1
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Glaser S, Han Y, Francis H, Alpini G. Melatonin regulation of biliary functions. Hepatobiliary Surg Nutr 2014; 3:35-43. [PMID: 24696836 PMCID: PMC3954997 DOI: 10.3978/j.issn.2304-3881.2013.10.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/20/2013] [Indexed: 12/19/2022]
Abstract
The intrahepatic biliary epithelium is a three-dimensional tubular system lined by cholangiocytes, epithelial cells that in addition to modify ductal bile are also the targets of vanishing bile duct syndromes (i.e., cholangiopathies) such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) that are characterized by the damage/proliferation of cholangiocytes. Cholangiocyte proliferation is critical for the maintenance of the biliary mass and secretory function during the pathogenesis of cholangiopathies. Proliferating cholangiocytes serve as a neuroendocrine compartment during the progression of cholangiopathies, and as such secrete and respond to hormones, neurotransmitters and neuropeptides contributing to the autocrine and paracrine pathways that regulate biliary homeostasis. The focus of this review is to summarize the recent findings related to the role of melatonin in the modulation of biliary functions and liver damage in response to a number of insults. We first provide a general background on the general function of cholangiocytes including their anatomic characteristics, their innervation and vascularization as well the role of these cells on secretory and proliferation events. After a background on the synthesis and regulation of melatonin and its role on the maintenance of circadian rhythm, we will describe the specific effects of melatonin on biliary functions and liver damage. After a summary of the topics discussed, we provide a paragraph on the future perspectives related to melatonin and liver functions.
Collapse
|
3
|
Kireev R, Bitoun S, Cuesta S, Tejerina A, Ibarrola C, Moreno E, Vara E, Tresguerres JAF. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol 2012; 701:185-93. [PMID: 23220161 DOI: 10.1016/j.ejphar.2012.11.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
Fatty livers occur in up to 20% of potential liver donors and increase cellular injury during the ischemia/reperfusion phase, so any intervention that could enable a better outcome of grafts for liver transplantation would be very useful. The effect of melatonin on liver ischemia/reperfusion injury in a rat model of obesity and hepatic steatosis has been investigated. Forty fa/fa Zucker rats were divided in 4 groups. 3 groups were subjected to 35 min of warm hepatic ischemia and 36 h of reperfusion. One experimental group remained untreated and 2 were given 10mg/kg melatonin intraperitoneally or orally. Another group was sham-operated. Plasma ALT, AST and hepatic content of ATP, MDA, hydroxyalkenals, NOx metabolites, antioxidant enzyme activity, caspase-9 and DNA fragmentation were determined in the liver. The expression of iNOS, eNOS, Bcl2, Bax, Bad and AIF were determined by RT-PCR Melatonin was effective at decreasing liver injury by both ways as assessed by liver transaminases, markers of apoptosis, of oxidative stress and improved liver ATP content. Melatonin administration decreased the activities or levels of most of the parameters measured in a beneficial way, and our study identified also some of the mechanisms of protection. We conclude that administration of melatonin improved liver function, as well as markers of pro/antioxidant status and apoptosis following ischemia/reperfusion in obese rats with fatty liver. These data suggest that this substance could improve outcome in patients undergoing liver transplantation who receive a fatty liver implant and suggest the need of clinical trials with it in liver transplantation.
Collapse
Affiliation(s)
- Roman Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kireev RA, Cuesta S, Ibarrola C, Bela T, Moreno Gonzalez E, Vara E, Tresguerres JAF. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin. J Surg Res 2012; 178:922-34. [PMID: 22647552 DOI: 10.1016/j.jss.2012.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/30/2012] [Accepted: 04/25/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) causes functional and structural damage to liver cells, this being more pronounced with increasing age of the tissue. Melatonin is a pineal indole that has been shown to play an important role as a free radical scavenger and anti-inflammatory molecule. MATERIAL AND METHODS The age-dependent responses to I/R were compared in 2-mo-old and 14-mo-old male Wistar rats. After 35 min of hepatic ischemia followed by 36 h of reperfusion, rats were sacrificed. Sham-operated control rats underwent the same protocol without real vascular occlusion. Animals were intraperitoneally injected with 10 mg/kg melatonin 24 h before the operation, at the time of surgery, and 12 and 24 h after it. The tissues were submitted to histopathologic evaluation. The levels of ALT and AST were analyzed in plasma. The expression of TNF-α, IL-1β, IL-10, MCP-1, IFN-γ, iNOS, eNOS, Bad, Bax, Bcl2, AIF, PCNA, and NFKB1 genes were detected by RT-PCR in hepatic tissue. RESULTS I/R was associated with significant increases in the expression of pro-inflammatory and pro-apoptotic genes in liver. Older rats submitted to I/R were found to respond with increased liver damage as compared with young rats, with serum ALT and AST levels significantly higher than in young animals. Mature rats also showed more evident increases in expression of pro-inflammatory cytokines (IL-1β, MCP-1, and IFN-γ) as well as a decrease in the mRNA expression of IL-10 as compared with young animals. Pro-apoptotic genes (Bax, Bad, and AIF) were significantly enhanced in liver after I/R, without differences between young and mature animals. However, the expression of Bcl2 gene did not show any change. Melatonin treatment was able to lower the expression of pro-inflammatory cytokines and pro-apoptotic genes and to improve liver function, as indicated by normalization of plasma AST and ALT levels and by reduction of necrosis and microsteatosis areas. CONCLUSIONS Melatonin treatment was able to reduce the I/R-stimulated pro-inflammatory and pro-apoptotic genes in the rat liver. Since older animals showed a more marked increase in inflammation and in liver injury, the treatment was more effective in those subjects.
Collapse
Affiliation(s)
- Roman A Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
6
|
Eşrefoğlu M, Ara C. Beneficial Effect of Caffeic Acid Phenethyl Ester (CAPE) on Hepatocyte Damage Induced by Bile Duct Ligation: An Electron Microscopic Examination. Ultrastruct Pathol 2010; 34:273-8. [DOI: 10.3109/01913121003788729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Koppisetti S, Jenigiri B, Terron MP, Tengattini S, Tamura H, Flores LJ, Tan DX, Reiter RJ. Reactive oxygen species and the hypomotility of the gall bladder as targets for the treatment of gallstones with melatonin: a review. Dig Dis Sci 2008; 53:2592-603. [PMID: 18338264 DOI: 10.1007/s10620-007-0195-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/21/2007] [Indexed: 12/17/2022]
Abstract
Free radical-mediated damage of the gall bladder epithelium predisposes to the development of both gall bladder inflammation and gallstone formation, which often coexist. Melatonin, a pineal and gut secretory product, due to its antioxidant activity along with its effect on the aging gall bladder myocytes, inhibits gallstone formation. Melatonin reduces the biliary levels of cholesterol by inhibiting cholesterol absorption across the intestinal epithelium and by increasing the conversion of cholesterol to bile acids. The incidence of gallstones is increasing and is expected to rise dramatically with the increase in the longevity and the risk factors such as obesity. The change in the prevalence of cholelithiasis is associated with a proportionate rise in the incidence of cholangiocarcinoma. In an attempt to improve the quality of life of the rapidly increasing aging population, this article reviews up-to-date information on the pathophysiology of the gall bladder function and discusses the development of new therapies with potential good patient compliance and lower cost than the current treatments.
Collapse
Affiliation(s)
- Sreedevi Koppisetti
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kilicoglu B, Gencay C, Kismet K, Serin Kilicoglu S, Erguder I, Erel S, Sunay AE, Erdemli E, Durak I, Akkus MA. The ultrastructural research of liver in experimental obstructive jaundice and effect of honey. Am J Surg 2008; 195:249-56. [PMID: 18083132 DOI: 10.1016/j.amjsurg.2007.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/10/2007] [Accepted: 04/10/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND To examine the effects of honey on oxidative stress and apoptosis in experimental obstructive jaundice model. METHOD Thirty rats were divided into 3 groups: group I, sham-operated; group II, ligation and division of the common bile duct (BDL); group III, BDL followed by oral supplementation of honey 10 g/kg/d. Liver samples were examined under light microscope and transmission electron microscope. Hepatocyte apoptosis was quantitated using the terminal deoxy-nucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Plasma and blood malondialdehyde (MDA) and glutation activities were measured for determining the oxidative stress. RESULTS The liver levels of MDA and GSH were significantly different between the honey and BDL groups (P = .006 and .001, respectively). However, there was no significant difference between the plasma MDA and GSH levels of these groups (P > .05). In group III, significant reductions in the size of enlarged hepatocytes and the edema were demonstrated. The dilatation of the bile canaliculi dramatically turned to original dimention. By TUNEL assay, it was shown that administration of honey decreased the number of apoptotic cells. CONCLUSIONS In the present study, we found that honey diminished the negative effects of BDL on the hepatic ultrastructure. We conclude that this effect might be due to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Bulent Kilicoglu
- Ankara Training and Research Hospital, 4th General Surgery Department, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gomez-Pinilla PJ, Camello PJ, Pozo MJ. Effects of melatonin on gallbladder neuromuscular function in acute cholecystitis. J Pharmacol Exp Ther 2007; 323:138-46. [PMID: 17615302 DOI: 10.1124/jpet.107.123240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gallbladder stasis is associated to experimental acute cholecystitis. Impaired contractility could be, at least in part, the result of inflammation-induced alterations in the neuromuscular function. This study was designed to determine the changes in gallbladder neurotransmission evoked by acute inflammation and to evaluate the protective and therapeutic effects of melatonin. Experimental acute cholecystitis was induced in guinea pigs by common bile duct ligation for 2 days, and then the neuromuscular function was evaluated using electrical field stimulation (EFS; 5-40 Hz). In a group of animals with the bile duct ligated for 2 days, a deligation of the duct was performed, and after 2 days, the neuromuscular function was studied. The EFS-evoked isometric gallbladder contraction was significantly lower in cholecystitic tissue. In addition, inflammation changed the pharmacological profile of these contractions that were insensitive to tetrodotoxin but sensitive to atropine and omega-conotoxin, indicating that acute cholecystitis affects action potential propagation in the intrinsic nerves. Nitric oxide (NO)-mediated neurotransmission was reduced by inflammation, which also increased the reactivity of sensitive fibers. Melatonin treatment prevented qualitative changes in gallbladder neurotransmission, but it did not improve EFS-induced contractility. The hormone recovered gallbladder neuromuscular function once the biliary obstruction was resolved, even when the treatment was started after the onset of gallbladder inflammation. These findings show for the first time the therapeutic potential of melatonin in the recovery of gallbladder neuromuscular function during acute cholecystitis.
Collapse
Affiliation(s)
- Pedro J Gomez-Pinilla
- Department of Physiology, Nursing School, Avda Universidad s/n, 10071 Cáceres, Spain
| | | | | |
Collapse
|
10
|
Perez MJ, Castaño B, Gonzalez-Buitrago JM, Marin JJG. Multiple protective effects of melatonin against maternal cholestasis-induced oxidative stress and apoptosis in the rat fetal liver-placenta-maternal liver trio. J Pineal Res 2007; 43:130-9. [PMID: 17645691 DOI: 10.1111/j.1600-079x.2007.00453.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternal cholestasis is usually a benign condition for the mother but induces profound placental damage and may be lethal for the fetus. The aim of this study was to investigate the protective effects in rat maternal and fetal livers as also the placenta of melatonin or silymarin against the oxidative stress and apoptosis induced by maternal obstructive cholestasis during the last third of pregnancy (OCP). Melatonin or silymarin administration (i.e. 5 mg/100 g bw/day after ligation of the maternal common bile duct on day 14 of pregnancy) reduced OCP-induced lipid peroxidation, and prevented decreases in total glutathione levels. However, the protective effect on OCP-induced impairment in the GSH/GSSG ratio was mild in the placenta and fetal liver, while absent in maternal liver. Melatonin or silymarin also reduced OCP-induced signs of apoptosis (increased caspase-3 activity and Bax-alpha upregulation) in all the organs assayed. Moreover, melatonin (but not silymarin) upregulated several proteins involved in the cellular protection against the oxidative stress in rats with OCP. These included, biliverdin-IX alpha reductase and the sodium-dependent vitamin C transport proteins SVCT1 and SVCT2, whose expression levels were enhanced in maternal and fetal liver by melatonin treatment. In contrast, in placenta only biliverdin-IX alpha reductase and SVCT2 were upregulated. These results indicate that whereas the treatment of cholestatic pregnant rats with melatonin or silymarin affords a direct protective antioxidant activity, only melatonin has dual beneficial effects against OCP-induced oxidative challenge in that it stimulates the expression of some components of the endogenous cellular antioxidant defense.
Collapse
Affiliation(s)
- Maria J Perez
- Research Unit, University Hospital, Salamanca, Spain
| | | | | | | |
Collapse
|
11
|
Sener G, Sehirli AO, Toklu HZ, Yuksel M, Ercan F, Gedik N. Erdosteine treatment attenuates oxidative stress and fibrosis in experimental biliary obstruction. Pediatr Surg Int 2007; 23:233-41. [PMID: 17216233 DOI: 10.1007/s00383-006-1872-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2006] [Indexed: 12/20/2022]
Abstract
Oxidative stress, in particular lipid peroxidation, induces collagen synthesis and causes fibrosis. The aim of this study was to assess the antioxidant and antifibrotic effects of erdosteine on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in Wistar albino rats by bile duct ligation (BDL). Erdosteine (10 mg/kg, orally) or saline was administered for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6 and antioxidant capacity (AOC) were assayed in plasma samples. Liver tissues were taken for determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence assay. Serum AST, ALT, LDH, and plasma cytokines were elevated in the BDL group as compared to controls and were significantly decreased by erdosteine treatment. Hepatic GSH level and plasma AOC, depressed by BDL, were elevated back to control level with erdosteine treatment. Furthermore, hepatic luminol and lucigenin chemiluminescence (CL), MDA level, MPO activity and collagen content in BDL group increased dramatically compared to control and reduced by erdosteine treatment. Since erdosteine administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic functions, it seems likely that erdosteine with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.
Collapse
Affiliation(s)
- Göksel Sener
- School of Pharmacy, Department of Pharmacology, Marmara University, Tibbiye Cad, 34668, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
12
|
Matsura T, Nishida T, Togawa A, Horie S, Kusumoto C, Ohata S, Nakada J, Ishibe Y, Yamada K, Ohta Y. Mechanisms of protection by melatonin against acetaminophen-induced liver injury in mice. J Pineal Res 2006; 41:211-9. [PMID: 16948781 DOI: 10.1111/j.1600-079x.2006.00356.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was performed to determine whether melatonin protects mouse liver against severe damage induced by acetaminophen (APAP) administration and where melatonin primarily functions in the metabolic pathway of APAP to protect mouse liver against APAP-induced injury. Treatment of mice with melatonin (50 or 100 mg/kg, p.o.) 8 or 4 hr before APAP administration (750 mg/kg, p.o.) suppressed the increase in plasma alanine aminotransferase and aspartate aminotransferase activities in a dose- and a time-dependent manner. Melatonin treatment (100 mg/kg, p.o.) 4 hr before APAP administration remarkably inhibited centrilobular hepatic necrosis with inflammatory cell infiltration and increases in hepatic lipid peroxidation and myeloperoxidase activity, an index of tissue neutrophil infiltration, as well as release of nitric oxide and interleukin-6 into blood circulation at 9 hr after APAP administration. However, melatonin neither affected hepatic reduced glutathione (GSH) content nor spared hepatic GSH consumption by APAP treatment. Moreover, pretreatment with melatonin 4 hr before APAP administration did not influence the induction of hepatic heat shock protein 70 (HSP70) by APAP and melatonin alone did not induce HSP70 in mouse liver. These results indicate that exogenously administered melatonin exhibits a potent hepatoprotective effect against APAP-induced hepatic damage probably downstream of the activity of cytochrome P450 2E1, which works upstream of GSH conjugation in the pathway of APAP metabolism, via its anti-nitrosative and anti-inflammatory activities in addition to its antioxidant activity.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|