1
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Mogheiseh A, Nazifi S, Gharibnavaz M, Zamani R, Nikahval B, Khanbazi MH. Effects of short-term administration of melatonin before gonadectomy on oxidative stress, cortisol and sex hormones in male dogs. Andrologia 2021; 54:e14354. [PMID: 34918360 DOI: 10.1111/and.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to investigate gonadectomy stress, steroid hormones and serotonin in male dogs treated with melatonin before gonadectomy. Twenty-five mixed breed adult dogs were divided into five equal groups. The melatonin and melatonin + gonadectomized groups received melatonin treatment (3 mg/10 Kg, PO, TID) the day before gonadectomy; the gonadectomized and anaesthesia groups did not receive melatonin; and the control group just received the melatonin vehicle. Blood sampling was performed before melatonin administration (day -1) and on days 0 (gonadectomy), 1, 3 and 6 after gonadectomy. Superoxide dismutase and glutathione peroxidase concentrations decreased significantly in gonadectomized dogs compared with dogs treated with melatonin before gonadectomy and intact dogs. Gonadectomy led to a significant decrease in catalase concentration in gonadectomized dogs compared with other study groups. Malondialdehyde levels increased significantly in gonadectomized dogs compared with other groups. Melatonin administration before gonadectomy led to decreased malondialdehyde concentration in gonadectomized and intact dogs compared to the control group. Cortisol concentration increased significantly in gonadectomized dogs compared to the control dogs. Serotonin levels decreased in gonadectomized dogs, but melatonin treatment increased serotonin concentration in gonadectomized and intact dogs. Melatonin treatment before gonadectomy suppressed oxidative stress and the cortisol but increased serotonin level.
Collapse
Affiliation(s)
- Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohsen Gharibnavaz
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Reza Zamani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Behrooz Nikahval
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
3
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
4
|
Singhanat K, Apaijai N, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Melatonin as a therapy in cardiac ischemia-reperfusion injury: Potential mechanisms by which MT2 activation mediates cardioprotection. J Adv Res 2020; 29:33-44. [PMID: 33842003 PMCID: PMC8020169 DOI: 10.1016/j.jare.2020.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Previous studies reported the beneficial effects of pretreatment with melatonin on the heart during cardiac ischemia/reperfusion (I/R) injury. However, the effects of melatonin given after cardiac ischemia, as well as its comparative temporal effects are unknown. These include pretreatment, during ischemia, and at the onset of reperfusion. Also, the association between melatonin receptors and cardiac arrhythmias, mitochondrial function and dynamics, autophagy, and mitophagy during cardiac I/R have not been investigated. Objectives We tested two major hypotheses in this study. Firstly, the temporal effect of melatonin administration exerts different cardioprotective efficacy during cardiac I/R. Secondly, melatonin provides cardioprotective effects via MT2 activation, leading to improvement in cardiac mitochondrial function and dynamics, reduced excessive mitophagy and autophagy, and decreased cardiac arrhythmias, resulting in improved LV function. Methods Male rats were subjected to cardiac I/R, and divided into 4 intervention groups: vehicle, pretreatment with melatonin, melatonin given during ischemia, and melatonin given at the onset of reperfusion. In addition, either a non-specific melatonin receptor (MT) blocker or specific MT2 blocker was given to rats. Results Treatment with melatonin at all time points alleviated cardiac I/R injury to a similar extent, quantified by reduction in infarct size, arrhythmia score, LV dysfunction, cardiac mitochondrial dysfunction, imbalance of mitochondrial dynamics, excessive mitophagy, and a decreased Bax/Bcl2 ratio. In H9C2 cells, melatonin increased %cell viability by reducing mitochondrial dynamic imbalance and a decrease in Bax protein expression. The cardioprotective effects of melatonin were dependent on MT2 activation. Conclusion Melatonin given before or after ischemia exerted equal levels of cardioprotection on the heart with I/R injury, and its beneficial effects on cardiac arrhythmias, cardiac mitochondrial function and dynamics were dependent upon the activation of MT2.
Collapse
Affiliation(s)
- Kodchanan Singhanat
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties. Cardiovasc Drugs Ther 2020; 36:131-155. [PMID: 32926271 DOI: 10.1007/s10557-020-07052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia-reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs.
Collapse
|
6
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
7
|
Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir Res 2020; 21:65. [PMID: 32143642 PMCID: PMC7059294 DOI: 10.1186/s12931-020-1325-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background It is well known that ventilation with high volume or pressure may damage healthy lungs or worsen injured lungs. Melatonin has been reported to be effective in animal models of acute lung injury. Melatonin exerts its beneficial effects by acting as a direct antioxidant and via melatonin receptor activation. However, it is not clear whether melatonin receptor agonist has a protective effect in ventilator-induced lung injury (VILI). Therefore, in this study, we determined whether ramelteon (a melatonin receptor agonist) can attenuate VILI and explore the possible mechanism for protection. Methods VILI was induced by high tidal volume ventilation in a rat model. The rats were randomly allotted into the following groups: control, control+melatonin, control+ramelteon, control+luzindole, VILI, VILI+luzindole, VILI + melatonin, VILI + melatonin + luzindole (melatonin receptor antagonist), VILI + ramelteon, and VILI + ramelteon + luzindole (n = 6 per group). The role of interleukin-10 (IL-10) in the melatonin- or ramelteon-mediated protection against VILI was also investigated. Results Ramelteon treatment markedly reduced lung edema, serum malondialdehyde levels, the concentration of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), NF-κB activation, iNOS levels, and apoptosis in the lung tissue. Additionally, ramelteon treatment significantly increased heat shock protein 70 expression in the lung tissue and IL-10 levels in BALF. The protective effect of ramelteon was mitigated by the administration of luzindole or an anti-IL-10 antibody. Conclusions Our results suggest that a melatonin receptor agonist has a protective effect against VILI, and its protective mechanism is based on the upregulation of IL-10 production.
Collapse
Affiliation(s)
- Geng-Chin Wu
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu, Taipei, 114, Taiwan.
| |
Collapse
|
8
|
Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats. J Cardiovasc Pharmacol Ther 2019; 25:240-250. [PMID: 31645107 DOI: 10.1177/1074248419882002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ischemic heart diseases are the major reasons for disability and mortality in elderly individuals. In this study, we tried to examine the combined effects of nicotinamide mononucleotide (NMN) preconditioning and melatonin postconditioning on cardioprotection and mitochondrial function in ischemia/reperfusion (I/R) injury of aged male rats. Sixty aged Wistar rats were randomly allocated to 5 groups, including sham, control, NMN-receiving, melatonin-receiving, and combined therapy (NMN+melatonin). Isolated hearts were mounted on Langendorff apparatus and then underwent 30-minue ligation of left anterior descending coronary artery to induce regional ischemic insult, followed by 60 minutes of reperfusion. Nicotinamide mononucleotide (100 mg/kg/d intraperitoneally) was administered for every other day for 28 days before I/R. Melatonin added to perfusion solution, 5 minutes prior to the reperfusion up to 15 minutes early reperfusion. Myocardial hemodynamic and infarct size (IS) were measured, and the left ventricles samples were obtained to evaluate cardiac mitochondrial function and oxidative stress markers. Melatonin postconditioning and NMN had significant cardioprotective effects in aged rats; they could improve hemodynamic parameters and reduce IS and lactate dehydrogenase release compared to those of control group. Moreover, pretreatment with NMN increased the cardioprotection by melatonin. All treatments reduced oxidative stress and mitochondrial reactive oxygen species (ROS) levels and improved mitochondrial membrane potential and restored NAD+/NADH ratio. The effects of combined therapy on reduction of mitochondrial ROS and oxidative status and improvement of mitochondrial membrane potential were greater than those of alone treatments. Combination of melatonin and NMN can be a promising strategy to attenuate myocardial I/R damages in aged hearts. Restoration of mitochondrial function may substantially contribute to this cardioprotection.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Manouchehr S Vafaee
- Department of Psychiatry, Odense University Hospital, Odense, Denmark.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense-Denmark
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
9
|
Endogenous and Exogenous Melatonin Exposure Attenuates Hepatic MT 1 Melatonin Receptor Protein Expression in Rat. Antioxidants (Basel) 2019; 8:antiox8090408. [PMID: 31540398 PMCID: PMC6770540 DOI: 10.3390/antiox8090408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin receptors are highly relevant for the hepatoprotective effects of the pineal hormone melatonin after experimental hemorrhagic shock in rats. In this study, we sought to determine the spatial expression pattern and a putative regulation of two melatonin receptors, membrane bound type 1 and 2 (MT1 and MT2), in the liver of rats. In a male rat model (Sprague Dawley) of hemorrhage and resuscitation, we investigated the gene expression and protein of MT1 and MT2 in rat liver by utilizing real-time quantitative polymerase chain reaction, a western blot analysis, and immunohistochemistry. Plasma melatonin content was measured by an enzyme-linked immunosorbent assay. Male rats underwent hemorrhage and were resuscitated with shed blood and a Ringer’s solution (n = 8 per group). After 90 min of hemorrhage, animals were given vehicle, melatonin, or ramelteon (each 1.0 mg/kg intravenously). Sham-operated controls did not undergo hemorrhage but were treated likewise. Plasma melatonin was significantly increased in all groups treated with melatonin and also after hemorrhagic shock. Only MT1, but not the MT2 messenger ribonucleic acid (mRNA) and protein, was detected in the rat liver. The MT1 protein was located in pericentral fields of liver lobules in sham-operated animals. After hemorrhagic shock and treatment with melatonin or ramelteon, the hepatic MT1 protein amount was significantly attenuated in all groups compared to sham controls (50% reduction; p < 0.001). With respect to MT1 mRNA, no significant changes were observed between groups (p = 0.264). Our results indicate that both endogenous melatonin exposure from hemorrhagic shock, as well as exogenous melatonin and ramelteon exposure, may attenuate melatonin receptors in rat hepatocytes, possibly by means of desensitization.
Collapse
|
10
|
Stroethoff M, Behmenburg F, Spittler K, Raupach A, Heinen A, Hollmann MW, Huhn R, Mathes A. Activation of Melatonin Receptors by Ramelteon Induces Cardioprotection by Postconditioning in the Rat Heart. Anesth Analg 2019; 126:2112-2115. [PMID: 29381514 DOI: 10.1213/ane.0000000000002625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Activation of melatonin receptors protects the heart against ischemia-reperfusion injury. Ramelteon, a clinically used drug for insomnia, acts via activation of melatonin receptors. We investigated whether ramelteon induces acute infarct size reduction by postconditioning. Male Wistar rats were randomized to 6 groups. Hearts were treated with melatonin and ramelteon at the beginning of reperfusion. The melatonin receptor inhibitor luzindole was administered with and without melatonin and ramelteon, respectively. Ramelteon reduced infarct size to the same extent as melatonin. Both effects were completely abolished by luzindole. The results show for the first time that ramelteon induces cardioprotection by postconditioning.
Collapse
Affiliation(s)
- Martin Stroethoff
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Friederike Behmenburg
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Kerstin Spittler
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - André Heinen
- Department of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Lan H, Su Y, Liu Y, Deng C, Wang J, Chen T, Jules KED, Masau JF, Li H, Wei X. Melatonin protects circulatory death heart from ischemia/reperfusion injury via the JAK2/STAT3 signalling pathway. Life Sci 2019; 228:35-46. [DOI: 10.1016/j.lfs.2019.04.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
|
12
|
Stiegler P, Bausys A, Leber B, Strupas K, Schemmer P. Impact of Melatonin in Solid Organ Transplantation-Is It Time for Clinical Trials? A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19113509. [PMID: 30413018 PMCID: PMC6274782 DOI: 10.3390/ijms19113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Solid organ transplantation is the "gold standard" for patients with end-stage organ disease. However, the supply of donor organs is critical, with an increased organ shortage over the last few years resulting in a significant mortality of patients on waiting lists. New strategies to overcome the shortage of organs are urgently needed. Some experimental studies focus on melatonin to improve the donor pool and to protect the graft; however, current research has not reached the clinical level. Therefore, this review provides a comprehensive overview of the data available, indicating that clinical evaluation is warranted.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Augustinas Bausys
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius 08660, Lithuania.
| | - Bettina Leber
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
| | - Peter Schemmer
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
13
|
Singhanat K, Apaijai N, Chattipakorn SC, Chattipakorn N. Roles of melatonin and its receptors in cardiac ischemia-reperfusion injury. Cell Mol Life Sci 2018; 75:4125-4149. [PMID: 30105616 PMCID: PMC11105249 DOI: 10.1007/s00018-018-2905-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (AMI) has been an economic and health burden in most countries around the world. Reperfusion is a standard treatment for AMI as it can actively restore blood supply to the ischemic site. However, reperfusion itself can cause additional damage; a process known as cardiac ischemia/reperfusion (I/R) injury. Although several pharmacological interventions have been shown to reduce tissue damage during I/R injury, they usually have undesirable effects. Therefore, endogenous substances such as melatonin have become a field of active investigation. Melatonin is a hormone that is produced by the pineal gland, and it plays an important role in regulating many physiological functions in human body. Accumulated data from studies carried out in vitro, ex vivo, in vivo, and also from clinical studies have provided information regarding possible beneficial effects of melatonin on cardiac I/R such as attenuated cell death, and increased cell survival, leading to reduced infarct size and improved left-ventricular function. This review comprehensively discusses and summarizes those effects of melatonin on cardiac I/R. In addition, consistent and inconsistent reports regarding the effects of melatonin in cases of cardiac I/R together with gaps in surrounding knowledge such as the appropriate onset and duration of melatonin administration are presented and discussed. From this review, we hope to provide important information which could be used to warrant more clinical studies in the future to explore the clinical benefits of melatonin in AMI patients.
Collapse
Affiliation(s)
- Kodchanan Singhanat
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Zhao H, Liu Y, Li Z, Song Y, Cai X, Liu Y, Zhang T, Yang L, Li L, Gao S, Li Y, Yu C. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin Chim Acta 2018; 486:192-198. [PMID: 30092170 DOI: 10.1016/j.cca.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND In recent years, using metabolomics technology to study hypertension has made some progress. However, in actual clinical studies, there are few studies on hypertension related metabonomics with human urine as samples. In this study, the urine samples of patients with essential hypertension (EH) were studied by comparing with healthy people to explore the changes of urine metabolites between hypertensive patients and healthy people in order to find potential biomarkers and metabolic pathways. METHODS An ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technology was used to analyze the urine metabolites of 75 cases of essential hypertension group (EH) and 75 cases of healthy control group (HC). RESULTS According to the PLS-DA pattern recognition analysis, substances with significant differences (P < .05) between the EH group and the HC group were screened out, including 10 potential biomarkers such as L-methionine. The metabolic pathways involved were amino acid metabolism, fatty acid metabolism steroid hormone, biosynthesis and oxidative stress. CONCLUSION The non-targeted metabolomics based on UPLC-Q-TOF/MS technology can effectively identify the differential metabolites of potential biomarkers in the urine of essential hypertensive patients and provide a theoretical basis for the treatment of clinical hypertension.
Collapse
Affiliation(s)
- Huan Zhao
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Yanqi Song
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Xuemeng Cai
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Yuechen Liu
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Tianpu Zhang
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Liu Yang
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, 312 Anshan west Road, Tianjin 300193, China.
| |
Collapse
|
15
|
Melatonin Receptor Agonist Ramelteon Reduces Ischemia-Reperfusion Injury Through Activation of Mitochondrial Potassium Channels. J Cardiovasc Pharmacol 2018; 72:106-111. [DOI: 10.1097/fjc.0000000000000600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
17
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Vollmer C, Weber APM, Wallenfang M, Hoffmann T, Mettler-Altmann T, Truse R, Bauer I, Picker O, Mathes AM. Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs. Microcirculation 2018; 24. [PMID: 28316127 DOI: 10.1111/micc.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/12/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Melatonin improves hepatic perfusion after hemorrhagic shock and may reduce stress-induced gastric lesions. This study was designed to investigate whether pretreatment with melatonin may influence gastric mucosal microcirculatory perfusion (μflow), oxygenation (μHbO2 ), or intestinal barrier function during physiological and hemorrhagic conditions in dogs. METHODS In a randomized crossover study, five anesthetized foxhounds received melatonin 100 μg kg-1 or vehicle (ethanol 5%) intravenously in the absence or presence of hemorrhagic shock (60 minutes, -20% blood volume). Systemic hemodynamic variables, gastric mucosal perfusion, and oxygenation were recorded continuously; intestinal barrier function was assessed intermittently via xylose absorption. RESULTS During hemorrhagic shock, melatonin significantly attenuated the decrease in μflow, compared with vehicle (-19±9 vs -43±10 aU, P<.05), without influence on μHbO2 . A significant increase in xylose absorption was detected during hemorrhage in vehicle-treated dogs, compared with sham-operated animals (13±2 vs 8±1 relative amounts, P<.05); this was absent in melatonin-treated animals (6±1 relative amounts). Melatonin did not influence macrocirculation. CONCLUSIONS Melatonin improves regional blood flow suggesting improved oxygen delivery in gastric mucosa during hemorrhagic shock. This could provide a mechanism for the observed protection of intestinal barrier function in dogs.
Collapse
Affiliation(s)
- Christian Vollmer
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Wallenfang
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Till Hoffmann
- Department of Hemostaseology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Alexander M Mathes
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
19
|
Effect of Intracoronary and Intravenous Melatonin on Myocardial Salvage Index in Patients with ST-Elevation Myocardial Infarction: a Randomized Placebo Controlled Trial. J Cardiovasc Transl Res 2017; 10:470-479. [PMID: 29027116 DOI: 10.1007/s12265-017-9768-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/27/2017] [Indexed: 01/23/2023]
Abstract
Melatonin has attenuated myocardial ischemia reperfusion injury in experimental studies. We hypothesized that the administration of melatonin during acute myocardial reperfusion improves myocardial salvage index in patients with ST-elevation myocardial infarction. Patients (n = 48) were randomized in a 1:1 ratio to intracoronary and intravenous melatonin (total 50 mg) or placebo. The myocardial salvage index assessed by cardiac magnetic resonance imaging at day 4 (± 1 day) after primary percutaneous coronary intervention was similar in the melatonin group (n = 22) at 55.3% (95% CI 47.0-63.6) and the placebo group (n = 19) at 61.5% (95% CI 57.5-65.5), p = 0.21. The levels of high-sensitive troponin T, creatinine kinase myocardial band, and oxidative biomarkers (advanced oxidation protein products, malondialdehyde, myeloperoxidase) were similar in the groups. The frequency of clinical events at 90 days did not differ between the groups. In conclusion, melatonin did not improve the myocardial salvage index after primary percutaneous coronary intervention in patients with ST elevation myocardial infarction compared with placebo.
Collapse
|
20
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
21
|
VanKirk T, Powers E, Dowse HB. Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild-type and strains bearing pathogenic mutations. J Comp Physiol B 2016; 187:63-78. [PMID: 27448293 DOI: 10.1007/s00360-016-1019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/24/2016] [Accepted: 07/09/2016] [Indexed: 01/30/2023]
Abstract
Melatonin is a hormone that is critical for normal circadian and seasonal rhythmicity in a wide range of different animals. It is a powerful antioxidant commonly used to prevent reperfusion injury to the heart after infarction. We show here it has other more far-reaching effects on cardiac function. Using the Drosophila model, we show that injection of melatonin increases the regularity of heartbeat significantly and can rescue rhythmicity in flies bearing mutations that adversely affect cardiac function. Notably, melatonin increases cardiac regularity independent of alteration of heart rate. We provide compelling evidence that melatonin's action as an antioxidant is not the mechanism underlying improved cardiac performance. We have strong evidence that melatonin's action on the heart is mediated via a specific G-Protein-coupled receptor encoded by the CG 4313 gene that our results implicate as a candidate melatonin receptor. These results open a line of questioning about fundamental aspects of cardiac pacemaking.
Collapse
Affiliation(s)
- Tricia VanKirk
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Evelyn Powers
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Harold B Dowse
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.
- Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
22
|
Lamont K, Nduhirabandi F, Adam T, Thomas DP, Opie LH, Lecour S. Role of melatonin, melatonin receptors and STAT3 in the cardioprotective effect of chronic and moderate consumption of red wine. Biochem Biophys Res Commun 2015; 465:719-24. [DOI: 10.1016/j.bbrc.2015.08.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
|
23
|
Nduhirabandi F, Huisamen B, Strijdom H, Blackhurst D, Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res 2014; 57:317-32. [PMID: 25187154 DOI: 10.1111/jpi.12171] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022]
Abstract
Chronic melatonin treatment has been shown to prevent the harmful effects of diet-induced obesity and reduce myocardial susceptibility to ischaemia-reperfusion injury (IRI). However, the exact mechanism whereby it exerts its beneficial actions on the heart in obesity/insulin resistance remains unknown. Herein, we investigated the effects of relatively short-term melatonin treatment on the heart in a rat model of diet-induced obesity. Control and diet-induced obese Wistar rats (fed a high calorie diet for 20 wk) were each subdivided into three groups receiving drinking water with or without melatonin (4 mg/kg/day) for the last 6 or 3 wk of experimentation. A number of isolated hearts were perfused in the working mode, subjected to regional or global ischaemia-reperfusion; others were nonperfused. Metabolic parameters, myocardial infarct sizes (IFS), baseline and postischaemic activation of PKB/Akt, ERK42/44, GSK-3β and STAT-3 were determined. Diet-induced obesity caused increases in body weight gain, visceral adiposity, fasting blood glucose, serum insulin and triglyceride (TG) levels with a concomitant cardiac hypertrophy, large postischaemic myocardial IFSs and a reduced cardiac output. Melatonin treatment (3 and 6 wk) decreased serum insulin levels and the HOMA index (P < 0.05) with no effect on weight gain (after 3 wk), visceral adiposity, serum TG and glucose levels. It increased serum adiponectin levels, reduced myocardial IFSs in both groups and activated baseline myocardial STAT-3 and PKB/Akt, ERK42/44 and GSK-3β during reperfusion. Overall, short-term melatonin administration to obese/insulin resistant rats reduced insulin resistance and protected the heart against ex vivo myocardial IRI independently of body weight change and visceral adiposity.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
24
|
Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, Zhang Y, Yu S, Duan W. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 2014; 57:228-38. [PMID: 25052362 DOI: 10.1111/jpi.12161] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Abstract
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl-2 expression and downregulating Bax, caspase-3 and cleaved caspase-3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91(phox) expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R-induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor-dependent manner.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Melatonin Receptors Mediate Improvements of Survival in a Model of Polymicrobial Sepsis. Crit Care Med 2014; 42:e22-31. [DOI: 10.1097/ccm.0b013e3182a63e2b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Diez ER, Renna NF, Prado NJ, Lembo C, Ponce Zumino AZ, Vazquez-Prieto M, Miatello RM. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J Pineal Res 2013; 55:166-73. [PMID: 23635352 DOI: 10.1111/jpi.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/12/2013] [Indexed: 01/04/2023]
Abstract
Melatonin reduces reperfusion arrhythmias when administered before coronary occlusion, but in the clinical context of acute coronary syndromes, most of the therapies are administered at the time of reperfusion. Patients frequently have physiological modifications that can reduce the response to therapeutic interventions. This work determined whether acute melatonin administration starting at the moment of reperfusion protects against ventricular arrhythmias in Langendorff-perfused hearts isolated from fructose-fed rats (FFR), a dietary model of metabolic syndrome, and from spontaneous hypertensive rats (SHR). In both experimental models, we confirmed metabolic alterations, a reduction in myocardial total antioxidant capacity and an increase in arterial pressure and NADPH oxidase activity, and in FFR, we also found a decrease in eNOS activity. Melatonin (50 μm) initiated at reperfusion after 15-min regional ischemia reduced the incidence of ventricular fibrillation from 83% to 33% for the WKY strain, from 92% to 25% in FFR, and from 100% to 33% in SHR (P = 0.0361, P = 0.0028, P = 0.0013, respectively, by Fisher's exact test, n = 12 each). Although, ventricular tachycardia incidence was high at the beginning of reperfusion, the severity of the arrhythmias progressively declined in melatonin-treated hearts. Melatonin induced a shortening of the action potential duration at the beginning of reperfusion and in the SHR group also a faster recovery of action potential amplitude. We conclude that melatonin protects against ventricular fibrillation when administered at reperfusion, and these effects are maintained in hearts from rats exposed to major cardiovascular risk factors. These results further support the ongoing translation to clinical trials of this agent.
Collapse
Affiliation(s)
- Emiliano Raúl Diez
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|
27
|
Benova T, Viczenczova C, Radosinska J, Bacova B, Knezl V, Dosenko V, Weismann P, Zeman M, Navarova J, Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol 2013; 91:633-9. [PMID: 23889002 DOI: 10.1139/cjpp-2012-0393] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that the pineal hormone melatonin, which exhibits cardioprotective effects, might affect myocardial expression of cell-to-cell electrical coupling protein connexin-43 (Cx43) and protein kinase C (PKC) signaling, and hence, the propensity of the heart to lethal ventricular fibrillation (VF). Spontaneously hypertensive (SHR) and normotensive Wistar rats fed a standard rat chow received melatonin (40 μg/mL in drinking water during the night) for 5 weeks, and were compared with untreated rats. Melatonin significantly reduced blood pressure and normalized triglycerides in SHR, whereas it decreased body mass and adiposity in Wistar rats. Compared with healthy rats, the threshold to induce sustained VF was significantly lower in SHR (18.3 ± 2.6 compared with 29.2 ± 5 mA; p < 0.05) and increased in melatonin-treated SHR and Wistar rats to 33.0 ± 4 and 32.5 ± 4 mA. Melatonin attenuated abnormal myocardial Cx43 distribution in SHR, and upregulated Cx43 mRNA, total Cx43 protein, and its functional phosphorylated forms in SHR, and to a lesser extent, in Wistar rat hearts. Moreover, melatonin suppressed myocardial proapoptotic PKCδ expression and increased cardioprotective PKCε expression in both SHR and Wistar rats. Our findings indicate that melatonin protects against lethal arrhythmias at least in part via upregulation of myocardial Cx43 and modulation of PKC-related cardioprotective signaling.
Collapse
Affiliation(s)
- Tamara Benova
- Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Dúbravská cesta 9, PO Box 104, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Umit UM, Berna T, Handan K, Ipek E, Berrak Y, Can E, Bahadir GM. Role of Melatonin and Luzindole in Rat Mammary Cancer. J INVEST SURG 2012; 25:345-53. [DOI: 10.3109/08941939.2012.665570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol (Oxf) 2012; 205:209-23. [PMID: 22226301 DOI: 10.1111/j.1748-1716.2012.02410.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/20/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
The metabolic syndrome (MetS) is a cluster of metabolic abnormalities associated with increased risk for cardiovascular diseases. Apart from its powerful antioxidant properties, the pineal gland hormone melatonin has recently attracted the interest of various investigators as a multifunctional molecule. Melatonin has been shown to have beneficial effects in cardiovascular disorders including ischaemic heart disease and hypertension. However, its role in cardiovascular risk factors including obesity and other related metabolic abnormalities is not yet established, particularly in humans. New emerging data show that melatonin may play an important role in body weight regulation and energy metabolism. This review will address the role of melatonin in the MetS focusing on its effects in obesity, insulin resistance and leptin resistance. The overall findings suggest that melatonin should be exploited as a therapeutic tool to prevent or reverse the harmful effects of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- F. Nduhirabandi
- Division of Medical Physiology; Department of Biomedical Sciences; Faculty of Health Sciences; Stellenbosch University; Stellenbosch; South Africa
| | - E. F. du Toit
- School of Medical Science; Griffith University; Southport; Australia
| | - A. Lochner
- Division of Medical Physiology; Department of Biomedical Sciences; Faculty of Health Sciences; Stellenbosch University; Stellenbosch; South Africa
| |
Collapse
|
30
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
31
|
|
32
|
Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res 2011; 50:374-80. [PMID: 21342247 DOI: 10.1111/j.1600-079x.2010.00853.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies suggest that regular moderate consumption of red wine confers cardioprotection but the mechanisms involved in this effect remain unclear. Recent studies demonstrate the presence of melatonin in wine. We propose that melatonin, at a concentration found in red wine, confers cardioprotection against ischemia-reperfusion injury. Furthermore, we investigated whether both melatonin and resveratrol protect via the activation of the newly discovered survivor activating factor enhancement (SAFE) prosurvival signaling pathway that involves the activation of tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Isolated perfused male mouse (wild type, TNFα receptor 2 knockout mice, and cardiomyocyte-specific STAT3-deficient mice) or rat hearts (Wistars) were subjected to ischemia-reperfusion. Resveratrol (2.3 mg/L) or melatonin (75 ng/L) was perfused for 15 min with a 10-min washout period prior to an ischemia-reperfusion insult. Infarct size was measured at the end of the protocol, and Western blot analysis was performed to evaluate STAT3 activation prior to the ischemic insult. Both resveratrol and melatonin, at concentrations found in red wine, significantly reduced infarct size compared with control hearts in wild-type mouse hearts (25 ± 3% and 25 ± 3% respectively versus control 69 ± 3%, P < 0.001) but failed to protect in TNF receptor 2 knockout or STAT3-deficient mice. Furthermore, perfusion with either melatonin or resveratrol increased STAT3 phosphorylation prior to ischemia by 79% and 50%, respectively (P < 0.001 versus control). Our data demonstrate that both melatonin and resveratrol, as found in red wine, protect the heart in an experimental model of myocardial infarction via the SAFE pathway.
Collapse
Affiliation(s)
- Kim T Lamont
- Hatter Institute for Cardiovascular Research, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
33
|
Peliciari-Garcia RA, Zanquetta MM, Andrade-Silva J, Gomes DA, Barreto-Chaves ML, Cipolla-Neto J. Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol Int 2011; 28:21-30. [PMID: 21182401 DOI: 10.3109/07420528.2010.525675] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demonstrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor RORα have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and RORα and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORα were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erbα expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erbα mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erbα mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH. Melatonin's protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 2011; 88:2630-40. [PMID: 20544829 DOI: 10.1002/jnr.22430] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin is a potent free radical scavenger and antioxidant and has protective effects against ischemic damage. In the present study, we examined the relationship between the neuroprotective effects of melatonin and the activation of MT2 melatonin receptor in the hippocampal CA1 region (CA1) after transient cerebral ischemia. MT2 immunoreactivity and protein levels were increased in the CA1 after ischemic damage. Most of MT2-immunoreactive cells were colocalized with astrocytes, not microglia, in the ischemic CA1. In the melatonin-sham group, MT2 immunoreaction and protein levels were increased compared with the sham group, and MT2 immunoreactivity and its protein levels in the melatonin-ischemia group were similar to those in the melatonin-sham group. In addition, melatonin treatment attenuated the activation of astrocytes and microglia. These results indicate that MT2 are increased and expressed in astrocytes in the ischemic region after an ischemic insult. The activation of MT2 melatonin receptor in the CA1 after melatonin treatment may be involved in the neuroprotective effect associated with melatonin after ischemic injury.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 2011; 50:171-82. [PMID: 21073520 DOI: 10.1111/j.1600-079x.2010.00826.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity, a major risk factor for ischemic heart disease, is associated with increased oxidative stress and reduced antioxidant status. Melatonin, a potent free radical scavenger and antioxidant, has powerful cardioprotective effects in lean animals but its efficacy in obesity is unknown. We investigated the effects of chronic melatonin administration on the development of the metabolic syndrome as well as ischemia-reperfusion injury in a rat model of diet-induced obesity (DIO). Male Wistar rats received a control diet, a control diet with melatonin, a high-calorie diet, or a high-calorie diet with melatonin (DM). Melatonin (4 mg/kg/day) was administered in the drinking water. After 16 wk, biometric and blood metabolic parameters were measured. Hearts were perfused ex vivo for the evaluation of myocardial function, infarct size (IFS) and biochemical changes [activation of PKB/Akt, ERK, p38 MAPK, AMPK, and glucose transporter (GLUT)-4 expression). The high-calorie diet caused increases in body weight (BW), visceral adiposity, serum insulin and triglycerides (TRIG), with no change in glucose levels. Melatonin treatment reduced the BW gain, visceral adiposity, blood TRIG, serum insulin, homeostatic model assessment index and thiobarbituric acid reactive substances in the DIO group. Melatonin reduced IFS in DIO and control groups and increased percentage recovery of functional performance of DIO hearts. During reperfusion, hearts from melatonin-treated rats had increased activation of PKB/Akt, ERK42/44 and reduced p38 MAPK activation. Chronic melatonin treatment prevented the metabolic abnormalities induced by DIO and protected the heart against ischemia-reperfusion injury. These beneficial effects were associated with activation of the reperfusion injury salvage kinases pathway.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
36
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
37
|
A Combination of Melatonin and Alpha Lipoic Acid has Greater Cardioprotective Effect than Either of them Singly Against Cadmium-Induced Oxidative Damage. Cardiovasc Toxicol 2010; 11:78-88. [DOI: 10.1007/s12012-010-9092-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
38
|
Kücükakin B, Wilhelmsen M, Lykkesfeldt J, Reiter R, Rosenberg J, Gögenur I. No Effect of Melatonin to Modify Surgical-Stress Response after Major Vascular Surgery: A Randomised Placebo-controlled trial. Eur J Vasc Endovasc Surg 2010; 40:461-7. [DOI: 10.1016/j.ejvs.2010.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
39
|
Rezzani R, Rodella LF, Fraschini F, Gasco MR, Demartini G, Musicanti C, Reiter RJ. Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac damage. J Pineal Res 2009; 46:255-61. [PMID: 19196438 DOI: 10.1111/j.1600-079x.2008.00651.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Melatonin is a potent antioxidant molecule with a capacity to protect tissues from damage caused by oxidative stress. It reduces cyclosporine A (CsA)-induced cardiotoxicity; this improvement required melatonin's binding to its membrane receptors. This experimental study examined whether melatonin is a useful tool for counteracting CsA-induced apoptosis in the heart of rats. We investigated melatonin's antiapoptotic efficacy in protecting the heart and tested whether this effect was totally dependent on its binding to membrane receptors or also involved radical scavenging. In some animals, solid lipid nanoparticles (SLN) as a melatonin delivery system were used. In one group of rats, melatonin (1 mg/kg/day i.p.) was given concurrently with CsA (15 mg/kg/day s.c.; CsA-MT) for 21 days. In other animals, melatonin loaded in SLN was injected with CsA (CsA-MTSLN). Oxidative stress in heart tissue was estimated using the evaluation of lipid peroxidation and the expression of the isoform of inducible nitric oxide (iNOS). The antiapoptotic effect of melatonin was evaluated using TUNEL staining and Bcl-2 protein family expression. CsA administration produced morphological and biochemical changes in the heart of rats, while melatonin reversed the changes. In particular, since the antiapoptotic melatonin's efficacy is mainly observed when it is loaded in SLN, we suggest that MT1/MT2 pathway is not sufficient for apoptosis antagonism and the additional intracellular effects may be required. Finally, we show that, (i) melatonin significantly reduces CsA cardiotoxicity acting also on apoptotic processes, and (ii) the reduction in CsA-induced cardiotoxicity is mediated mainly by its antioxidant effect.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Oxidative Stress in Relation to Surgery: Is There a Role for the Antioxidant Melatonin? J Surg Res 2009; 152:338-47. [DOI: 10.1016/j.jss.2007.12.753] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/25/2007] [Accepted: 12/06/2007] [Indexed: 01/12/2023]
|
41
|
Chen Z, Chua CC, Gao J, Chua KW, Ho YS, Hamdy RC, Chua BH. Prevention of ischemia/reperfusion-induced cardiac apoptosis and injury by melatonin is independent of glutathione peroxdiase 1. J Pineal Res 2009; 46:235-41. [PMID: 19141089 PMCID: PMC2752734 DOI: 10.1111/j.1600-079x.2008.00654.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free-radical generation is one of the primary causes of myocardial ischemia/reperfusion (I/R) injury. Melatonin is an efficient free-radical scavenger and induces the expression of antioxidant enzymes. We have previously shown that melatonin can prevent free-radical-induced myocardial injury. To date, the mechanism underlying melatonin's cardioprotective effect is not clear. In this study, we assessed the ability of melatonin to protect against I/R injury in mice deficient in glutathione peroxidase 1 (Gpx1). Mice hearts were subjected to 40 min of global ischemia in vitro followed by 45 min of reperfusion. Myocardial I/R injury (expressed as % of recovery of left ventricular developed pressure x heart rate) was exacerbated in mice deficient in Gpx1 (51 +/- 3% for Gpx1+/+ mice versus 31 +/- 6% for Gpx1(-/-) mice, P < 0.05). Administration of melatonin for 30 min protected against I/R injury in both Gpx1+/+ mice (72 +/- 4.8%) and Gpx1(-/-) mice (63 +/- 4.7%). This protection was accompanied by a significant improvement in left ventricular end-diastolic pressure and a twofold decrease in lactate dehydrogenase (LDH) level released from melatonin-treated hearts. In another set of experiments, mice were subjected to 50 min of ligation of the left descending anterior coronary artery in vivo followed by 4 hr of reperfusion. The infarct sizes, expressed as the percentage of the area at risk, were significantly larger in Gpx1(-/-) mice than in Gpx1+/+ mice (75 +/- 9% versus 54 +/- 6%, P < 0.05) and were reduced significantly in melatonin-treated mice (31 +/- 3.7% Gpx1(-/-) mice and 33 +/- 6.0% Gpx1+/+ mice). In hearts subjected to 30 min of coronary artery occlusion followed by 3 hr of reperfusion, melatonin-treated hearts had significantly fewer in situ oligo ligation-positive myocytes and less protein nitration. Our results demonstrate that the cardioprotective function of melatonin is independent of Gpx1.
Collapse
Affiliation(s)
- Zhongyi Chen
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Chu C. Chua
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Jinping Gao
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Kao-Wei Chua
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI
| | - Ronald C. Hamdy
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Balvin H.L. Chua
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Correspondence to Dr. Balvin H.L. Chua, James H. Quillen College of Medicine, East Tennessee State University, Box 70432, Johnson City, TN 37614, Phone: (423) 926-1171 Ext. 7674, Fax: (423) 979-3408,
| |
Collapse
|
42
|
Genade S, Genis A, Ytrehus K, Huisamen B, Lochner A. Melatonin receptor-mediated protection against myocardial ischaemia/reperfusion injury: role of its anti-adrenergic actions. J Pineal Res 2008; 45:449-58. [PMID: 18691357 DOI: 10.1111/j.1600-079x.2008.00615.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin has potent cardioprotective properties. These actions have been attributed to its free radical scavenging and anti-oxidant actions, but may also be receptor mediated. Melatonin also exerts powerful anti-adrenergic actions based on its effects on contractility of isolated papillary muscles. The aims of this study were to determine whether melatonin also has anti-adrenergic effects on the isolated perfused rat heart, to determine the mechanism thereof and to establish whether these actions contribute to protection of the heart during ischaemia/reperfusion. The results showed that melatonin (50 microM) caused a significant reduction in both isoproterenol (10(-7) M) and forskolin (10(-6) M) induced cAMP production and that both these responses were melatonin receptor dependent, since the blocker, luzindole (5 x 10(-6) M) abolished this effect. Nitric oxide (NO), as well as guanylyl cyclase are involved, as L-NAME (50 microM), an NO synthase inhibitor and ODQ (20 microM), a guanylyl cyclase inhibitor, significantly counteracted the effects of melatonin. Protein kinase C (PKC), as indicated by the use of the inhibitor bisindolylmaleimide (50 microM), also play a role in melatonin's anti-adrenergic actions. These actions of melatonin are involved in its cardioprotection: simultaneous administration of L-NAME or ODQ with melatonin, before and after 35 min regional ischaemia, completely abolished its cardioprotection. PKC, on the other hand, had no effect on the melatonin-induced reduction in infarct size. Cardioprotection by melatonin was associated with a significant activation of PKB/Akt and attenuated activation of the pro-apoptotic kinase, p38MAPK during early reperfusion. In summary, the results show that melatonin-induced cardioprotection may be receptor dependent, and that its anti-adrenergic actions, mediated by NOS and guanylyl cyclase activation, are important contributors.
Collapse
Affiliation(s)
- Sonia Genade
- Department of Biomedical Sciences, Division of Medical Physiology, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | | | |
Collapse
|
43
|
Drobnik J, Karbownik-Lewińska M, Szczepanowska A, Słotwińska D, Olczak S, Jakubowski L, Dabrowski R. Regulatory influence of melatonin on collagen accumulation in the infarcted heart scar. J Pineal Res 2008; 45:285-90. [PMID: 18384532 DOI: 10.1111/j.1600-079x.2008.00588.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The regulatory influence of the pineal gland on superficial wound healing and collagen content is documented. The aim of the present study was to determine whether the pineal gland and its secretory product melatonin regulate collagen accumulation in the scar of the infarcted heart and to explain the mechanisms of its action. To induce myocardial infarction in rats the left coronary artery was ligated. Metoprolol at the dose of 0.2 mg/100 g body weight (b.w.) was injected intraperitoneally to inhibit melatonin secretion. Pinealectomy was performed on some animals. For the in vitro study, cells were isolated from the heart scar and cultured in Dulbecco's modified Eagle medium with 3% fetal calf serum and antibiotics. Collagen content was evaluated as hydroxyproline content according to the Woessner method. Melatonin subcutaneously injected into the rats at the doses of 30 microg/100 g or 60 microg/100 g b.w. increased collagen accumulation in the heart scar. The doses of 3 microg/100 g b.w. and 300 microg/100 g b.w. were not effective. Surgical and pharmacological pinealectomies had opposite effects and reduced collagen content in the scar. However, melatonin administration (60 microg/100 g b.w.) to pinealectomized rats reversed the effect of pinealectomy and normalized collagen levels in heart after infarction. Cells isolated from the heart scar were identified as myofibroblasts. Melatonin (10(-7)-10(-8) m) increased collagen accumulation in the cultures. Collagen accumulation in the scar of the infarcted heart is regulated by melatonin and it exerts effects directly on the myofibroblasts of the infarcted area. Therefore, melatonin-induced collagen accumulation in the infarcted heart could be considered as the event improving the tensile strength of the scar and retarding the development of complications.
Collapse
Affiliation(s)
- Jacek Drobnik
- Department of Connective Tissue Metabolism, Medical University of Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat. Crit Care Med 2008; 36:2863-70. [DOI: 10.1097/ccm.0b013e318187b863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Sallinen P, Mänttäri S, Leskinen H, Vakkuri O, Ruskoaho H, Saarela S. Long-term postinfarction melatonin administration alters the expression of DHPR, RyR2, SERCA2, and MT2 and elevates the ANP level in the rat left ventricle. J Pineal Res 2008; 45:61-9. [PMID: 18284551 DOI: 10.1111/j.1600-079x.2008.00556.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effect of 2 wk continuous postinfarction subcutaneous melatonin supply on the expression of the rat left ventricular (LV) dihydropyridine receptor (DHPR), ryanodine receptor (RyR(2)), and sarco-endoplasmic reticulum Ca(2+)-ATPase2 (SERCA2), as they are fundamental proteins in cardiac contractility. The levels of plasma and LV atrial (ANP) and brain natriuretic peptide and melatonin were also measured, as was the expression of LV MT(1) and MT(2) receptors and pineal arylalkylamine N-acetyltransferase. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery and vehicle or melatonin (4.5 mg/kg per day) was administered by subcutaneous osmotic pumps. Echocardiography, real-time quantitative reverse transcription-polymerase chain reaction, and western blotting were used to analyze the samples. Echocardiography revealed that MI induced serious systolic LV dysfunction. The expression of DHPR, RyR(2), and SERCA2 mRNAs was significantly lower in the LVs of melatonin-treated MI rats compared with vehicle-treated rats (P < 0.01 for DHPR and P < 0.05 for RyR(2) and SERCA2). Melatonin also elevated the amount of LV MT(2) receptors to 1.9-fold (P < 0.05) and the concentration of LV ANP to over fivefold (P < 0.05) compared with vehicle rats after MI. Therefore, the results suggest that melatonin may influence the cardiac contractility after MI by regulating the expression of DHPR, RyR(2), and SERCA2, and melatonin receptors, particularly MT(2)s, might contribute to the postinfarction cardioprotective actions of melatonin. Furthermore, the finding of the relationship between melatonin and ANP suggests a novel mechanism for melatonin in protecting the heart after MI.
Collapse
|
46
|
Mathes AM, Kubulus D, Pradarutti S, Bentley A, Weiler J, Wolf B, Ziegeler S, Bauer I, Rensing H. Melatonin pretreatment improves liver function and hepatic perfusion after hemorrhagic shock. Shock 2008; 29:112-8. [PMID: 17666950 DOI: 10.1097/shk.0b013e3180644ca3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous administration of pineal hormone melatonin (MEL) has been demonstrated to attenuate organ damage in models of I/R and inflammation by antioxidative effects. However, specific organ-protective effects of MEL with respect to hemorrhagic shock have not been investigated yet. In the present study, we evaluated the role of MEL pretreatment for hepatic perfusion, redox state, and function after hemorrhage and resuscitation, with emphasis on MEL receptor activation. In a model of hemorrhagic shock (MAP 35 +/- 5 mmHg for 90 min) and reperfusion (2 h), we measured nicotinamide adenine dinucleotide phosphate (reduced form; NADPH) autofluorescence, hepatic microcirculation, and hepatocellular injury by intravital microscopy, as well as plasma disappearance rate of indocyanine green (PDRICG) as a sensitive maker of liver function in rat. Pretreatment with 10 mg kg(-1) MEL (i.v.) 15 min before induction of hemorrhage resulted in a significantly improved PDR(ICG) compared with controls (MEL/shock, 15.02% min(-1) +/- 2.9 SD vs. vehicle/shock, 6.18 +/- 4.6 SD; P = 0.001). Intravital microscopy after reperfusion revealed an improved hepatic perfusion index, redox state, and reduced hepatocellular injury in pretreated animals compared with the vehicle group. Melatonin receptor antagonist luzindole (LZN; 2.5 mg kg(-1)) almost completely abolished the protective effects of MEL pretreatment with respect to liver function (MEL + LZN/shock PDR(ICG), 7.31% min(-1) +/- 3.4 SD). Beneficial effects regarding hepatic perfusion, redox state, and cellular injury were not influenced by LZN, indicating that they may depend on antioxidative effects of MEL. However, liver function after hemorrhage is effectively maintained by MEL pretreatment via receptor-dependent pathways.
Collapse
Affiliation(s)
- Alexander M Mathes
- Department of Anesthesiology, Critical Care Medicine and Pain Management, Saarland University Hospital; Kirrberger Strasse; D-66421 Homburg (Saar), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Melatonin receptors mediate improvements of liver function but not of hepatic perfusion and integrity after hemorrhagic shock in rats. Crit Care Med 2008; 36:24-9. [PMID: 18090374 DOI: 10.1097/01.ccm.0000292088.33318.f0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Melatonin has been demonstrated to attenuate organ damage in models of ischemia and reperfusion. Melatonin treatment before hemorrhagic shock has been shown to improve liver function and hepatic perfusion. Proposed mechanisms of the pineal hormone involve direct inactivation of reactive oxygen species and induction of antioxidative enzymes. However, recent evidence suggests a strong influence of melatonin receptor activation for these effects. Specific protection of organ function by melatonin after hemorrhage has not been investigated yet. In this study, we evaluated whether melatonin therapy after hemorrhagic shock improves liver function and hepatic perfusion, with emphasis on melatonin receptor activation. DESIGN Prospective, randomized, controlled study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats, 200-300 g (n = 10 per group). INTERVENTIONS Animals underwent hemorrhagic shock (mean arterial pressure, 35 +/- 5 mm Hg for 90 mins) and were resuscitated with shed blood and Ringer's solution. At the end of shock, animals were treated with either melatonin (10 mg/kg, intravenously), melatonin receptor antagonist luzindole (2.5 mg/kg, intravenously) plus melatonin (10 mg/kg, intravenously), luzindole alone (2.5 mg/kg, intravenously), or vehicle. MEASUREMENTS AND MAIN RESULTS After 2 hrs of reperfusion, either liver function was assessed by plasma disappearance rate of indocyanine green or intravital microscopy of the liver was performed for evaluation of hepatic perfusion, hepatocellular redox state, and hepatic integrity. Compared with vehicle controls, melatonin therapy after hemorrhagic shock significantly improved plasma disappearance rate of indocyanine green, hepatic redox state, hepatocellular injury, and hepatic perfusion index. Coadministration of luzindole completely abolished the protective effect with respect to liver function only, and improvements regarding hepatic redox state, perfusion, and integrity were comparable with melatonin treatment alone. CONCLUSIONS Melatonin therapy after hemorrhagic shock improves liver function, hepatic perfusion, redox state, and hepatic integrity. With respect to liver function, beneficial effects of the pineal hormone seem to be dependent on melatonin receptor activation.
Collapse
|
48
|
Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R. Cardiovascular diseases: protective effects of melatonin. J Pineal Res 2008; 44:16-25. [PMID: 18078444 DOI: 10.1111/j.1600-079x.2007.00518.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This brief review considers some of the cardiac diseases and conditions where free radicals and related reactants are believed to be causative. The report also describes the beneficial actions of melatonin against oxidative cardiovascular disorders. Based on the data available, melatonin seems to have cardioprotective properties via its direct free radical scavenger and its indirect antioxidant activity. Melatonin efficiently interacts with various reactive oxygen and reactive nitrogen species (receptor independent actions) and it also upregulates antioxidant enzymes and downregulates pro-oxidant enzymes (receptor-dependent actions). Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiologic barriers. These findings have implications for the protective effects of melatonin against cardiac diseases induced by oxidative stress. Melatonin attenuates molecular and cellular damages resulting from cardiac ischemia/reperfusion in which destructive free radicals are involved. Anti-inflammatory and antioxidative properties of melatonin are also involved in the protection against a chronic vascular disease, atherosclerosis. The administration of melatonin, as a result of its antioxidant features, has been reported to reduce hypertension and cardiotoxicity induced by clinically used drugs. The results described herein help to clarify the beneficial effects of melatonin against these conditions and define the potential clinical applicability of melatonin in cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Tengattini
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sallinen P, Mänttäri S, Leskinen H, Ilves M, Vakkuri O, Ruskoaho H, Saarela S. The effect of myocardial infarction on the synthesis, concentration and receptor expression of endogenous melatonin. J Pineal Res 2007; 42:254-60. [PMID: 17349023 DOI: 10.1111/j.1600-079x.2006.00413.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the time course of changes in the synthesis and levels of endogenous melatonin and in the expression of MT(1) and MT(2) melatonin receptors 1 day, 2 and 4 wk after myocardial infarction (MI) in rats. MI was produced by ligation of the left anterior descending coronary artery. Transthoracic echocardiography was performed to characterize structural and functional changes after MI. mRNA levels were measured by real-time quantitative reverse transcription-polymerase chain reaction and proteins by Western blotting. One day after infarction, MI rats had 4.3 times (P < 0.001) higher pineal melatonin synthesis, than sham-operated animals, which was associated with the increased concentration of melatonin in plasma (P < 0.001) and left ventricle (LV) (P = 0.01). The amount of MT(1) receptor protein decreased significantly in MI LVs compared with control LVs 1 day after infarction (P < 0.01), followed by recovery during the next 2 wk. Furthermore, the expression of MT(1) receptor mRNA of the MI LVs was elevated 2 wk after infarction (P < 0.01) compared with control LVs. The amount of MT(2) receptor proteins in MI LVs was higher than in sham-operated LVs 1 day (P < 0.05) and 4 wk (P < 0.01) after MI. In conclusion, melatonin synthesis in the pineal gland increased rapidly in response to the MI, supporting an important role for endogenous melatonin in protecting the heart after MI. The observed changes in the expression of MT(1) and MT(2) receptors suggest that melatonin receptors may be involved in mediating, at least, in part, the protective effects of melatonin in the heart after infarction.
Collapse
|
50
|
Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ. Beneficial effects of melatonin in protecting against cyclosporine A-induced cardiotoxicity are receptor mediated. J Pineal Res 2006; 41:288-95. [PMID: 16948792 DOI: 10.1111/j.1600-079x.2006.00368.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin, the chief product secreted by pineal gland, is capable of reducing free radical damage by acting directly as a free radical scavenger, and indirectly, by stimulating of antioxidant enzymes. Cyclosporine A (CsA) is the most widely used immunosuppressive drug, but its therapeutic use has several side effects including, i.e. nephrotoxicity and cardiotoxicity. This study was designed to examine the beneficial effects of melatonin in preventing CsA-induced cardiotoxicity. Additionally, we investigated the ability of melatonin to protect the rat heart via melatonin receptor. In one group of Wistar rats, melatonin (1 mg/kg/day i.p.) was administered concurrently with CsA (15 mg/kg/day s.c.) for 21 days. In another group of animals, melatonin was injected with CsA and luzindole, an antagonist of melatonin receptors. Oxidative stress in heart tissue homogenates was estimated using thiobarbituric acid reactive substances (TBARS), reduced glutathione levels and antioxidant enzyme activities including catalase and superoxide dismutase. CsA administration for 21 days produced elevated levels of TBARS, marked depletion of cardiac antioxidant enzymes and caused morphological alterations in myocardial fibers. Melatonin markedly reduced TBARS levels, increased the antioxidant enzyme levels and normalized altered cardiac morphology. The protective effects of melatonin were lost when the animals received the melatonin receptor antagonist. In conclusion our study shows that, (a) melatonin significantly reduces CsA cardiotoxicity, and (b) the reduction in CsA-induced cardiotoxicity was mediated by the binding of melatonin to its membrane receptors.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|