1
|
Li F, Ma C, Lei S, Pan Y, Lin L, Pan C, Li Q, Geng F, Min D, Tang X. Gingipains may be one of the key virulence factors of Porphyromonas gingivalis to impair cognition and enhance blood-brain barrier permeability: An animal study. J Clin Periodontol 2024; 51:818-839. [PMID: 38414291 DOI: 10.1111/jcpe.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
AIM Blood-brain barrier (BBB) disorder is one of the early findings in cognitive impairments. We have recently found that Porphyromonas gingivalis bacteraemia can cause cognitive impairment and increased BBB permeability. This study aimed to find out the possible key virulence factors of P. gingivalis contributing to the pathological process. MATERIALS AND METHODS C57/BL6 mice were infected with P. gingivalis or gingipains or P. gingivalis lipopolysaccharide (P. gingivalis LPS group) by tail vein injection for 8 weeks. The cognitive behaviour changes in mice, the histopathological changes in the hippocampus and cerebral cortex, the alternations of BBB permeability, and the changes in Mfsd2a and Cav-1 levels were measured. The mechanisms of Ddx3x-induced regulation on Mfsd2a by arginine-specific gingipain A (RgpA) in BMECs were explored. RESULTS P. gingivalis and gingipains significantly promoted mice cognitive impairment, pathological changes in the hippocampus and cerebral cortex, increased BBB permeability, inhibited Mfsd2a expression and up-regulated Cav-1 expression. After RgpA stimulation, the permeability of the BBB model in vitro increased, and the Ddx3x/Mfsd2a/Cav-1 regulatory axis was activated. CONCLUSIONS Gingipains may be one of the key virulence factors of P. gingivalis to impair cognition and enhance BBB permeability by the Ddx3x/Mfsd2a/Cav-1 axis.
Collapse
Affiliation(s)
- Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Center of Implantology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunliang Ma
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Shuang Lei
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunling Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Dongyu Min
- Traditional Chinese Medicine Experimental Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Akkermansia muciniphila Aspartic Protease Amuc_1434* Inhibits Human Colorectal Cancer LS174T Cell Viability via TRAIL-Mediated Apoptosis Pathway. Int J Mol Sci 2020; 21:ijms21093385. [PMID: 32403433 PMCID: PMC7246985 DOI: 10.3390/ijms21093385] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Mucin2 (Muc2) is the main component of the intestinal mucosal layer and is highly expressed in mucous colorectal cancer. Previous studies conducted by our lab found that the recombinant protein Amuc_1434 (expressed in Escherichia coli prokaryote cell system, hereinafter termed Amuc_1434*), derived from Akkermansia muciniphila, can degrade Muc2. Thus, the main objective of this study was to explore the effects of Amuc_1434* on LS174T in colorectal cancer cells expressing Muc2. Results from this study demonstrated that Amuc_1434* inhibited the proliferation of LS174T cells, which was related to its ability to degrade Muc2. Amuc_1434* also blocked the G0/G1 phase of the cell cycle of LS174T cells and upregulated the expression of tumor protein 53 (p53), which is a cell cycle-related protein. In addition, Amuc_1434* promoted apoptosis of LS174T cells and increased mitochondrial ROS levels in LS174T cells. The mitochondrial membrane potential of LS174T cells was also downregulated by Amuc_1434*. Amuc_1434* can activate the death receptor pathway and mitochondrial pathway of apoptosis by upregulating tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). In conclusion, our study was the first to demonstrate that the protein Amuc_1434* derived from Akkermansia muciniphila suppresses LS174T cell viability via TRAIL-mediated apoptosis pathway.
Collapse
|
4
|
Qiu Q, Zhang F, Wu J, Xu N, Liang M. Gingipains disrupt F-actin and cause osteoblast apoptosis via integrin β1. J Periodontal Res 2018; 53:762-776. [PMID: 29777544 DOI: 10.1111/jre.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to explore the cellular mechanisms underlying gingipain-caused changes in cell morphology and apoptosis of osteoblasts. MATERIAL AND METHODS Human calvarial osteoblasts and mouse osteoblasts MC3T3-E1 were treated with gingipain extracts from Porphyromonas gingivalis stain W83. Apoptosis was detected with annexin V and propidium iodide flow cytometry analysis or terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining. F-actin was determined by immunostaining. Western blotting was used to detect protein expression. Knocking down and overexpressing approaches were used to determine the role of integrin β1. RESULTS Osteoblasts exposed to gingipain extracts displayed increased apoptosis, accompanied by loss of F-actin integrity and cell shrinkage. The effects of gingipain extracts were abolished by the cysteine protease inhibitor N-tosyl-l-lysyl chloromethyl-ketone. Notably, gingipain extracts resulted in reduction of integrin β1, accompanied by diminished active RhoA whereas without effect on the total RhoA. Knockdown of integrin β1 resembled those seen in gingipain-treated osteoblasts. By contrast, the effects of gingipain extracts were abrogated by either overexpression of integrin β1 or presence of RhoA agonist CN03. CONCLUSION Gingipain-induced F-actin disruption and apoptosis are mediated by the degradation of integrin β1 and inhibition of RhoA activity, which account for osteoblast apoptosis.
Collapse
Affiliation(s)
- Q Qiu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - F Zhang
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - J Wu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - N Xu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - M Liang
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
5
|
Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 2016; 23:609-619. [PMID: 27576069 DOI: 10.1111/odi.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W L Yang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - J Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Huang L, van Loveren C, Ling J, Wei X, Crielaard W, Deng DM. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures. BIOFOULING 2016; 32:489-496. [PMID: 26963862 DOI: 10.1080/08927014.2016.1148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions.
Collapse
Affiliation(s)
- Lijia Huang
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Cor van Loveren
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Junqi Ling
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Xi Wei
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Dong Mei Deng
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|
7
|
Yang L, Yang G, Zhang X. The miR-100-mediated pathway regulates apoptosis against virus infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2014; 40:146-153. [PMID: 24972342 DOI: 10.1016/j.fsi.2014.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/12/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The process of programmed cell death process or apoptosis can be regulated by microRNAs, 21-25 nt short non-coding RNAs. However, a comprehensive view of apoptosis-associated miRNAs has not been intensively characterized. In this study, the shrimp miRNA microarray data showed that 199 miRNAs were involved in the regulation of apoptosis, among which 8 miRNAs were evolutionarily conserved in animals. The loss-of-function experiments in vivo in shrimp revealed that miR-100 was served as an anti-apoptosis miRNA through targeting the mRNA of trypsin gene. The results indicated that the silencing of miR-100 expression resulted in the increase of apoptotic activity of shrimp hemocytes and further led to the decreases of virus genome copies in shrimp and virus-infected shrimp mortality compared with the controls. The findings showed that miR-100-trypsin signaling pathway played an important role in the antiviral immunity by regulating apoptosis. Therefore, our study presented a novel miR-100-mediated pathway in the regulation of apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Geng Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|