1
|
Eilertsen M, Norland S, Dolan DWP, Karlsen R, Gomes AS, Bolton CM, Migaud H, Rønnestad I, Helvik JV. Onset of circadian rhythmicity in the brain of Atlantic salmon is linked to exogenous feeding. PLoS One 2024; 19:e0312911. [PMID: 39546447 PMCID: PMC11567551 DOI: 10.1371/journal.pone.0312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
An organism's biological processes are adapted to and driven by rhythmicity in the natural environment and periodicity of light is one of the most influential factors. In a developing organism, the onset of circadian rhythmicity might indicate the time point of functional necessity for aligning processes to the environment. Here, the circadian clock mechanism has been studied in the developing brain of Atlantic salmon (Salmo salar), by comparing the endogenous feeding alevin, independent on the environment for nutritional supply, to the exogenous feeding fry, dependent on the light period for detecting and catching prey. The results showed that while only a few clock genes were cyclic in the yolk sac alevins, many of the clock genes and genes of the circadian rhythm pathway cycled significantly in the feeding fry. Few genes were differentially expressed between time points in the circadian sampling series during the yolk sac stage, but several hundred genes were found differentially expressed in the first feeding stage. Genes important for cell cycle progression were cyclic or differentially expressed between time points after exogenous feeding, indicating a clock-controlled cell cycle at this stage. The expression of important genes in the melatonin synthesis were also cyclic in the feeding fry with an acrophase in the transition between light and dark or in darkness. Analyzing the impact of exogenous feeding on the developing brain supported a shift from utilization of proteins and lipids in the yolk to utilization and allocation of dietary energy and nutrients. Taken together, the life history transition related to onset of exogenous feeding is linked to the establishment of a persistent circadian rhythmicity in the salmon brain, which needs to be synchronized to light-dark cycles to enable the fry to search and capture feed.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Zhao X, Guo Y, Li J, Ma Z, Yu G, Qin C. Effects of Light Color on the Growth, Feeding, Digestion, and Antioxidant Enzymes of Tripneustes gratilla (Linnaeus, 1758). BIOLOGY 2024; 13:65. [PMID: 38392284 PMCID: PMC10886290 DOI: 10.3390/biology13020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
To study the effects of light color on sea urchin (Tripneustes gratilla), blue light (B, λ450nm), yellow light (Y, λ585-590nm), red light (R, λ640nm), green light (G, λ510nm), white light (W, λ400-780nm), and darkness (H) groups were established in a recirculating seawater aquaculture system. Six different LED light color treatment groups with a photoperiod of 12 L:12 D were tested for 30 days to investigate the effects of different light colors on the feeding, growth, and enzyme activities of T. gratilla (142.45 ± 4.36 g). We found that using different LED light colors caused significantly different impacts on the feeding, growth, and enzyme activity of T. gratilla. Notably, the sea urchins in group B exhibited better growth, with a weight gain rate of 39.26%, while those in group R demonstrated poorer growth, with a weight gain rate of only 26%. The feeding status differed significantly (p < 0.05) between groups B and R, with group B consuming the highest daily intake (6.03 ± 1.69 g) and group R consuming the lowest (4.54 ± 1.26 g). Throughout the three phases, there was no significant change in the viability of the α-amylase (p > 0.05). Conversely, the pepsin viability significantly increased (p < 0.05) in group B. The lipase viability consistently remained at the lowest level, with no notable differences between group W and group B. In group R, both the α-amylase and pepsin viabilities remained lower, whereas the lipase viability was noticeably greater in each phase than in group B (p < 0.05). Among the antioxidant enzymes, group R exhibited a trend of initial increase followed by decreases in catalase, superoxide dismutase, and glutathione peroxidase activities, particularly during the third stage (15-30 days), during which a significant decrease in antioxidant enzyme activity was observed (p < 0.05). Taken together, these findings suggest that blue light positively affects the growth, feeding, digestion, and antioxidant capacity of T. gratilla in comparison with those in other light environments, whereas red light had an inhibitory effect. Furthermore, T. gratilla is a benthic organism that lives on shallow sandy sea beds. Thus, as short wavelengths of blue and green light are more widely distributed on the seafloor, and long wavelengths of red light are more severely attenuated on the seafloor, shorter wavelengths of light promote the growth of bait organisms of sea urchins, which provide better habitats for T. gratilla.
Collapse
Affiliation(s)
- Xinye Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jiayang Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
3
|
Bao Q, Gu W, Song L, Weng K, Cao Z, Zhang Y, Zhang Y, Ji T, Xu Q, Chen G. The Photoperiod-Driven Cyclical Secretion of Pineal Melatonin Regulates Seasonal Reproduction in Geese ( Anser cygnoides). Int J Mol Sci 2023; 24:11998. [PMID: 37569373 PMCID: PMC10419153 DOI: 10.3390/ijms241511998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The photoperiod is the predominant environmental factor that governs seasonal reproduction in animals; however, the underlying molecular regulatory mechanism has yet to be fully elucidated. Herein, Yangzhou geese (Anser cygnoides) were selected at the spring equinox (SE), summer solstice (SS), autumn equinox (AE), and winter solstice (WS), and the regulation of seasonal reproduction via the light-driven cyclical secretion of pineal melatonin was investigated. We show that there were seasonal variations in the laying rate and GSI, while the ovarian area decreased 1.5-fold from the SS to the AE. Moreover, not only did the weight and volume of the pineal gland increase with a shortened photoperiod, but the secretory activity was also enhanced. Notably, tissue distribution further revealed seasonal oscillations in melatonin receptors (Mtnrs) in the pineal gland and the hypothalamus-pituitary-gonadal (HPG) axis. The immunohistochemical staining indicated higher Mtnr levels due to the shortened photoperiod. Furthermore, the upregulation of aralkylamine N-acetyltransferase (Aanat) was observed from the SS to the AE, concurrently resulting in a downregulation of the gonadotrophin-releasing hormone (GnRH) and gonadotropins (GtHs). This trend was also evident in the secretion of hormones. These data indicate that melatonin secretion during specific seasons is indicative of alterations in the photoperiod, thereby allowing for insight into the neuroendocrine regulation of reproduction via an intrinsic molecular depiction of external photoperiodic variations.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Wang Gu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Lina Song
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Zhengfeng Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Ting Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Oldham T, Oppedal F, Fjelldal PG, Hansen TJ. Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon. Sci Rep 2023; 13:2618. [PMID: 36788276 PMCID: PMC9929253 DOI: 10.1038/s41598-023-27583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023] Open
Abstract
Photoperiod, the portion of 24-h cycle during which an organism is exposed to illumination, is an important phenological cue in many animals. However, despite its influence on critical biological processes, there remain many unknowns regarding how variations in light intensity translate into perceived photoperiod. This experiment examined how light intensity variations affect perceived photoperiod in Atlantic salmon (Salmo salar) to determine whether photoperiod interpretation is, a) fixed such that anything above a minimum detection threshold is regarded as 'illumination', or b) adaptive and varies with recent light exposure. To do this we compared the frequency of smoltification and sexual maturation between groups of male parr which were exposed to one of eight light regimes on a 12:12 cycling regime (12-hour day/12-hour night). The eight regimes were divided into two treatments, four with 'High' daytime light intensity and four with 'Low' daytime light intensity. The 'High' and 'Low' intensity treatments were each sub-divided into four groups for which the subjective 'night' light intensity was 100%, 10%, 1% and 0% of the daytime light intensity, with four replicate tanks of each treatment. The results show that above a minimum detection threshold, Atlantic salmon have adaptive photoperiod interpretation which varies with recent light exposure, and that adaptive photoperiod interpretation modulates the timing of the parr-smolt transformation and sexual maturation. Further, we show that photoperiod interpretation varies between closely related families. Given the influence of phenological timing on species survival, our results reveal a critical role for integration of photoperiod interpretation in attempts to understand how geographically shifting thermal niches due to climate change will affect future populations.
Collapse
Affiliation(s)
- Tina Oldham
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway.
| | - Frode Oppedal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
5
|
Eilertsen M, Dolan DWP, Bolton CM, Karlsen R, Davies WIL, Edvardsen RB, Furmanek T, Sveier H, Migaud H, Helvik JV. Photoreception and transcriptomic response to light during early development of a teleost with a life cycle tightly controlled by seasonal changes in photoperiod. PLoS Genet 2022; 18:e1010529. [PMID: 36508414 PMCID: PMC9744326 DOI: 10.1371/journal.pgen.1010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Light cues vary along the axis of periodicity, intensity and spectrum and perception of light is dependent on the photoreceptive capacity encoded within the genome and the opsins expressed. A global approach was taken to analyze the photoreceptive capacity and the effect of differing light conditions on a developing teleost prior to first feeding. The transcriptomes of embryos and alevins of Atlantic salmon (Salmo salar) exposed to different light conditions were analyzed, including a developmental series and a circadian profile. The results showed that genes mediating nonvisual photoreception are present prior to hatching when the retina is poorly differentiated. The clock genes were expressed early, but the circadian profile showed that only two clock genes were significantly cycling before first feeding. Few genes were differentially expressed between day and night within a light condition; however, many genes were significantly different between light conditions, indicating that light environment has an impact on the transcriptome during early development. Comparing the transcriptome data from constant conditions to periodicity of white light or different colors revealed overrepresentation of genes related to photoreception, eye development, muscle contraction, degradation of metabolites and cell cycle among others, and in constant light, several clock genes were upregulated. In constant white light and periodicity of green light, genes associated with DNA replication, chromatin remodeling, cell division and DNA repair were downregulated. The study implies a direct influence of light conditions on the transcriptome profile at early developmental stages, by a complex photoreceptive system where few clock genes are cycling.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| | | | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | | | | | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| |
Collapse
|
6
|
Hyeon JY, Byun JH, Kim ES, Heo YS, Fukunaga K, Kim SK, Imamura S, Kim SJ, Takemura A, Hur SP. Testis development in the Japanese eel is affected by photic signals through melatonin secretion. PeerJ 2021; 9:e12289. [PMID: 34721978 PMCID: PMC8522646 DOI: 10.7717/peerj.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Objective According to reported spawning characteristics of Japanese eel, Anguilla japonica, which exhibit spawning and migration patterns that are synchronized with lunar cycles and photoperiod, we hypothesized that a close association exists between specific photic signals (daylight, daylength, and moonlight) and endocrinological regulation. Given the photic control in melatonin secretion, this hypothesis was tested by investigating whether melatonin signals act as mediators relaying photic signals during testis development in the eel. Methods We examined changes in melatonin-secretion patterns using time-resolved fluorescence immunoassays in sexually immature and mature male Japanese eels under the condition of a new moon (NM) and a full moon (FM). Results The eye and plasma melatonin levels exhibited a nocturnal pattern under a 12-h light: dark cycle (12L12D) or under constant darkness (DD), but not with constant light (LL). Eye melatonin levels were similar under the 12L12D and short-day (9L15D) conditions. In the long-day condition (15L9D), secreted plasma melatonin levels were stable, whereas short-day melatonin secretion began when darkness commenced. Sexual maturation began at 8 weeks following intraperitoneal injection of human chorionic gonadotropin (hCG), and NM exposure led to significantly higher eye and plasma melatonin levels compared with those detected under FM exposure.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Jun-Hwan Byun
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Eun-Su Kim
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea
| | - Yoon-Seong Heo
- LED-Marine Biology Convergence Technology Research Center, Pukyong National University, Busan, Republic of Korea
| | - Kodai Fukunaga
- Center for Strategic Research Project, University of the Ryukyus, Okinawa, Japan
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Satoshi Imamura
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Se-Jae Kim
- Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Sung-Pyo Hur
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Eilertsen M, Clokie BGJ, Ebbesson LOE, Tanase C, Migaud H, Helvik JV. Neural activation in photosensitive brain regions of Atlantic salmon (Salmo salar) after light stimulation. PLoS One 2021; 16:e0258007. [PMID: 34587204 PMCID: PMC8480854 DOI: 10.1371/journal.pone.0258007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Photoreceptive inputs to the teleost brain are perceived as image of the visual world and as photo-modulation of neuroendocrine and neuronal signals. The retina and pineal organ are major receptive organs with projections to various parts of the brain, but in the past decades deep brain photoreceptors have emerged as candidates for photoreceptive inputs, either independent or in combination with projections from light sensory organs. This study aimed to test the effects of narrow bandwidth light using light-emitting diodes technology on brain neural activity through putative opsin stimulation in Atlantic salmon. The expression of c-fos, a known marker of neural activity, was compared in situ between dark-adapted salmon parr and following light stimulation with different wavelengths. c-fos expression increased with duration of light stimulation and the strongest signal was obtained in fish exposed to light for 120 minutes. Distinct and specific brain regions were activated following dark to light stimulation, such as the habenula, suprachiasmatic nucleus, thalamus, and hypothalamus. The c-fos expression was overlapping with photoreceptors expressing melanopsin and/or vertebrate ancient opsin, suggesting a potential direct activation by light. Interestingly in the habenula, a distinct ring of vertebrate ancient opsin and melanopsin expressing cells is overlapping with c-fos expression after neural activation. Salmon exposed to different spectra had neural activation in similar brain regions. The most apparent difference was melanopsin expression in the lateral cells of the lateral tuberal nuclus in the hypothalamus, which appeared to be specifically activated by red light. Light-stimulated neuronal activity in the deep brain was limited to subpopulations of neurons, mainly in regions with neuronal modulation activity, retinal and pineal innervations and known presence of nonvisual photoreceptors. The overlapping expression patterns of c-fos and nonvisual opsins support direct light stimulation of deep brain photoreceptors and the importance of these systems in light induced brain activity.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| | - Benjamin G. J. Clokie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lars O. E. Ebbesson
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Norce, Bergen, Norway
| | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Choi JY, Choi CY. Gonadotropin-releasing hormone-independent effects of recombinant vertebrate ancient long opsin in the goldfish Carassius auratus reveal alternative reproduction pathways. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1219-1227. [PMID: 32146552 DOI: 10.1007/s10695-020-00784-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Vertebrate ancient long (VAL)-opsin is a green-sensitive photoreceptor that shows high sequence similarity to vertebrate ancient opsin, which is considered to play a role in sexual maturation via gonadotropin-releasing hormone (GnRH); however, the role of VAL-opsin in vertebrate sexual maturity remains unclear. Therefore, we investigated the possible role of VAL-opsin in reproduction in the goldfish Carassius auratus under a state of GnRH inhibition. Goldfish were injected with recombinant VAL-opsin protein (0.5 μg/g body mass) and/or the GnRH antagonist cetrorelix (0.5 μg/fish), and changes in the mRNA expression levels of genes associated with goldfish reproduction were measured by quantitative polymerase chain reaction, including those involved in the hypothalamus-pituitary-gonad (HPG) axis, VAL-opsin, GnRH, the gonadotropins (GTHs) luteinizing hormone and follicle-stimulating hormone, and estrogen receptor (ER). Moreover, the fish were irradiated with a green light-emitting diode (520 nm) to observe the synergistic effect on the HPG axis with VAL-opsin. Green LED exposure significantly and slightly increased the VAL-opsin and GnRH levels, respectively; however, these effects were blocked in groups injected with cetrorelix at all time points. Cetrorelix significantly decreased the mRNA levels of GTHs and ER, whereas these hormones recovered by co-treatment with VAL-opsin. These results indicate that green LED is an effective light source to promote the expression of sex hormones in fish. Moreover, VAL-opsin not only affects activity of the HPG axis but also appears to act on the pituitary gland directly to stimulate a new sexual maturation pathway that promotes the secretion of GTHs independent of GnRH.
Collapse
Affiliation(s)
- Ji Yong Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
9
|
Kim BH, Hur SP, Hyeon JY, Yamashina F, Takemura A, Lee YD. Annual patterns of ocular melatonin level in the female grass puffer, Takifugu alboplumbeus: possible involvement in seasonal reproductive response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:787-801. [PMID: 32128660 DOI: 10.1007/s10695-019-00749-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the expression patterns of ocular melatonin in the annual reproductive cycle of the female grass puffer. Spawning season of the female grass puffer is from June to July in Jeju, South Korea. Time-resolved fluoroimmunoassay revealed that levels of ocular melatonin, which show an annual change, peaked in May (spawning season). Additionally, expression of reproductive-related genes also showed annual patterns: GnRH1 peaked in August, GnRH2 peaked in February, GnRH3, Kiss2, and LPXRFa peaked in November. These results suggest that ocular melatonin may be related to the annual reproductive cycle in the grass puffer. To better understand the photic regulation of AANAT1a mRNA in the retina, we observed the nocturnal pattern of ocular melatonin levels daily, which shows a nocturnal pattern in both short photoperiod (SD) and long photoperiod (LD) conditions. In the brain, AANAT2 mRNA also shows a nocturnal pattern in both SD and LD; however, the time of peak expression of AANAT2 mRNA was unchanged in both conditions. Following intraperitoneal injection of melatonin for 2 weeks, expression of GnRH2 and LPXRFa mRNA in the brain significantly increased, while that of Kiss2 mRNA was decreased, suggesting that melatonin has a reproduction-related effect. Furthermore, under SD and LD conditions for 14 weeks, the gonadosomatic index more increased and the maturity of the ovary progressed under LD compared with those under SD, suggesting that the SD photoperiodic signal inactivated ovarian development. These results indicate that the ocular melatonin may have a possible role in the reproductive endocrinology of the grass puffer.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, Jeju, 695-965, Republic of Korea
| | - Sung-Pyo Hur
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, 2670, Iijudong-ro, Gujwa-eup, Jeju, 63349, Republic of Korea.
| | - Ji-Yeon Hyeon
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, 2670, Iijudong-ro, Gujwa-eup, Jeju, 63349, Republic of Korea
| | - Fumika Yamashina
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju, 695-965, Republic of Korea
| |
Collapse
|
10
|
|
11
|
Baekelandt S, Milla S, Cornet V, Flamion E, Ledoré Y, Redivo B, Antipine S, Mandiki SNM, Houndji A, El Kertaoui N, Kestemont P. Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca. Sci Rep 2020; 10:2650. [PMID: 32060347 PMCID: PMC7021833 DOI: 10.1038/s41598-020-59568-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Melatonin is considered as the time-keeping hormone acting on important physiological functions of teleosts. While the influence of melatonin on reproduction and development is well described, its potential role on immune functions has little been considered. In order to better define an immune modulation by the melatonin hormone, we hypothesized that natural variations of photoperiod and subsequent changes in melatonin release profile may act on immune status of pikeperch. Therefore, we investigated during 70 days the effects of two photoperiod regimes simulating the fall and spring in western Europe, on pikeperch physiological and immune responses. Samples were collected at 04:00 and 15:00 at days 1, 37 and 70. Growth, plasma melatonin levels, innate immune markers and expression of immune-relevant genes in head kidney tissue were assessed. While growth and stress level were not affected by the seasonal simulated photoperiods, nocturnal levels of plasma melatonin were photoperiod-dependent. Innate immune markers, including lysozyme, complement, peroxidase and phagocytic activities, were stimulated by the fall-simulated photoperiod and a significant correlation was made with plasma melatonin. In addition to bring the first evidence of changes in fish immunocompetence related to photoperiod, our results provide an additional indication supporting the immunomodulatory action of melatonin in teleosts.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
| | - Sylvain Milla
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Yannick Ledoré
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Sascha Antipine
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Najlae El Kertaoui
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| |
Collapse
|
12
|
Figueiredo F, Aragão C, Pinto W, Dinis MT, Oliveira CC. Optimizing rearing and welfare in Senegalese sole (Solea senegalesensis) broodstock: Effect of ambient light intensity and handling time on stress response. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2019.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Kim BH, Lee CH, Choi SH, Lee YD. Changes in Body Growth and Growth-Related Genes under Different Photoperiods in Olive Flounder, Paralichthys olivaceus. Dev Reprod 2019; 23:149-160. [PMID: 31321355 PMCID: PMC6635610 DOI: 10.12717/dr.2019.23.2.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
This study examined the effects of different photoperiod conditions on olive
flounder (Paralichthys olivaceus), a commercially important
species in Korea. Daily variations in the expression of mRNA for the
growth-related genes arylalkylamine N-acetyltransferase2 (AANAT2),
preprosomatostatin1 (PSS1), and growth hormone (GH) were examined under a 12 h
light:12 h dark photoperiod. All the genes were expressed at higher level during
the dark period. Melatonin injections increased the expression of GH, but did
not significantly affect the expression of PSS. Under short-day conditions (10
h:14 h), the fish gained more weight than under long-day conditions (14 h:10 h).
A long nighttime induced melatonin secretion and increased the expression of GH
mRNA, promoting weight gain in this species. Therefore, we thought that the long
day condition in raising olive flounder may be effective in inducing body
growth.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Chi-Hoon Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea.,CR Co., Ltd., Jeju 63333, Korea
| | - Song-Hee Choi
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
14
|
Han Z, Li X, Xu W, She Q, Liang S, Li X, Li Y. Melatonin concentrations in Chinese mitten crabs (Eriocheir sinesis) are affected by artificial photoperiods. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1533725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shudong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Choi JY, Choi YU, Kho J, Choi CY. Effects of various photoperiods and specific wavelengths on circadian rhythm in ornamental cleaner shrimp Lysmata amboinensis. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1502237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ji Yong Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Young-Ung Choi
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Jeongrack Kho
- Lotte World Aquarium, Songpa-gu, Seoul, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| |
Collapse
|
16
|
Oliveira CCV, Figueiredo F, Soares F, Pinto W, Dinis MT. Meagre's melatonin profiles under captivity: circadian rhythmicity and light sensitiveness. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:885-893. [PMID: 29500583 DOI: 10.1007/s10695-018-0478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The present study reveals the first characterization of the plasma melatonin rhythms of the meagre (Argyrosomus regius) under aquaculture conditions. Melatonin levels were monitored during a 24 h cycle under a photoperiod of 16 L:8D and under constant darkness (DD), respectively to characterize the daily rhythm of this indoleamine and to test its endogenous origin. Besides, to identify which light intensities are perceived as night or day by this species, the degree of inhibition of nocturnal melatonin production caused by increasing intensities of light was tested (3.3, 5.3, 10.5, and 120 μW/cm2), applying 1 h light pulses at Mid-Dark. The result for melatonin daily rhythm in plasma showed a typical profile: concentration remained low during all daytime points, increasing greatly during dark points, with maximum values at 16:00 and 22:00 h, zeitgeber time. Under DD conditions, the plasma melatonin profile persisted, with a similar acrophase but with a lower amplitude between subjective day and night periods, indicating this rhythm as being endogenously driven. Moreover, meagre seemed to be very sensitive to dim levels of illumination during the night, since an intensity of just 3.3 μW/cm2 inhibited melatonin production. However, only the pulse of 5.3 μW/cm2 caused a melatonin drop till daytime concentrations. Thus, the threshold of light detection by the pineal organ was suggested as being located between 3.3 and 5.3 μW/cm2. Such results are an added value for this species biology knowledge, and in consequence to its adaptation to aquaculture conditions, allowing the improvement of culture husbandry protocols.
Collapse
Affiliation(s)
- Catarina C V Oliveira
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal.
| | - Filipe Figueiredo
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Wilson Pinto
- SPAROS, Lda, Área Empresarial de Marim, Lote C, 8700-221, Olhão, Portugal
| | - Maria Teresa Dinis
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| |
Collapse
|
17
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1-12. [PMID: 28721487 DOI: 10.1007/s10695-017-0408-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/06/2017] [Indexed: 05/10/2023]
Abstract
In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
- Free University of Berlin, Institute of Biology, Schwendenerstr. 1, 14195, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
18
|
Kouhi-Dehkordi S, Bani A. Day-night behavior in river entry of kutum and its relation to melatonin. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1324559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shima Kouhi-Dehkordi
- Faculty of Natural Resources, Fisheries Department, University of Guilan, Sowmeh Sara, Iran
- Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Ali Bani
- Faculty of Science, Department of Biology, University of Guilan, Rasht, Iran
- Caspian Sea Basin Research Center, Marine Science Department, University of Guilan, Rasht, Iran
| |
Collapse
|
19
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
20
|
Yuan SS, Xu HZ, Liu LQ, Zheng JL. Different effects of blue and red light-emitting diodes on antioxidant responses in the liver and ovary of zebrafish Danio rerio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:411-419. [PMID: 27664022 DOI: 10.1007/s10695-016-0296-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (blue LEDs, LDB; red, LDR) on growth, morphology, and oxidative stress in the liver and ovary of zebrafish for 5 weeks. Growth maintained relatively constant under LDB condition, but was reduced under LDR condition. In the liver, hepatosomatic index (HSI) and protein carbonylation (PC) increased under LDR condition, whereas lipid peroxidation (LPO) declined and HSI remained unchanged under LDB condition. The decrease in oxidative damage by LDB could be attributed to the up-regulated levels of mRNA, protein, and activity of Cu/Zn-SOD and CAT. A failure to activate the activity of both enzymes may result in the enhanced PC levels under LDR condition, though both genes were up-regulated at transcriptional and translational levels. In the ovary, although gonadosomatic index sharply increased under LDR condition, LPO and PC dramatically accumulated. The increase in oxidative damage by LDR might result from the down-regulated levels of protein and activity of Cu/Zn-SOD and CAT, though both genes were up-regulated at a transcriptional level. Furthermore, a sharp increase in expression of transcription factor Nrf2 that targets antioxidant genes was observed in the liver but not in the ovary under LDB and LDR conditions. In conclusion, our data demonstrated a positive effect of LDB and negative effect of LDR on fish antioxidant defenses, emphasizing the potentials of LDB as an effective light source in fish farming.
Collapse
Affiliation(s)
- Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Huan-Zhi Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Li-Qin Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
21
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Zheng JL, Yuan SS, Li WY, Wu CW. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions. FISH & SHELLFISH IMMUNOLOGY 2016; 56:382-387. [PMID: 27452972 DOI: 10.1016/j.fsi.2016.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Certain light emitting diodes (LEDs) have become popular in fish farming beacause of a promoting effect on growth and reproduction. However, little information is available on innate immune responses in related tissues under LEDs conditions. The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (LEDs: blue, LDB, peak at 450 nm; red, LDR, 630 nm) on growth and innate immune responses in the serum, liver and ovary of zebrafish for 8 weeks. LDB significantly enhanced specific growth rate (SGR), food intake (FI), and serum globulin levels. In contrast, LDR sharply inhibited SGR, FI, and the levels of albumin and globulin. Under LDB condition, there was an increase in protein levels of alkaline phophatase (AKP) and protein and activity levels of lysozyme (LZM) in the liver, and the levels of mRNA, protein, and activity of LZM in the ovary. Under LDR condition, LZM was dramatically down-regulated at mRNA, protein and activity levels in the ovary, suggesting that LZM was regulated at a transcriptional level. In the liver of the LDR group, though AKP mRNA levels sharply increased, its protein and activity levels significantly declined, indicating that AKP was regulated at translational level. Furthermore, a positive correlation between transcription factor NF-κB RelA mRNA levels and expression levels of AKP and LZM was observed in the liver and ovary, implying a transcriptional regulation of NF-κB RelA. In conclusion, the present study demonstrated a positive effect of LDB and negative effect of LDR on fish growth and innate immune responses, possibly associated with modifications at transcriptional, translational, and post-translational levels, and the transcriptional regulation of the NF-κB signaling molecule.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wei-Ye Li
- Zhoushan Fisheries Research Institute, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
23
|
Adatto I, Krug L, Zon LI. The Red Light District and Its Effects on Zebrafish Reproduction. Zebrafish 2016; 13:226-9. [PMID: 26978703 DOI: 10.1089/zeb.2015.1228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Light-dark cycles mimicking natural settings in a zebrafish facility are crucial for maintaining fish with an entrained circadian clock making them an ideal vertebrate model to study such rhythms. However, failure to provide optimal conditions to include complete darkness can lead to a disturbed circadian pacemaker affecting physiology and behavior in zebrafish. To meet building code requirements, the aquatics facility in use was outfitted with EXIT signs emitting a constant light. To determine if light radiating from the EXIT sign has an effect on zebrafish embryo production, 100 fish (1:1 m/f ratio) were split and housed at 10 fish/L. Half were housed directly in front of the EXIT sign, whereas the other half (control) were housed under a true 14-h light-10-h dark cycle. Reproductive success was evaluated by recording fecundity and viability from 10 weekly matings under two light colors: red (640 nm) and green (560 nm). On average the control group spawned twice as many embryos compared to those housed in front of a red EXIT sign, whereas green EXIT sign showed no difference. This suggests the importance of providing a complete dark environment within the night cycle and a recommendation toward dim green EXIT signs to avoid a decline in reproductive performance.
Collapse
Affiliation(s)
- Isaac Adatto
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts
| | - Lauren Krug
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts
| | - Leonard Ira Zon
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts.,2 Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
24
|
Maiolo S, Hansen T, Parisi G, Olsen RE. Effects of Photoperiod and Melatonin Implants on Feed Intake in Atlantic Salmon(Salmo SalarL.) Postsmolts. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:214-222. [PMID: 26584071 DOI: 10.1016/j.scitotenv.2015.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 05/10/2023]
Abstract
The distribution and intensity of artificial light at night, commonly referred to as light pollution, is consequently rising and progressively also ecological implications come to light. Low intensity light is known to suppress nocturnal melatonin production in several fish species. This study aims to examine the least suppressive light colour for melatonin excreted into the holding water and the influence of different light qualities and quantities in the night on gene expression of gonadotropins in fish. European perch (Perca fluviatilis) were exposed to light of different wavelengths during the night (blue, green, and red). Melatonin concentrations were measured from water samples every 3h during a 24h period. Gene expression of gonadotropins was measured in perch exposed to different light colours and was additionally examined for perch subjected to different intensities of white light (0 lx, 1 lx, 10 lx, 100 lx) during the night. All different light colours caused a significant drop of melatonin concentration; however, blue light was least suppressive. Gene expression of gonadotropins was not influenced by nocturnal light of different light colours, but in female perch gonadotropin expression was significantly reduced by white light already at the lowest level (1 lx). We conclude that artificial light with shorter wavelengths at night is less effective in disturbing biological rhythms of perch than longer wavelengths, coinciding with the light situation in freshwater habitats inhabited by perch. Different light colours in the night showed no significant effect on gonadotropin expression, but white light in the night can disturb reproductive traits already at very low light intensities. These findings indicate that light pollution has not only the potential to disturb the melatonin cycle but also the reproductive rhythm and may therefore have implications on whole species communities.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| |
Collapse
|
26
|
Brüning A, Hölker F, Franke S, Preuer T, Kloas W. Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:516-22. [PMID: 25577738 DOI: 10.1016/j.scitotenv.2014.12.094] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 05/22/2023]
Abstract
Flora and fauna evolved under natural day and night cycles. However, natural light is now enhanced by artificial light at night, particularly in urban areas. This alteration of natural light environments during the night is hypothesised to alter biological rhythms in fish, by effecting night-time production of the hormone melatonin. Artificial light at night is also expected to increase the stress level of fish, resulting in higher cortisol production. In laboratory experiments, European perch (Perca fluviatilis) were exposed to four different light intensities during the night, 0 lx (control), 1 lx (potential light level in urban waters), 10 lx (typical street lighting at night) and 100 lx. Melatonin and cortisol concentrations were measured from water samples every 3h during a 24 hour period. This study revealed that the nocturnal increase in melatonin production was inhibited even at the lowest light level of 1 lx. However, cortisol levels did not differ between control and treatment illumination levels. We conclude that artificial light at night at very low intensities may disturb biological rhythms in fish since nocturnal light levels around 1 lx are already found in urban waters. However, enhanced stress induction could not be demonstrated.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Torsten Preuer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| |
Collapse
|
27
|
Takeuchi Y, Imamura S, Sawada Y, Hur SP, Takemura A. Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish. Gen Comp Endocrinol 2014; 204:158-65. [PMID: 24859252 DOI: 10.1016/j.ygcen.2014.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 04/07/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Ocular melatonin production exhibits a daily rhythm with a decrease during photophase and an increase during scotophase (nocturnal pattern) in teleost fish due to day-night changes in the activity of the rate-limiting melatonin synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT). Acute light exposure during scotophase suppresses AANAT activity and melatonin production in the eyes, suggesting that external light signals are a principal regulator of ocular melatonin synthesis. To better understand the photic regulation of ocular melatonin synthesis in teleost fish, this study sought to characterize the effect of light on ocular melatonin synthesis in the sapphire devil Chrysiptera cyanea, which shows a nocturnal pattern and light-induced inhibition of ocular melatonin production during scotophase. Exposure to three different wavelengths of light (half-peak bandwidth=435-475 nm with a peak of 455 nm, 495-565 nm with a peak of 530 nm, and 607-647 nm with a peak of 627 nm for the blue, green, and red LEDs) for 2h during scotophase resulted in the blue wavelength significantly decreasing ocular melatonin content within 30 min after light exposure. This result clearly indicates that the effective range of visible light on ocular melatonin suppression is distributed within the wavelengths of blue light and that a blue light-sensitive opsin is involved in ocular melatonin suppression in the fish. A PCR-based cloning method revealed the expression of melanopsin, a putative blue light-sensitive nonvisual opsin, in the eyes. Furthermore, in situ hybridization using the sapphire devil Aanat1 and melanopsin RNA probes showed mRNA expressions of both genes in the inner nuclear and ganglion cell layer of the fish retina. These results suggest that melanopsin is a possible candidate photoreceptor involved in ocular melatonin suppression by an external light signal in the sapphire devil.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Satoshi Imamura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuji Sawada
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Sung-Pyo Hur
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
28
|
Martínez-Chávez CC, Tello-Ballinas A, Fonseca-Madrigal J, Ross LG, Martínez-Palacios CA. Photoperiodic growth enhancement in a tropical batch spawning atherinopsid, pike silverside Chirostoma estor. JOURNAL OF FISH BIOLOGY 2014; 85:546-553. [PMID: 24976358 DOI: 10.1111/jfb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
The effect of photoperiod on growth and survival in early life was determined in the tropical batch spawning atherinopsid, pike silverside Chirostoma estor. The results demonstrate high sensitivity of newly hatched C. estor to photoperiod treatments up to 90 days post hatch shown by improved growth in mass (43%) under continuous illumination. This is accompanied by increased fat deposition, which suggests a critical interaction between different photoperiod-mediated mechanisms. A thorough understanding of these mechanisms can help to optimize the development of aquaculture of C. estor and similar species.
Collapse
Affiliation(s)
- C C Martínez-Chávez
- Laboratorio de Acuicultura y Nutrición, Instituto de Investigaciones Agropecuarias y Forestales, UMSNH, Av. San Juanito Itzícuaro, S/N Morelia, Michoacán, C.P. 58330, México
| | | | | | | | | |
Collapse
|
29
|
Shin HS, Kim NN, Choi YJ, Choi CY. Retinal light input regulates clock genes and immune function in yellowtail clownfish (Amphiprion clarkii). BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2013.870757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
McStay E, Migaud H, Vera LM, Sánchez-Vázquez FJ, Davie A. Comparative study of pineal clock gene and AANAT2 expression in relation to melatonin synthesis in Atlantic salmon (Salmo salar) and European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2013; 169:77-89. [PMID: 24361868 DOI: 10.1016/j.cbpa.2013.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/01/2023]
Abstract
The photoreceptive teleost pineal is considered to be essential to the generation, synchronisation and maintenance of biological rhythms, primarily via melatonin release. The role of internal (circadian clock) and external (light) signals controlling melatonin production in the fish pineal differs between species, yet the reasons underpinning this remain largely unknown. Whilst in salmonids, pineal melatonin is apparently regulated directly by light, in all other studied teleosts, rhythmic melatonin production persists endogenously under the regulation of clock gene expression. To better understand the role of clocks in teleost pineals, this study aimed to characterise the expression of selected clock genes in vitro under different photoperiodic conditions in comparison to in vivo in both Atlantic salmon (Salmo salar) and in European seabass (Dicentrarchus labrax) (in vitro 12L:12D), a species known to display endogenous rhythmic melatonin synthesis. Results revealed no rhythmic clock gene (Clock, Period 1 &2) expression in Atlantic salmon or European seabass (Clock and Period 1) pineal in vitro. However rhythmic expression of Cryptochrome 2 and Period 1 in the Atlantic salmon pineal was observed in vivo, which infers extra-pineal regulation of clocks in this species. No rhythmic arylalkylamine N-acetyltransferase 2 (Aanat2) expression was observed in the Atlantic salmon yet in the European seabass, circadian Aanat2 expression was observed. Subsequent in silico analysis of available Aanat2 genomic sequences reveals that Atlantic salmon Aanat2 promoter sequences do not contain similar regulatory architecture as present in European seabass, and previously described in other teleosts which alludes to a loss in functional connection in the pathway.
Collapse
Affiliation(s)
- Elsbeth McStay
- Institute of Aquaculture, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | - Luisa Maria Vera
- University of Murcia, Department of Physiology, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia 30100, Spain
| | - Francisco Javier Sánchez-Vázquez
- University of Murcia, Department of Physiology, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia 30100, Spain
| | - Andrew Davie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland FK9 4LA, UK.
| |
Collapse
|
31
|
Rhythmic life of the Arctic charr: adaptations to life at the edge. Mar Genomics 2013; 14:71-81. [PMID: 24291060 DOI: 10.1016/j.margen.2013.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/09/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
High latitudes are characterized by strong seasonal changes in environmental conditions, including temperature and food availability. To cope with these changes, many high latitude species have developed circannual oscillators that enable them to anticipate and prepare for forthcoming environmental changes and synchronize seasonal events (e.g. reproduction) to environmental fluctuations. The Arctic charr (Salvelinus alpinus) is the world's northernmost freshwater fish species with a distribution largely confined within the Arctic. In the northernmost part of its distribution they have developed an anadromous life-history strategy implying annual, seaward migrations in the summer to utilize the rich feeding opportunity in the sea. Overwintering in freshwater is characterized by anorexia and energy conservation. The seaward migration in early summer is preceded by physiological and behavioral changes (smolting), by which they develop seawater tolerance (hypoosmoregulatory ability) and migratory behavior. When migrating to the sea, Arctic charr have regained a strong appetite and within 4-6weeks in the sea they may have doubled their body weight and increased their body fat stores several-fold, in anticipation of the resources needed for reproduction in the autumn and overwintering. All these processes are regulated independently of environmental changes; captive offspring of anadromous charr kept in freshwater displays seasonal changes in seawater tolerance and strong seasonal changes in food intake and growth even when they are continuously fed in excess and held at a constant water temperature in freshwater. A correct timing of these events is crucial for their survival in the Arctic and the Arctic charr seems to possess timing mechanisms that include endogenous, circannual oscillator(s) entrainable by photoperiod. The entrainment mechanism may be linked to diel melatonin rhythms, which in this species exactly mirror overground photoperiod, even during the winter residence in lakes with thick ice and snow. Little is known, however, about how photoperiod, melatonin and putative endogenous clock(s) interact in the generation of seasonal rhythms in fish, and downstream neuroendocrine mechanisms leading to physiological changes. The anadromous Arctic charr seems ideal as a model for studying such mechanisms.
Collapse
|
32
|
Shin HS, Habibi HR, Choi CY. The environmental regulation of maturation in goldfish, Carassius auratus: effects of various LED light spectra. Comp Biochem Physiol A Mol Integr Physiol 2013; 168:17-24. [PMID: 24239668 DOI: 10.1016/j.cbpa.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/26/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
While there have been a number of studies on the effects of photoperiod and duration of light and dark exposure, much less information is available on the importance of light intensity. This study investigated the effects of exposure of goldfish, Carassius auratus exposed to white fluorescent bulbs, and red (peak at 630nm), and green (530nm) light emitting diodes (LEDs) at approximately 0.9W/m(2) (12-h light:12-h dark) for four months on a number of hormones of the hypothalamus-pituitary-gonad (HPG) axis, in vivo and in vitro. We investigated the effects of native GnRH molecules (gonadotropin-releasing hormones; salmon GnRH, sGnRH; and chicken GnRH-II, cGnRH-II), gonadotropin hormones (GTHα; follicle-stimulating hormone, FSH-β; luteinizing hormone, LH-β2), kisspeptin 1 (Kiss1) and G protein-coupled receptor 54 (GPR54) mRNA levels. Furthermore, we measured LH and 17α-hydroxypregnenolone levels in plasma and we performed gonad histological observations. GnRHs, Kiss1, GPR54 and GTH mRNA and plasma LH and 17α-hydroxypregnenolone levels in the in vivo and in vitro groups exposed to green LEDs were significantly higher than the other groups. Histological analysis revealed the presence of oocytes in the yolk stage in fish exposed to green light. These results suggest that green wavelengths regulate the HPG axis and enhance sexual maturation in goldfish.
Collapse
Affiliation(s)
- Hyun Suk Shin
- Division of Marine Environment & BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T3B 2V4, Canada.
| | - Cheol Young Choi
- Division of Marine Environment & BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea.
| |
Collapse
|
33
|
Light-emitting diode spectral sensitivity relationship with reproductive parameters and ovarian maturation in yellowtail damselfish, Chrysiptera parasema. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:108-13. [DOI: 10.1016/j.jphotobiol.2013.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/06/2013] [Accepted: 07/31/2013] [Indexed: 01/01/2023]
|
34
|
Park MS, Shin HS, Kim NN, Lee J, Kil GS, Choi CY. Effects of LED spectral sensitivity on circadian rhythm-related genes in the yellowtail clownfish,Amphiprion clarkii. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.779935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Hur SP, Takeuchi Y, Itoh H, Uchimura M, Takahashi K, Kang HC, Lee YD, Kim SJ, Takemura A. Fish sleeping under sandy bottom: interplay of melatonin and clock genes. Gen Comp Endocrinol 2012; 177:37-45. [PMID: 22285600 DOI: 10.1016/j.ygcen.2012.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 01/18/2023]
Abstract
Wrasse species exhibit a definite daily rhythm in locomotor activity and bury themselves in the sand at the bottom of the ocean at night. It remains unclear how their behavior in locomotor activity is endogenously regulated. The aim of the present study was to clarify the involvement of melatonin and clock genes (Per1, Per2, Bmal1, and Cry1) in daily and circadian rhythms of the threespot wrasse, Halichoeres trimaculatus, which is a common species in coral reefs. Daily and circadian rhythms in locomotor activity were monitored under conditions of light-dark cycle (LD=12:12), constant light (LL), and darkness (DD). Daily rhythms in locomotor activity were observed under LD and persisted under LL and DD. Melatonin from a cultured pineal gland showed daily variations with an increase during the nighttime and a decrease during daytime, which persisted under DD. Melatonin treatment induced decreases in locomotor activity and respiratory rate, suggesting that melatonin has a sleep-inducing effect. Per1 and Per2 mRNA abundance in the brain under LD showed daily rhythms with an increase around lights on. Robust oscillation of Per1 and Per2 mRNA expression persisted under DD and LL, respectively. Expression of Bmal1 and Cry1 mRNA also showed daily and circadian patterns. These results suggest that clock genes are related to circadian rhythms in locomotor activity and that melatonin plays a role in inducing a sleep-like state after fish bury themselves in the sand. We conclude that the sleep-wake rhythm of the wrasse is regulated by a coordination of melatonin and clock genes.
Collapse
Affiliation(s)
- Sung-Pyo Hur
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim NN, Shin HS, Lee J, Choi CY. Diurnal gene expression ofPeriod2,Cryptochrome1, and arylalkylamineN-acetyltransferase-2 in olive flounder,Paralichthys olivaceus. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.611536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
37
|
The pineal complex of the European sea bass (Dicentrarchus labrax): I. Histological, immunohistochemical and qPCR study. J Chem Neuroanat 2011; 41:170-80. [DOI: 10.1016/j.jchemneu.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
38
|
Tarttelin EE, Fransen MP, Edwards PC, Hankins MW, Schertler GFX, Vogel R, Lucas RJ, Bellingham J. Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay. Cell Mol Life Sci 2011; 68:3713-23. [PMID: 21416149 PMCID: PMC3203999 DOI: 10.1007/s00018-011-0665-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/01/2011] [Accepted: 03/01/2011] [Indexed: 12/03/2022]
Abstract
Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (Actinopterygii) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish (Takifugu rubripes) and zebrafish (Danio rerio), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity.
Collapse
Affiliation(s)
- Emma E Tarttelin
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
40
|
Migaud H, Davie A, Taylor JF. Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. JOURNAL OF FISH BIOLOGY 2010; 76:27-68. [PMID: 20738699 DOI: 10.1111/j.1095-8649.2009.02500.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Seasonality is an important adaptive trait in temperate fish species as it entrains or regulates most physiological events such as reproductive cycle, growth profile, locomotor activity and key life-stage transitions. Photoperiod is undoubtedly one of the most predictable environmental signals that can be used by most living organisms including fishes in temperate areas. This said, however, understanding of how such a simple signal can dictate the time of gonadal recruitment and spawning, for example, is a complex task. Over the past few decades, many scientists attempted to unravel the roots of photoperiodic signalling in teleosts by investigating the role of melatonin in reproduction, but without great success. In fact, the hormone melatonin is recognized as the biological time-keeping hormone in fishes mainly due to the fact that it reflects the seasonal variation in daylength across the whole animal kingdom rather than the existence of direct evidences of its role in the entrainment of reproduction in fishes. Recently, however, some new studies clearly suggested that melatonin interacts with the reproductive cascade at a number of key steps such as through the dopaminergic system in the brain or the synchronization of the final oocyte maturation in the gonad. Interestingly, in the past few years, additional pathways have become apparent in the search for a fish photoneuroendocrine system including the clock-gene network and kisspeptin signalling and although research on these topics are still in their infancy, it is moving at great pace. This review thus aims to bring together the current knowledge on the photic control of reproduction mainly focusing on seasonal temperate fish species and shape the current working hypotheses supported by recent findings obtained in teleosts or based on knowledge gathered in mammalian and avian species. Four of the main potential regulatory systems (light perception, melatonin, clock genes and kisspeptin) in fish reproduction are reviewed.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | | | | |
Collapse
|
41
|
Vera LM, Davie A, Taylor JF, Migaud H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen Comp Endocrinol 2010; 165:25-33. [PMID: 19501092 DOI: 10.1016/j.ygcen.2009.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 03/23/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Photoperiod is perceived by pineal photoreceptors and transduced into rhythmic melatonin signals. These rhythms can be influenced by light intensity and spectral content. In this study we compared the light sensitivity of Atlantic salmon, European sea bass and Atlantic cod by testing ex vivo the effect of different intensities and narrow bandwidth lights on nocturnal melatonin suppression by isolated pineal glands in a flow-through culture system. Using combinations of neutral density and bandpass interference filters we tested a range of light intensities (ranging from 1.22x10(13) to 3.85x10(6) photons s(-1) cm(-2)) and three wavelengths of 80 nm width (472, 555 and 661 nm corresponding to blue, green and red, respectively). Results showed clear species specific light intensity and spectral sensitivities, with cod being from 100 to 1000 times more sensitive than sea bass and salmon. Regarding the influence of spectrum, red light was less efficient on suppressing melatonin than blue and green in salmon but results were not as clear in the two other species studied. Finally, the first evidence of relative photoreception in teleosts was obtained in cod suggesting that the definition of illuminance thresholds (day/night perception) would depend on the day intensity. Indeed, a single order of magnitude increase or decrease in day intensity was shown to elicit a significant shift in the intensity response curve of night-time melatonin suppression. Taken together, this study demonstrated species specific light intensity and spectral sensitivities within temperate teleosts.
Collapse
Affiliation(s)
- L M Vera
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | | | | |
Collapse
|
42
|
Oliveira C, Ortega A, López-Olmeda JF, Vera LM, Sánchez-Vázquez FJ. Influence of Constant Light and Darkness, Light Intensity, and Light Spectrum on Plasma Melatonin Rhythms in Senegal Sole. Chronobiol Int 2009; 24:615-27. [PMID: 17701676 DOI: 10.1080/07420520701534657] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long-term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid-dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 microW/cm(2)). The light threshold required to reduce nocturnal plasma melatonin to ML (mid-light) values was 5.3 microW/cm(2). Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (lambda>600 nm) failed to reduce plasma melatonin significantly, far violet light (lambda(max)=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.
Collapse
Affiliation(s)
- Catarina Oliveira
- Faculty of Biology, Department of Physiology, University of Murcia, Campus Espinardo, 30.100 Murcia, Spain
| | | | | | | | | |
Collapse
|
43
|
Martinez‐Chavez CC, Al‐Khamees S, Campos‐Mendoza A, Penman DJ, Migaud H. Clock‐Controlled Endogenous Melatonin Rhythms in Nile Tilapia (Oreochromis niloticus niloticus) and African Catfish (Clarias gariepinus). Chronobiol Int 2009; 25:31-49. [DOI: 10.1080/07420520801917547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Martinez-Chavez C, Migaud H. Retinal light input is required to sustain plasma melatonin rhythms in Nile tilapia Oreochromis niloticus niloticus. Brain Res 2009; 1269:61-7. [DOI: 10.1016/j.brainres.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 11/29/2022]
|
45
|
Strand JET, Aarseth JJ, Hanebrekke TL, Jørgensen EH. Keeping track of time under ice and snow in a sub-arctic lake: plasma melatonin rhythms in Arctic charr overwintering under natural conditions. J Pineal Res 2008; 44:227-33. [PMID: 18339117 DOI: 10.1111/j.1600-079x.2007.00511.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although photoperiod is considered as a major environmental cue for timing of seasonal events in fish, little is known about the photic information perceived by fish in different aquatic environments. The strongly seasonal Arctic charr, Salvelinus alpinus, reside in lakes covered by thick ice and snow throughout the dark winter in the north. In the present study, we have measured diel changes in their plasma melatonin concentrations from September to June in Lake Storvatnet (70 degrees N), northern Norway. In addition, we have measured the in vitro melatonin production of Arctic charr pineal glands held at experimental light conditions. From September to April a diel profile in plasma melatonin was seen in the charr in Lake Storvatn, with highest concentrations at night. This profile reflected the prevailing above-surface photoperiod, even in February when there were minimal changes in sub-surface irradiance between day and night. In June, plasma melatonin was low throughout the 24-hr cycle, despite there being a marked sub-surface difference in irradiance between night and day. At this time the irradiance in night probably remained above the threshold for suppression of melatonin production. The in vitro experiments revealed no endogenous rhythm in the pineal melatonin secretion, supporting the conclusion that the diel profile seen in the Arctic charr in their natural habitat was driven by ambient photoperiod. In conclusion, the Arctic charr appear to keep track of time even under the extreme conditions of high latitudes during winter, when lakes have thick ice and snow cover.
Collapse
|
46
|
Migaud H, Davie A, Martinez Chavez CC, Al-Khamees S. Evidence for differential photic regulation of pineal melatonin synthesis in teleosts. J Pineal Res 2007; 43:327-35. [PMID: 17910600 DOI: 10.1111/j.1600-079x.2007.00480.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to compare the circadian control of melatonin production in teleosts. To do so, the effects of ophthalmectomy on circulating melatonin rhythms were studied along with ex vivo pineal culture in six different teleosts. Results strongly suggested that the circadian control of melatonin production could have dramatically changed with at least three different systems being present in teleosts when one considers the photic regulation of pineal melatonin production. First, salmonids presented a decentralized system in which the pineal gland responds directly to light independently of the eyes. Then, in seabass and cod both the eyes and the pineal gland are required to sustain full night-time melatonin production. Finally, a third type of circadian control of melatonin production is proposed in tilapia and catfish in which the pineal gland would not be light sensitive (or only slightly) and required the eyes to perceive light and inhibit melatonin synthesis. Further studies (anatomical, ultrastructural, retinal projections) are needed to confirm these results. Ex vivo experiments indirectly confirmed these results, as while the pineal gland responded normally to day-night rhythms in salmonids, seabass and cod, only very low levels were obtained at night in tilapia and no melatonin could be measured from isolated pineal glands in catfish. Together, these findings suggest that mechanisms involved in the perception of light and the transduction of this signal through the circadian axis has changed in teleosts possibly as a reflection of the photic environment in which they have evolved in.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | |
Collapse
|
47
|
Faluhelyi N, Csernus V. The effects of environmental illumination on the in vitro melatonin secretion from the embryonic and adult chicken pineal gland. Gen Comp Endocrinol 2007; 152:154-8. [PMID: 17324428 DOI: 10.1016/j.ygcen.2007.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/04/2007] [Accepted: 01/19/2007] [Indexed: 11/18/2022]
Abstract
The aim of this study was to monitor the changes in the pattern of the in vitro melatonin (MT) secretion under reversed illumination cycles with low intensity of light during photo phase. Although light is known to be one of the major synchronizing factors of the circadian MT rhythm in birds, there are no data available on the limits of direct light sensitivity of the avian pinealocytes. In our experiments, MT secretion from adult or from embryonic chicken pineal glands was monitored in a perifusion system for 4 days. The glands were repeatedly exposed to light with various intensities and duration. Reversed daily illumination inverted the in vitro MT rhythm even if the intensity of light was only 10lux at the surface of the perifusion columns. MT release of embryonic pineal glands was also found to be sensitive to dim light. Our results showed that the chicken pineal gland is directly sensitive to light of low intensity. However, the various oscillator units in the gland may have different sensitivity to dim light. Light perception mechanism in the chicken pinealocytes is already fully developed on the 17th embryonic day.
Collapse
Affiliation(s)
- Nándor Faluhelyi
- Department of Anatomy, Medical School, University of Pécs, Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, Pécs, Hungary.
| | | |
Collapse
|