedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Miriam Kalbitz
- Center for Trauma Research Ulm (ZTF), University of Ulm, 89081 Ulm, Germany; (K.L.); (I.L.); (B.W.); (Y.M.); (A.I.); (F.G.); (M.H.-L.)
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
7
|
Zheng Y, Chai L, Fan Y, Song YQ, Zee KY, Tu WW, Jin L, Leung WK. Th2 cell regulatory and effector molecules single nucleotide polymorphisms and periodontitis. J Leukoc Biol 2020; 108:1641-1654. [PMID: 32745291 DOI: 10.1002/jlb.4ma0720-698rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
To investigate the association between T helper 2 (Th2) cell regulatory and effector molecules' genetic polymorphisms and periodontitis. Single nucleotide polymorphisms (SNPs) of 11 Th2 cell regulatory or effector molecules genes (CD28, CTLA4, IL4, IL5, IL6, IL9, IL10, IL13, IL4R, GATA3, STAT6, and rs1537415; total 130 SNPs) were studied in Chinese nonsmokers (163 periodontitis-free controls, 141 periodontitis patients) using Sequenom iPlex assays. SNPs potentially associated with periodontitis (adjusted allelic P < 0.1) in this cross-sectional study were further investigated via meta-analysis. Allele G of rs4553808 in promoter of CTLA4 was more frequently detected in periodontitis than controls (P < 0.005), but did not remain significant after age and gender adjustment. Haplotype (GTT) in a block of three CTLA4 SNPs (rs4553808, rs16840252, rs5742909) was significantly associated with periodontitis. Meta-analysis of SNPs identified indicated allele T of CTLA4 rs5742909 (3 studies; 461 control, 369 periodontitis) and allele G of IL6 rs1800796 (18 studies; 2760 control, 2442 periodontitis) were significantly associated with periodontitis (OR = 1.44 and OR = 1.30, respectively). Within limitations of this study, a haplotype of CTLA4 concerning Th2 cell regulation, may be associated with periodontitis in Chinese nonsmokers followed. Meta-analysis indicated rs5742909 of CTLA4 and rs1800796 of IL6 appeared significantly associated with periodontitis.
Collapse
Affiliation(s)
- Ying Zheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Chai
- Rytime Dental Hospital, Chengdu, Sichuan, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Current address: Phil Rivers Technology, Nanshan District, Haitian Second Road, Shenzhen, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwan-Yat Zee
- Thornleigh Periodontal Clinic, Thornleigh, New South Wales, Australia
| | - Wen Wei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
van Dijk BJ, Meijers JCM, Kloek AT, Knaup VL, Rinkel GJE, Morgan BP, van der Kamp MJ, Osuka K, Aronica E, Ruigrok YM, van de Beek D, Brouwer M, Pekna M, Hol EM, Vergouwen MDI. Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:678-688. [PMID: 31811640 PMCID: PMC7340633 DOI: 10.1007/s12975-019-00757-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Previous studies showed that complement activation is associated with poor functional outcome after aneurysmal subarachnoid hemorrhage (SAH). We investigated whether complement activation is underlying brain injury after aneurysmal SAH (n = 7) and if it is an appropriate treatment target. We investigated complement expression in brain tissue of aneurysmal SAH patients (n = 930) and studied the role of common genetic variants in C3 and C5 genes in outcome. We analyzed plasma levels (n = 229) to identify the functionality of a single nucleotide polymorphism (SNP) associated with outcome. The time course of C5a levels was measured in plasma (n = 31) and CSF (n = 10). In an SAH mouse model, we studied the extent of microglia activation and cell death in wild-type mice, mice lacking the C5a receptor, and in mice treated with C5-specific antibodies (n = 15 per group). Brain sections from aneurysmal SAH patients showed increased presence of complement components C1q and C3/C3b/iC3B compared to controls. The complement component 5 (C5) SNP correlated with C5a plasma levels and poor disease outcome. Serial measurements in CSF revealed that C5a was > 1400-fold increased 1 day after aneurysmal SAH and then gradually decreased. C5a in plasma was 2-fold increased at days 3–10 after aneurysmal SAH. In the SAH mouse model, we observed a ≈ 40% reduction in both microglia activation and cell death in mice lacking the C5a receptor, and in mice treated with C5-specific antibodies. These data show that C5 contributes to brain injury after experimental SAH, and support further study of C5-specific antibodies as novel treatment option to reduce brain injury and improve prognosis after aneurysmal SAH.
Collapse
Affiliation(s)
- Bart J van Dijk
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, Amsterdam, The Netherlands
| | - Anne T Kloek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Veronique L Knaup
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gabriel J E Rinkel
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - B Paul Morgan
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff, UK
| | - Marije J van der Kamp
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Karimatayazako, Aichi, Japan
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ynte M Ruigrok
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marcela Pekna
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 9A, Gothenburg, Sweden
| | - Elly M Hol
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| | - Mervyn D I Vergouwen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Association of TRAF1/C5 Locus Polymorphisms with Epilepsy and Clinical Traits in Mexican Patients with Neurocysticercosis. Infect Immun 2019; 87:IAI.00347-19. [PMID: 31570557 DOI: 10.1128/iai.00347-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.
Collapse
|
10
|
Hajishengallis G, Kajikawa T, Hajishengallis E, Maekawa T, Reis ES, Mastellos DC, Yancopoulou D, Hasturk H, Lambris JD. Complement-Dependent Mechanisms and Interventions in Periodontal Disease. Front Immunol 2019; 10:406. [PMID: 30915073 PMCID: PMC6422998 DOI: 10.3389/fimmu.2019.00406] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a prevalent inflammatory disease that leads to the destruction of the tooth-supporting tissues. Current therapies are not effective for all patients and this oral disease continues to be a significant public health and economic burden. Central to periodontal disease pathogenesis is a reciprocally reinforced interplay between microbial dysbiosis and destructive inflammation, suggesting the potential relevance of host-modulation therapies. This review summarizes and discusses clinical observations and pre-clinical intervention studies that collectively suggest that complement is hyperactivated in periodontitis and that its inhibition provides a therapeutic benefit. Specifically, interception of the complement cascade at its central component, C3, using a locally administered small peptidic compound (Cp40/AMY-101) protected non-human primates from induced or naturally occurring periodontitis. These studies indicate that C3-targeted intervention merits investigation as an adjunctive treatment of periodontal disease in humans.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evlambia Hajishengallis
- Division of Pediatric Dentistry, Department of Preventive and Restorative Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Hatice Hasturk
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Ryder MI, Couch ET, Chaffee BW. Personalized periodontal treatment for the tobacco- and alcohol-using patient. Periodontol 2000 2018; 78:30-46. [PMID: 30198132 PMCID: PMC6132065 DOI: 10.1111/prd.12229] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of various forms of tobacco is one of the most important preventable risk factors for the incidence and progression of periodontal disease. Tobacco use negatively affects treatment outcomes for both periodontal diseases and conditions, and for dental implants. Tobacco-cessation programs can mitigate these adverse dental treatment outcomes and may be the most effective component of a personalized periodontal treatment approach. In addition, heavy alcohol consumption may exacerbate the adverse effects of tobacco use. In this review, the microbiology, host/inflammatory responses and genetic characteristics of the tobacco-using patient are presented as a framework to aid the practitioner in developing personalized treatment strategies for these patients. These personalized approaches can be used for patients who use a variety of tobacco products, including cigarettes, cigars, pipes, smokeless tobacco products, e-cigarettes and other tobacco forms, as well as patients who consume large amounts of alcohol. In addition, principles for developing personalized tobacco-cessation programs, using both traditional and newer motivational and pharmacological approaches, are presented.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Elizabeth T Couch
- Department or Preventive and Restorative Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Benjamin W Chaffee
- Department or Preventive and Restorative Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
de Coo A, Quintela I, Blanco J, Diz P, Carracedo Á. Assessment of genotyping tools applied in genetic susceptibility studies of periodontal disease: A systematic review. Arch Oral Biol 2018; 92:38-50. [DOI: 10.1016/j.archoralbio.2018.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
|
13
|
Kaur G, Grover V, Bhaskar N, Kaur RK, Jain A. Periodontal Infectogenomics. Inflamm Regen 2018; 38:8. [PMID: 29760828 PMCID: PMC5937045 DOI: 10.1186/s41232-018-0065-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are chronic infectious disease in which the pathogenic bacteria initiate the host immune response leading to the destruction of tooth supporting tissue and eventually result in the tooth loss. It has multifactorial etiological factors including local, systemic, environmental and genetic factors. The effect of genetic factors on periodontal disease is already under extensive research and has explained the role of polymorphisms of immune mediators affecting disease response. The role genetic factors in pathogens colonisation is emerged as a new field of research as "infectogenomics". It is a rapidly evolving and high-priority research area now days. It further elaborates the role of genetic factors in disease pathogenesis and help in the treatment, control and early prevention of infection. The aim of this review is to summarise the contemporary evidence available in the field of periodontal infectogenomics to draw some valuable conclusions to further elaborate its role in disease pathogenesis and its application in the clinical practice. This will open up opportunity for more extensive research in this field.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Vishakha Grover
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Nandini Bhaskar
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Rose Kanwaljeet Kaur
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Ashish Jain
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| |
Collapse
|
14
|
Goh V, Nihalani D, Yeung KWS, Corbet EF, Leung WK. Moderate- to long-term therapeutic outcomes of treated aggressive periodontitis patients without regular supportive care. J Periodontal Res 2017; 53:324-333. [DOI: 10.1111/jre.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- V. Goh
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
- Faculty of Dentistry; The National University of Malaysia; Kuala Lumpur Malaysia
| | - D. Nihalani
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - K. W. S. Yeung
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - E. F. Corbet
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - W. K. Leung
- Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
15
|
Goh V, Hackmack PP, Corbet EF, Leung WK. Moderate- to long-term periodontal outcomes of subjects failing to complete a course of periodontal therapy. Aust Dent J 2017; 62:152-160. [DOI: 10.1111/adj.12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
Affiliation(s)
- V Goh
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
- Faculty of Dentistry; The National University of Malaysia; Kuala Lumpur Malaysia
| | - PP Hackmack
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - EF Corbet
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - WK Leung
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
16
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
17
|
Genetic Investigation of Complement Pathway Genes in Type 2 Diabetic Retinopathy: An Inflammatory Perspective. Mediators Inflamm 2016; 2016:1313027. [PMID: 26989329 PMCID: PMC4771919 DOI: 10.1155/2016/1313027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) has complex multifactorial pathogenesis. This study aimed to investigate the association of complement pathway genes with susceptibility to DR. Eight haplotype-tagging SNPs of SERPING1 and C5 were genotyped in 570 subjects with type 2 diabetes: 295 DR patients (138 nonproliferative DR [NPDR] and 157 proliferative DR [PDR]) and 275 diabetic controls. Among the six C5 SNPs, a marginal association was first detected between rs17611 and total DR patients (P = 0.009, OR = 0.53 for recessive model). In stratification analysis, a significant decrease in the frequencies of G allele and GG homozygosity for rs17611 was observed in PDR patients compared with diabetic controls (Pcorr = 0.032, OR = 0.65 and Pcorr = 0.016, OR = 0.37, resp.); it was linked with a disease progression. A haplotype AA defined by the major alleles of rs17611 and rs1548782 was significantly predisposed to PDR with increased risk of 1.54 (Pcorr = 0.023). Regarding other variants in C5 and SERPING1, none of the tagging SNPs had a significant association with DR and its subgroups (all P > 0.05). Our study revealed an association between DR and C5 polymorphisms with clinical significance, whereas SERPING1 is not a major genetic component of DR. Our data suggest a link of complement pathway with DR pathogenesis.
Collapse
|
18
|
Giles JL, Choy E, van den Berg C, Morgan BP, Harris CL. Response to Comment on “Functional Analysis of a Complement Polymorphism (rs17611) Associated with Rheumatoid Arthritis”. THE JOURNAL OF IMMUNOLOGY 2015; 195:4. [DOI: 10.4049/jimmunol.1500968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Giles JL, Choy E, van den Berg C, Morgan BP, Harris CL. Functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3029-34. [PMID: 25725109 PMCID: PMC4367161 DOI: 10.4049/jimmunol.1402956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement is implicated in the pathogenesis of rheumatoid arthritis (RA); elevated levels of complement activation products have been measured in plasma, synovial fluid, and synovial tissues of patients. Complement polymorphisms are associated with RA in genome-wide association studies. Coding-region polymorphisms may directly impact protein activity; indeed, we have shown that complement polymorphisms affecting a single amino acid change cause subtle changes in individual component function that in combination have dramatic effects on complement activity and disease risk. In this study, we explore the functional consequences of a single nucleotide polymorphism (SNP) (rs17611) encoding a V802I polymorphism in C5 and propose a mechanism for its link to RA pathology. Plasma levels of C5, C5a, and terminal complement complex were measured in healthy and RA donors and correlated to rs17611 polymorphic status. Impact of the SNP on C5 functionality was assessed. Plasma C5a levels were significantly increased and C5 levels significantly lower with higher copy number of the RA risk allele for rs17611, suggesting increased turnover of C5 V802. Functional assays using purified C5 variants revealed no significant differences in lytic activity, suggesting that increased C5 V802 turnover was not mediated by complement convertase enzymes. C5 is also cleaved in vivo by proteases; the C5 V802 variant was more sensitive to cleavage with elastase and the “C5a” generated was biologically active. We hypothesize that this SNP in C5 alters the rate at which elastase generates active C5a in rheumatoid joints, hence recruiting neutrophils to the site thus maintaining a state of inflammation in arthritic joints.
Collapse
Affiliation(s)
- Joanna L Giles
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom;
| | - Ernest Choy
- Cardiff Regional Experimental Arthritis Treatment and Evaluation Centre, Section of Rheumatology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Carmen van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Claire L Harris
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
20
|
Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 2013; 25:65-72. [PMID: 23684627 DOI: 10.1016/j.smim.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
21
|
Complement-targeted therapeutics in periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:197-206. [PMID: 23402028 DOI: 10.1007/978-1-4614-4118-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is a prevalent oral chronic inflammatory disease which, in severe forms, may exert a major impact on systemic health. Clinical and histological observations, as well as experimental animal studies, suggest involvement of the complement system in periodontitis. However, the precise roles of the various complement components and pathways in periodontitis have only recently started to be elucidated. In this chapter, we review recent progress in the field and discuss the potential of complement-targeted therapeutics in the treatment of periodontitis.
Collapse
|
22
|
Hart R, Doherty DA, Pennell CE, Newnham IA, Newnham JP. Periodontal disease: a potential modifiable risk factor limiting conception. Hum Reprod 2012; 27:1332-42. [DOI: 10.1093/humrep/des034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
23
|
Chai L, Song YQ, Leung WK. Genetic polymorphism studies in periodontitis and Fcγ receptors. J Periodontal Res 2011; 47:273-85. [PMID: 22117888 DOI: 10.1111/j.1600-0765.2011.01437.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is a complex chronic subgingival plaque-induced inflammatory disease influenced by multiple factors, including genetics, behavior and the environment. Many genetic association studies have been conducted in periodontology. One of the most extensively investigated gene families is the Fcγ receptor gene family, which plays a key role in regulating host immune responses to bacteria. Unlike other genetic polymorphisms reported in periodontology, most Fcγ receptor polymorphisms reported not only have established biological functions but are reported to associate with other autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. There are, however, few recent reviews summarizing the association of this gene family with periodontitis. This article critically reviews the current understanding of genetic polymorphism studies in periodontitis, then summarizes the research status of Fcγ receptor polymorphisms and periodontitis and also of other genes involved in the regulatory network of Fcγ receptors, with special reference to their anticipated biological roles. Moreover, some possible future research directions in the related area are discussed.
Collapse
Affiliation(s)
- L Chai
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia.
| | | | | |
Collapse
|
24
|
Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11:785-97. [PMID: 20720586 DOI: 10.1038/ni.1923] [Citation(s) in RCA: 2695] [Impact Index Per Article: 179.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
25
|
Hajishengallis G. Complement and periodontitis. Biochem Pharmacol 2010; 80:1992-2001. [PMID: 20599785 DOI: 10.1016/j.bcp.2010.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Although the complement system is centrally involved in host defense, its overactivation or deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral infection-driven chronic inflammatory disease which exerts a systemic impact on health. This paper reviews evidence linking complement to periodontal inflammation and pathogenesis. Clinical and histological observations show a correlation between periodontal inflammatory activity and local complement activation. Certain genetic polymorphisms or deficiencies in specific complement components appear to predispose to increased susceptibility to periodontitis. Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall, available evidence suggests that complement activation or subversion contributes to periodontal pathogenesis, although not all complement pathways or functions are necessarily destructive. Effective complement-targeted therapeutic intervention in periodontitis would require determining the precise roles of the various inductive or effector complement pathways. This information is essential as it may reveal which specific pathways need to be blocked to counteract microbial evasion and inflammatory pathology or, conversely, kept intact to promote host immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Loueisville, KY 40292, USA.
| |
Collapse
|