1
|
Hsieh MC, Lai CY, Lin LT, Chou D, Yeh CM, Cheng JK, Wang HH, Lin KH, Lin TB, Peng HY. Melatonin Relieves Paclitaxel-Induced Neuropathic Pain by Regulating pNEK2-Dependent Epigenetic Pathways in DRG Neurons. ACS Chem Neurosci 2023; 14:4227-4239. [PMID: 37978917 DOI: 10.1021/acschemneuro.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung 40343, Taiwan
- Central Taiwan University of Science and Technology, Taichung 40343, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei104, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 252, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40604, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
2
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Possible Application of Melatonin in Long COVID. Biomolecules 2022; 12:1646. [PMID: 36358996 PMCID: PMC9687267 DOI: 10.3390/biom12111646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical sequelae and symptoms for a considerable number of COVID-19 patients can linger for months beyond the acute stage of SARS-CoV-2 infection, "long COVID". Among the long-term consequences of SARS-CoV-2 infection, cognitive issues (especially memory loss or "brain fog"), chronic fatigue, myalgia, and muscular weakness resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are of importance. Melatonin may be particularly effective at reducing the signs and symptoms of SARS-CoV-2 infection due to its functions as an antioxidant, anti-inflammatory, and immuno-modulatory agent. Melatonin is also a chronobiotic medication effective in treating delirium and restoring the circadian imbalance seen in COVID patients in the intensive care unit. Additionally, as a cytoprotector, melatonin aids in the prevention of several COVID-19 comorbidities, including diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases. This narrative review discusses the application of melatonin as a neuroprotective agent to control cognitive deterioration ("brain fog") and pain in the ME/CFS syndrome-like documented in long COVID. Further studies on the therapeutic use of melatonin in the neurological sequelae of SARS-CoV-2 infection are warranted.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires C1107AAZ, Argentina
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Seithikurippu R. Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
3
|
Zhao J, Zeng Y, Wang Y, Shi J, Zhao W, Wu B, Du H. Humanin protects cortical neurons from calyculin A-induced neurotoxicities by increasing PP2A activity and SOD. Int J Neurosci 2020; 131:527-535. [PMID: 32408779 DOI: 10.1080/00207454.2020.1769617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Humanin (HN) is an extensive neuroprotective peptide. This study aims to investigate the neuroprotective effects of HN on Calyculin A (CA)-induced neurotoxicities in cortical neurons and the underlying mechanism. METHODS CA was added into the cultured cortical neurons to induce neurotoxicity. Cortical neurons were preincubated with HN which plays a protective role. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and Calcein-AM were applied to evaluate the neural insults. Caspase 3 signal and Tunnel were performed to test neural apoptosis. Western blot analysis was used to detect the expressions of phosphorylated tau. The corresponding kits were used to measure the contents of malondialdehyde (MDA) and superoxide dismutase (SOD), and the activity of PP2A, respectively. RESULTS HN preincubation preserved cell viability, protected the neurons, alleviated oxidative stress, and reserved PP2A activity. It also blocked tau overphosphorylation at Ser199/202, Ser396, and Thr231 sites and protected neurons against CA-induced insults. CONCLUSION These results suggest that HN may serve as a potential therapeutic agent to prevent the pathological changes induced by CA via modulating the activity of PP2A and oxidative stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinfeng Zhao
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yu Zeng
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yaxin Wang
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Junzhen Shi
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Wenhui Zhao
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, China
| | - Baoai Wu
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Huizhi Du
- Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Cardinali DP. Melatonin: Clinical Perspectives in Neurodegeneration. Front Endocrinol (Lausanne) 2019; 10:480. [PMID: 31379746 PMCID: PMC6646522 DOI: 10.3389/fendo.2019.00480] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Prevention of neurodegenerative diseases is presently a major goal for our Society and melatonin, an unusual phylogenetically conserved molecule present in all aerobic organisms, merits consideration in this respect. Melatonin combines both chronobiotic and cytoprotective properties. As a chronobiotic, melatonin can modify phase and amplitude of biological rhythms. As a cytoprotective molecule, melatonin reverses the low degree inflammatory damage seen in neurodegenerative disorders and aging. Low levels of melatonin in blood characterizes advancing age. In experimental models of Alzheimer's disease (AD) and Parkinson's disease (PD) the neurodegeneration observed is prevented by melatonin. Melatonin also increased removal of toxic proteins by the brain glymphatic system. A limited number of clinical trials endorse melatonin's potentiality in AD and PD, particularly at an early stage of disease. Calculations derived from animal studies indicate cytoprotective melatonin doses in the 40-100 mg/day range. Hence, controlled studies employing melatonin doses in this range are urgently needed. The off-label use of melatonin is discussed.
Collapse
|
5
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
6
|
Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD, Peng HY. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal Res 2016; 60:263-76. [PMID: 26732138 DOI: 10.1111/jpi.12307] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons.
Collapse
Affiliation(s)
- Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
7
|
Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 2014; 71:2997-3025. [PMID: 24554058 PMCID: PMC11113552 DOI: 10.1007/s00018-014-1579-2] [Citation(s) in RCA: 746] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cardinali DP, Vigo DE, Olivar N, Vidal MF, Brusco LI. Melatonin Therapy in Patients with Alzheimer's Disease. Antioxidants (Basel) 2014; 3:245-77. [PMID: 26784870 PMCID: PMC4665493 DOI: 10.3390/antiox3020245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/09/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a major health problem and a growing recognition exists that efforts to prevent it must be undertaken by both governmental and non-governmental organizations. In this context, the pineal product, melatonin, has a promising significance because of its chronobiotic/cytoprotective properties potentially useful for a number of aspects of AD. One of the features of advancing age is the gradual decrease in circulating melatonin levels. A limited number of therapeutic trials have indicated that melatonin has a therapeutic value as a neuroprotective drug in the treatment of AD and minimal cognitive impairment (which may evolve to AD). Both in vitro and in vivo, melatonin prevented the neurodegeneration seen in experimental models of AD. For these effects to occur, doses of melatonin about two orders of magnitude higher than those required to affect sleep and circadian rhythmicity are needed. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects, which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100 mg/day are urgently needed to assess its therapeutic validity in neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina.
| | - Daniel E Vigo
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina.
| | - Natividad Olivar
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| | - María F Vidal
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| | - Luis I Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| |
Collapse
|
9
|
Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS One 2014; 9:e93974. [PMID: 24713870 PMCID: PMC3979860 DOI: 10.1371/journal.pone.0093974] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD.
Collapse
|
10
|
Chojnacki C, Wachowska-Kelly P, Błasiak J, Reiter RJ, Chojnacki J. Melatonin secretion and metabolism in patients with hepatic encephalopathy. J Gastroenterol Hepatol 2013. [PMID: 23190028 DOI: 10.1111/jgh.12055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The rhythm of melatonin secretion and its blood level changes in cirrhotic patients, but the causes of these alterations have not been sufficiently appreciated. The aim of study was to estimate the dependence between melatonin secretion and metabolism and the severity of hepatic encephalopathy. METHODS The study included 75 alcoholic cirrhotic patients (A, B, C) with hepatic insufficiency and 25 healthy subjects (group K). Three groups of patients were identified, 25 patients each, with grade 1, 2, and 3 hepatic encephalopathy according to West-Haven Scale. Immunoenzymatic method was used to measure serum melatonin (at 02:00 h and 09:00 h) level and 6-sulfatoxymelatonin (6-HMS) excretion in the urine (during night and day). RESULTS Nocturnal serum melatonin levels (pg/mL) in groups were: K-57.1 ± 11.4, A-38.5 ± 11.2, B-53.4 ± 17.9, C-79.5 ± 27.9 (P < 0.01); whereas diurnal levels were: K-10.9 ± 3.5, A-33.5 ± 12.0, B-53.8 ± 23.1, C-98.5 ± 34.6 (P < 0.01). Similar differences were found in the evaluation of 6-HMS excretion (μg/9 h) in urine at night: group K-23.4 ± 14.4, A-16.6 ± 5.4, B-14.3 ± 6.2 (P < 0.01), C-3.3 ± 1.5 (P < 0.001). Diurnal 6-HMS excretion (μg/15 h) was lower only in group C and it was respectively: K-6.9 ± 3.4, A-7.1 ± 1.7, B-7.6 ± 1.7, C-4.3 ± 2.2 (P < 0.001). Serum ammonia concentrations (μg/dL) were: group K-30.4 ± 8.9, A-51.8 ± 25.4 (P < 0.05), B-73.0 ± 29.8 (P < 0.001), C-107.5 ± 34.8 (P < 0.001). No correlation between melatonin and ammonia levels in all groups was found. CONCLUSIONS The elevated melatonin blood levels both at night and day may account for some of the clinical manifestations of hepatic encephalopathy (daytime sleepiness, fatigue).
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | |
Collapse
|
11
|
Melatonin levels in serum and ascitic fluid of patients with hepatic encephalopathy. Gastroenterol Res Pract 2012; 2012:510764. [PMID: 23346104 PMCID: PMC3546494 DOI: 10.1155/2012/510764] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023] Open
Abstract
Cirrhotic patients exhibit disturbed melatonin homeostasis, which may lead to sleep disturbances, but an influence on the hepatic encephalopathy has not been elucidated. Aim. In the present study, the association of melatonin levels in serum and ascitic fluid and ammonia concentration related to the intensity of hepatic encephalopathy (HE) was investigated.
Material and Methods. The study included 90 alcoholic patients with hepatic encephalopathy and 30 healthy volunteers (C). Patients were divided in three groups according to 0–4 West-Haven Score: HE1 (n = 28), HE2 (n = 30), and HE3 (n = 32). Melatonin was measured by radioimmune assay. Results. In fasting patients with hepatic encephalopathy we noted higher melatonin serum levels [pg/mL] than in healthy subjects groups: C—11.3 ± 3.9, HE1 – 34.3 ± 12.2 (P < 0.01), HE2—54.8 ± 23.9, and HE3—119.8 ± 96.4 (P < 0.001). No correlation between melatonin and ammonia levels was found. Melatonin was detected in ascetic fluid in 24 patients of group HE2 and 27 patients of group HE2 of hepatic encephalopathy. Conclusions. Our results suggest that high blood levels of melatonin in cirrhotic liver patients may account for some of the clinical manifestations of hepatic encephalopathy, for example, daytime sleepiness, fatigue.
Collapse
|
12
|
Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res 2012; 53:138-46. [PMID: 22335252 DOI: 10.1111/j.1600-079x.2012.00980.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin has neuroprotective effects in the models of neurodegenerative disease including Alzheimer's and Parkinson's disease. Several studies have shown that melatonin prevents neurodegeneration by regulation of mitochondrial function. However, the protective action of melatonin has not been reported in prion disease. We investigated the influence of melatonin on prion-mediated neurotoxicity. Melatonin rescued neuronal cells from PrP(106-126)-induced neurotoxicity by prevention of mitochondrial dysfunction. Moreover, the protective effect of melatonin against mitochondrial dysfunction was related with autophagy activation. Melatonin-treated cells were dose-dependently increased in LC3-II, an autophagy marker. Melatonin-induced autophagy prevented a PrP(106-126)-induced reduction in mitochondrial potential and translocation of Bax to the mitochondria and cytochrome c release. On the other hand, downregulation of autophagy protein 5 with Atg5 siRNA or the autophagy blocker 3-methyladenine prevented the melatonin-mediated neuroprotective effects. This is the first report demonstrating that treatment with melatonin appears to protect against prion-mediated neurotoxicity and that the neuroprotection is induced by melatonin-mediated autophagy signals. The results of this study suggest that regulation of melatonin is a therapeutic strategy for prion peptide-induced apoptosis.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, Center for Healthcare Technology Development, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | | | | | | | | |
Collapse
|