1
|
Mungara P, Waiss M, Hartwig S, Burger D, Cordat E. Unraveling the molecular landscape of kAE1: a narrative review. Can J Physiol Pharmacol 2024; 102:396-407. [PMID: 38669699 DOI: 10.1139/cjpp-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.
Collapse
Affiliation(s)
- Priyanka Mungara
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moubarak Waiss
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Dylan Burger
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | - Emmanuelle Cordat
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Lashhab R, Essuman G, Chavez-Canales M, Alexander RT, Cordat E. Expression of the kidney anion exchanger 1 affects WNK4 and SPAK phosphorylation and results in claudin-4 phosphorylation. Heliyon 2023; 9:e22280. [PMID: 38034706 PMCID: PMC10687047 DOI: 10.1016/j.heliyon.2023.e22280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
In the renal collecting ducts, chloride reabsorption occurs through both transcellular and paracellular pathways. Recent literature highlights a functional interplay between both pathways. We recently showed that in polarized inner medullary collecting duct cells, expression of the basolateral kidney anion exchanger 1 (kAE1) results in a decreased transepithelial electrical resistance (TEER), in a claudin-4 dependent pathway. Claudin-4 is a paracellular sodium blocker and chloride pore. Here, we show that kAE1 expression in mouse inner medullary collecting duct cells triggers WNK4, SPAK and claudin-4 phosphorylation. Expression of a functionally dead kAE1 E681Q mutant has no effect on phosphorylation of these proteins. Expression of a catalytically inactive WNK4 D321A or chloride-insensitive WNK4 L319F mutant abolishes kAE1 effect on TEER, supporting a contribution of WNK4 to the process. We propose that variations of the cytosolic pH and chloride concentration upon kAE1 expression alter WNK4 kinase activity and tight junction properties.
Collapse
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Grace Essuman
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Chavez-Canales
- Unidad de Investigación UNAM-INCICh, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, 14080, Mexico
| | - R. Todd Alexander
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
4
|
Yang M, Sheng Q, Ge S, Song X, Dong J, Guo C, Liao L. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: Analysis based on published patients. Front Pediatr 2023; 11:1077120. [PMID: 36776909 PMCID: PMC9910804 DOI: 10.3389/fped.2023.1077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS The genetic and clinical characteristics of patients with distal renal tubular acidosis (dRTA) caused by SLC4A1 mutations have not been systematically recorded before. Here, we summarized the SLC4A1 mutations and clinical characteristics associated with dRTA. METHODS Database was searched, and the mutations and clinical manifestations of patients were summarized from the relevant articles. RESULTS Fifty-three eligible articles involving 169 patients were included and 41 mutations were identified totally. Fifteen mutations involving 100 patients were autosomal dominant inheritance, 21 mutations involving 61 patients were autosomal recessive inheritance. Nephrocalcinosis or kidney stones were found in 72.27%, impairment in renal function in 14.29%, developmental disorders in 61.16%, hematological abnormalities in 33.88%, and muscle weakness in 13.45% of patients. The age of onset was younger (P < 0.01), urine pH was higher (P < 0.01), and serum potassium was lower (P < 0.001) in recessive patients than patients with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients (P < 0.05). CONCLUSIONS The children present with metabolic acidosis with high urinary pH, accompanying hypokalemia, hyperchloremia, nephrocalcinosis, growth retardation and hematological abnormalities should be suspected as dRTA and suggested a genetic testing. The patients with recessive dRTA are generally more severely affected than that with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients, and more attentions should be paid to the Asian patients.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
| | - Qiqi Sheng
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Shenghui Ge
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Xinxin Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| |
Collapse
|
5
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
6
|
Bakhos-Douaihy D, Seaayfan E, Frachon N, Demaretz S, Kömhoff M, Laghmani K. Diacidic Motifs in the Carboxyl Terminus Are Required for ER Exit and Translocation to the Plasma Membrane of NKCC2. Int J Mol Sci 2022; 23:ijms232112761. [PMID: 36361553 PMCID: PMC9656672 DOI: 10.3390/ijms232112761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
8
|
Gómez-Conde S, García-Castaño A, Aguirre M, Herrero M, Gondra L, Castaño L, Madariaga L. Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2021; 41:383-390. [PMID: 36165107 DOI: 10.1016/j.nefroe.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/14/2020] [Indexed: 06/16/2023] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3 groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
Affiliation(s)
- Sara Gómez-Conde
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain
| | - Alejandro García-Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN
| | - Mireia Aguirre
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - María Herrero
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Leire Gondra
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Luis Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Endocrinología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Leire Madariaga
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
9
|
Li X, Cordat E, Schmitt MJ, Becker B. Boosting endoplasmic reticulum folding capacity reduces unfolded protein response activation and intracellular accumulation of human kidney anion exchanger 1 in Saccharomyces cerevisiae. Yeast 2021; 38:521-534. [PMID: 34033682 DOI: 10.1002/yea.3652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Human kidney anion exchanger 1 (kAE1) facilitates simultaneous efflux of bicarbonate and absorption of chloride at the basolateral membrane of α-intercalated cells. In these cells, kAE1 contributes to systemic acid-base balance along with the proton pump v-H+ -ATPase and the cytosolic carbonic anhydrase II. Recent electron microscopy analyses in yeast demonstrate that heterologous expression of several kAE1 variants causes a massive accumulation of the anion transporter in intracellular membrane structures. Here, we examined the origin of these kAE1 aggregations in more detail. Using various biochemical techniques and advanced light and electron microscopy, we showed that accumulation of kAE1 mainly occurs in endoplasmic reticulum (ER) membranes which eventually leads to strong unfolded protein response (UPR) activation and severe growth defect in kAE1 expressing yeast cells. Furthermore, our data indicate that UPR activation is dose dependent and uncoupled from the bicarbonate transport activity. By using truncated kAE1 variants, we identified the C-terminal region of kAE1 as crucial factor for the increased ER stress level. Finally, a redistribution of ER-localized kAE1 to the cell periphery was achieved by boosting the ER folding capacity. Our findings not only demonstrate a promising strategy for preventing intracellular kAE1 accumulation and improving kAE1 plasma membrane targeting but also highlight the versatility of yeast as model to investigate kAE1-related research questions including the analysis of structural features, protein degradation and trafficking. Furthermore, our approach might be a promising strategy for future analyses to further optimize the cell surface targeting of other disease-related PM proteins, not only in yeast but also in mammalian cells.
Collapse
Affiliation(s)
- Xiaobing Li
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2020. [PMID: 33386195 DOI: 10.1016/j.nefro.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
|
11
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
12
|
Bertocchio JP, Genetet S, Da Costa L, Walsh SB, Knebelmann B, Galimand J, Bessenay L, Guitton C, De Lafaille R, Vargas-Poussou R, Eladari D, Mouro-Chanteloup I. Red Blood Cell AE1/Band 3 Transports in Dominant Distal Renal Tubular Acidosis Patients. Kidney Int Rep 2020; 5:348-357. [PMID: 32154456 PMCID: PMC7056926 DOI: 10.1016/j.ekir.2019.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 12/31/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction Anion exchanger 1 (AE1) (SLC4A1 gene product) is a membrane protein expressed in both kidney and red blood cells (RBCs): it exchanges extracellular bicarbonate (HCO3–) for intracellular chloride (Cl–) and participates in acid−base homeostasis. AE1 mutations in kidney α-intercalated cells can lead to distal renal tubular acidosis (dRTA). In RBC, AE1 (known as band 3) is also implicated in membrane stability: deletions can cause South Asian ovalocytosis (SAO). Methods We retrospectively collected clinical and biological data from patients harboring dRTA due to a SLC4A1 mutation and analyzed HCO3– and Cl– transports (by stopped-flow spectrophotometry) and expression (by flow cytometry, fluorescence activated cell sorting, and Coomassie blue staining) in RBCs, as well as RBC membrane stability (ektacytometry). Results Fifteen patients were included. All experience nephrolithiasis and/or nephrocalcinosis, 2 had SAO and dRTA (dRTA SAO+), 13 dominant dRTA (dRTA SAO−). The latter did not exert specific RBC membrane anomalies. Both HCO3– and Cl– transports were lower in patients with dRTA SAO+ than in those with dRTA SAO− or controls. Using 3 different extracellular probes, we report a decreased expression (by 52%, P < 0.05) in dRTA SAO+ patients by fluorescence activated cell sorting, whereas total amount of protein was not affected. Conclusion Band 3 transport function and expression in RBCs from dRTA SAO− patients is normal. However, in SAO RBCs, impaired conformation of AE1/band 3 corresponds to an impaired function. Thus, the driver of acid−base defect during dominant dRTA is probably an impaired membrane expression.
Collapse
Affiliation(s)
- Jean-Philippe Bertocchio
- Renal and Metabolic Diseases Unit, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France.,Faculty of Medicine, Paris Descartes University, Paris, France.,Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Genito-urinary Medical Oncology and Research Department, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandrine Genetet
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Lydie Da Costa
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,UMR_S1134, Inserm, Paris, France.,Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Stephen B Walsh
- Department of Renal Medicine, University College of London, London, UK
| | - Bertrand Knebelmann
- Nephrology Department, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Julie Galimand
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Lucie Bessenay
- Pediatrics Department, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Guitton
- Pediatrics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Renaud De Lafaille
- Nephrology Department, University Hospital of Bordeaux, Bordeaux, Aquitaine, France
| | - Rosa Vargas-Poussou
- Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche UMRS1138, Cordeliers Research Center, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France
| | - Dominique Eladari
- Renal and Metabolic Diseases Department, CHU de la Réunion, Felix Guyon Hospital, Saint Denis, France.,INSERM, UMRS 1283-European Genomic Institute for Diabetes, Lille, France
| | - Isabelle Mouro-Chanteloup
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| |
Collapse
|
13
|
Ullah AKMS, Rumley AC, Peleh V, Fernandes D, Almomani EY, Berrini M, Lashhab R, Touret N, Alexander RT, Herrmann JM, Cordat E. SLC26A7 protein is a chloride/bicarbonate exchanger and its abundance is osmolarity- and pH-dependent in renal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183238. [PMID: 32119864 DOI: 10.1016/j.bbamem.2020.183238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Acid-secreting intercalated cells of the collecting duct express the chloride/bicarbonate kidney anion exchanger 1 (kAE1) as well as SLC26A7, two proteins that colocalize in the basolateral membrane. The latter protein has been reported to function either as a chloride/bicarbonate exchanger or a chloride channel. Both kAE1 and SLC26A7 are detected in the renal medulla, an environment hyper-osmotic to plasma. Individuals with mutations in the SLC4A1 gene encoding kAE1 and mice lacking Slc26a7 develop distal renal tubular acidosis (dRTA). Here, we aimed to (i) confirm that SLC26A7 can function as chloride/bicarbonate exchanger in Madin-Darby canine kidney (MDCK) cells, and (ii) examine the behavior of SLC26A7 relative to kAE1 wild type or carrying the dRTA mutation R901X in iso- or hyper-osmotic conditions mimicking the renal medulla. Although we found that SLC26A7 abundance increases in hyper-osmotic growth medium, it is reduced in low pH growth conditions mimicking acidosis when expressed at high levels in MDCK cells. In these cells, SLC26A7 exchange activity was independent from extracellular osmolarity. When SLC26A7 protein was co-expressed with kAE1 WT or the R901X dRTA mutant, the cellular chloride/bicarbonate exchange rate was not additive compared to when proteins are expressed individually, possibly reflecting a decreased overall protein expression. Furthermore, the cellular chloride/bicarbonate exchange rate was osmolarity-independent. Together, these results show that (i) in MDCK cells, SLC26A7 is a chloride/bicarbonate exchanger whose abundance is up-regulated by high osmolarity growth medium and (ii) acidic extracellular pH decreases the abundance of SLC26A7 protein.
Collapse
Affiliation(s)
| | - A Carly Rumley
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daphne Fernandes
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Ensaf Y Almomani
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mattia Berrini
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Rawad Lashhab
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | | | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Saccharomyces cerevisiae: First Steps to a Suitable Model System To Study the Function and Intracellular Transport of Human Kidney Anion Exchanger 1. mSphere 2020; 5:5/1/e00802-19. [PMID: 31996424 PMCID: PMC6992373 DOI: 10.1128/msphere.00802-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae. Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future. Saccharomyces cerevisiae has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body. Malfunctions in kAE1 lead to a pathological phenotype known as distal renal tubular acidosis (dRTA). Here, we evaluated the potential of baker's yeast as a model system to investigate different cellular aspects of kAE1 physiology. For the first time, we successfully expressed yeast codon-optimized full-length versions of tagged and untagged wild-type kAE1 and demonstrated their partial localization at the yeast plasma membrane (PM). Finally, pH and chloride measurements further suggest biological activity of full-length kAE1, emphasizing the potential of S. cerevisiae as a model system for studying trafficking, activity, and/or degradation of mammalian ion channels and transporters such as kAE1 in the future. IMPORTANCE Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae. Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future.
Collapse
|
15
|
Lashhab R, Ullah AS, Cordat E. Renal collecting duct physiology and pathophysiology. Biochem Cell Biol 2019; 97:234-242. [DOI: 10.1139/bcb-2018-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - A.K.M. Shahid Ullah
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
16
|
The kidney anion exchanger 1 affects tight junction properties via claudin-4. Sci Rep 2019; 9:3099. [PMID: 30816203 PMCID: PMC6395713 DOI: 10.1038/s41598-019-39430-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
In the renal collecting duct, intercalated cells regulate acid-base balance by effluxing protons through the v-H+-ATPase, and bicarbonate via apical pendrin or the basolateral kidney anion exchanger 1 (kAE1). Additionally, collecting duct cells play an essential role in transepithelial absorption of sodium and chloride. Expression of kAE1 in polarized MDCK I cells was previously shown to decrease trans-epithelial electrical resistance (TEER), suggesting a novel role for kAE1 in paracellular permeability. In our study, we not only confirmed that inducible expression of kAE1 in mIMCD3 cells decreased TEER but we also observed (i) increased epithelial absolute permeability to both sodium and chloride, and (ii) that this effect was dependent on kAE1 activity. Further, kAE1 regulated tight junction properties through the tight junction protein claudin-4, a protein with which it physically interacts and colocalizes. These findings unveil a novel interaction between the junctional protein claudin-4 and the kidney anion exchanger, which may be relevant to ion and/or pH homeostasis.
Collapse
|
17
|
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatric Health Med Ther 2018; 9:181-190. [PMID: 30588151 PMCID: PMC6296208 DOI: 10.2147/phmt.s174459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride-bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan,
| |
Collapse
|
18
|
Horowitz B, Javitt G, Ilani T, Gat Y, Morgenstern D, Bard FA, Fass D. Quiescin sulfhydryl oxidase 1 (QSOX1) glycosite mutation perturbs secretion but not Golgi localization. Glycobiology 2018; 28:580-591. [PMID: 29757379 DOI: 10.1093/glycob/cwy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) catalyzes the formation of disulfide bonds in protein substrates. Unlike other enzymes with related activities, which are commonly found in the endoplasmic reticulum, QSOX1 is localized to the Golgi apparatus or secreted. QSOX1 is upregulated in quiescent fibroblast cells and secreted into the extracellular environment, where it contributes to extracellular matrix assembly. QSOX1 is also upregulated in adenocarcinomas, though the extent to which it is secreted in this context is currently unknown. To achieve a better understanding of factors that dictate QSOX1 localization and function, we aimed to determine how post-translational modifications affect QSOX1 trafficking and activity. We found a highly conserved N-linked glycosylation site to be required for QSOX1 secretion from fibroblasts and other cell types. Notably, QSOX1 lacking a glycan at this site arrives at the Golgi, suggesting that it passes endoplasmic reticulum quality control but is not further transported to the cell surface for secretion. The QSOX1 transmembrane segment is dispensable for Golgi localization and secretion, as fully luminal and transmembrane variants displayed the same trafficking behavior. This study provides a key example of the effect of glycosylation on Golgi exit and contributes to an understanding of late secretory sorting and quality control.
Collapse
Affiliation(s)
- Ben Horowitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Gat
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Frederic A Bard
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Liu J, Shen Q, Li G, Zhai Y, Fang X, Xu H. Clinical and genetic analysis of distal renal tubular acidosis in three Chinese children. Ren Fail 2018; 40:520-526. [PMID: 30230413 PMCID: PMC6147104 DOI: 10.1080/0886022x.2018.1487858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Primary distal renal tubular acidosis (dRTA) is a rare genetic disease characterized by distal tubular dysfunction leading to metabolic acidosis and alkaline urine. Growth retardation is a major concern in these children. The disease is caused by defects in at least three genes (SLC4A1, ATP6V0A4, and ATP6V1B1) involved in urinary distal acidification. Several series of dRTA patients from different ethnic backgrounds have been genetically studied, but genetic studies regarding Chinese population is rare. Our aim was to investigate the clinical features and genetic basis of primary dRTA in Chinese children. Methods: Three unrelated patients with dRTA participated in our study. Next-generation sequencing was performed, and the findings were validated using the Sanger sequencing method. Results: All patients exhibited hyperchloraemic metabolic acidosis, abnormally high urine pH, hypokalemia, and nephrocalcinosis. Growth retardation was observed in all patients. During the follow-up (range 1–4 years), alkali replacement therapy corrected the systemic metabolic acidosis, and two patients demonstrated normal growth. rhGH therapy was administered to patient-3 at the age of 6 years, and his growth rate was significantly improved (growth velocity 9.6 cm/yr). In total, 5 mutations were identified in our cohort of three patients, and four mutations were novel. Conclusions: We report the clinical and molecular characteristics of dRTA patients from China. The four novel mutations detected in our study extend the spectrum of gene mutations associated with primary dRTA. Furthermore, our study confirms the effect of early treatment in improving growth for dRTA patient and provides insight into the effects of rhGH on dRTA patients who were diagnosed late and exhibiting a persistent growth delay despite appropriate therapy.
Collapse
Affiliation(s)
- Jiaojiao Liu
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| | - Qian Shen
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| | - Guomin Li
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| | - Yihui Zhai
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| | - Xiaoyan Fang
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| | - Hong Xu
- a Department of Nephrology , Children's Hospital of Fudan University , Shanghai , China
| |
Collapse
|
20
|
Abstract
Distal renal tubular acidosis (DRTA) is defined as hyperchloremic, non-anion gap metabolic acidosis with impaired urinary acid excretion in the presence of a normal or moderately reduced glomerular filtration rate. Failure in urinary acid excretion results from reduced H+ secretion by intercalated cells in the distal nephron. This results in decreased excretion of NH4+ and other acids collectively referred as titratable acids while urine pH is typically above 5.5 in the face of systemic acidosis. The clinical phenotype in patients with DRTA is characterized by stunted growth with bone abnormalities in children as well as nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria, hypocitraturia, and relatively alkaline urine. Hypokalemia is a striking finding that accounts for muscle weakness and requires continued treatment together with alkali-based therapies. This review will focus on the mechanisms responsible for impaired acid excretion and urinary potassium wastage, the clinical features, and diagnostic approaches of hypokalemic DRTA, both inherited and acquired.
Collapse
|
21
|
Almomani EY, Touret N, Cordat E. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells. Mol Membr Biol 2018; 34:50-64. [PMID: 29651904 DOI: 10.1080/09687688.2018.1451662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.
Collapse
Affiliation(s)
- Ensaf Y Almomani
- a Department of Physiology , University of Alberta , Edmonton , AB , Canada
| | - Nicolas Touret
- b Department of Biochemistry , University of Alberta , Edmonton , AB , Canada
| | - Emmanuelle Cordat
- a Department of Physiology , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
22
|
Park E, Cho M, Hyun H, Shin J, Lee J, Park Y, Choi H, Kang H, Cheong H. Genotype–Phenotype Analysis in Pediatric Patients with Distal Renal Tubular Acidosis. Kidney Blood Press Res 2018; 43:513-521. [DOI: 10.1159/000488698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022] Open
|
23
|
Trepiccione F, Prosperi F, de la Motte LR, Hübner CA, Chambrey R, Eladari D, Capasso G. New Findings on the Pathogenesis of Distal Renal Tubular Acidosis. KIDNEY DISEASES 2017; 3:98-105. [PMID: 29344504 DOI: 10.1159/000478781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Indexed: 12/23/2022]
Abstract
Background Distal renal tubular acidosis (dRTA) is characterized by an impairment of the urinary acidification process in the distal nephron. Complete or incomplete metabolic acidosis coupled with inappropriately alkaline urine are the hallmarks of this condition. Genetic forms of dRTA are caused by loss of function mutations of either SLC4A1, encoding the AE1 anion exchanger, or ATP6V1B1 and ATP6V0A4, encoding for the B1 and a4 subunits of the vH+ATPase, respectively. These genes are crucial for the function of A-type intercalated cells (A-IC) of the distal nephron. Summary Alterations of acid-base homeostasis are variably associated with hypokalemia, hypercalciuria, nephrocalcinosis or nephrolithiasis, and a salt-losing phenotype. Here we report the diagnostic test and the underlying physiopathological mechanisms. The molecular mechanisms identified so far can explain the defect in acid secretion, but do not explain all clinical features. We review the latest experimental findings on the pathogenesis of dRTA, reporting mechanisms that are instrumental for the clinician and potentially inspiring a novel therapeutic strategy. Key Message Primary dRTA is usually intended as a single-cell disease because the A-IC are mainly affected. However, novel evidence shows that different cell types of the nephron may contribute to the signs and symptoms, moving the focus from a single-cell towards a renal disease.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Federica Prosperi
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Luigi Regenburgh de la Motte
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Regine Chambrey
- Inserm U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint-Denis, Ile de la Réunion, France
| | - Giovambattista Capasso
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| |
Collapse
|
24
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
25
|
γ-COPI mediates the retention of kAE1 G701D protein in Golgi apparatus – a mechanistic explanation of distal renal tubular acidosis associated with the G701D mutation. Biochem J 2017. [DOI: 10.1042/bcj20170088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations of the solute carrier family 4 member 1 (SLC4A1) gene encoding kidney anion (chloride/bicarbonate ion) exchanger 1 (kAE1) can cause genetic distal renal tubular acidosis (dRTA). Different SLC4A1 mutations give rise to mutant kAE1 proteins with distinct defects in protein trafficking. The mutant kAE1 protein may be retained in endoplasmic reticulum (ER) or Golgi apparatus, or mis-targeted to the apical membrane, failing to display its function at the baso-lateral membrane. The ER-retained mutant kAE1 interacts with calnexin chaperone protein; disruption of this interaction permits the mutant kAE1 to reach the cell surface and display anion exchange activity. However, the mechanism of Golgi retention of mutant kAE1 G701D protein, which is otherwise functional, is still unclear. In the present study, we show that Golgi retention of kAE1 G701D is due to a stable interaction with the Golgi-resident protein, coat protein complex I (COPI), that plays a role in retrograde vesicular trafficking and Golgi-based quality control. The interaction and co-localization of kAE1 G701D with the γ-COPI subunit were demonstrated in human embryonic kidney (HEK-293T) cells by co-immunoprecipitation and immunofluorescence staining. Small interference RNA (siRNA) silencing of COPI expression in the transfected HEK-293T cells increased the cell surface expression of transgenic kAE1 G701D, as shown by immunofluorescence staining. Our data unveil the molecular mechanism of Golgi retention of kAE1 G701D and suggest that disruption of the COPI-kAE1 G701D interaction could be a therapeutic strategy to treat dRTA caused by this mutant.
Collapse
|
26
|
Mumtaz R, Trepiccione F, Hennings JC, Huebner AK, Serbin B, Picard N, Ullah AKMS, Păunescu TG, Capen DE, Lashhab RM, Mouro-Chanteloup I, Alper SL, Wagner CA, Cordat E, Brown D, Eladari D, Hübner CA. Intercalated Cell Depletion and Vacuolar H +-ATPase Mistargeting in an Ae1 R607H Knockin Model. J Am Soc Nephrol 2017; 28:1507-1520. [PMID: 27932475 PMCID: PMC5407715 DOI: 10.1681/asn.2016020169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022] Open
Abstract
Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.
Collapse
Affiliation(s)
- Rizwan Mumtaz
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris Descartes University, Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France
- Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - J Christopher Hennings
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Bettina Serbin
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris Descartes University, Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Picard
- Centre National de la Recherche Scientifique, Équipe de Recherche Labellisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - A K M Shahid Ullah
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Rawad M Lashhab
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1134, Laboratory of Excellence Globule Rouge-Excellence, Paris Diderot University, Paris, France
| | - Seth L Alper
- Nephrology Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Dominique Eladari
- Service de Physiologie Explorations Fonctionnelles Rénales, Centre Hospitalier Universitaire de la Réunion, Hôpital Felix Guyon; and
- Institut National de la Santé et de la Recherche Médicale U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Denis, La Réunion, France
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany;
| |
Collapse
|
27
|
Briant K, Johnson N, Swanton E. Transmembrane domain quality control systems operate at the endoplasmic reticulum and Golgi apparatus. PLoS One 2017; 12:e0173924. [PMID: 28384259 PMCID: PMC5383021 DOI: 10.1371/journal.pone.0173924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Multiple protein quality control systems operate to ensure that misfolded proteins are efficiently cleared from the cell. While quality control systems that assess the folding status of soluble domains have been extensively studied, transmembrane domain (TMD) quality control mechanisms are poorly understood. Here, we have used chimeras based on the type I plasma membrane protein CD8 in which the endogenous TMD was substituted with transmembrane sequences derived from different polytopic membrane proteins as a mode to investigate the quality control of unassembled TMDs along the secretory pathway. We find that the three TMDs examined prevent trafficking of CD8 to the cell surface via potentially distinct mechanisms. CD8 containing two distinct non-native transmembrane sequences escape the ER and are subsequently retrieved from the Golgi, possibly via Rer1, leading to ER localisation at steady state. A third chimera, containing an altered transmembrane domain, was predominantly localised to the Golgi at steady state, indicating the existence of an additional quality control checkpoint that identifies non-native transmembrane domains that have escaped ER retention and retrieval. Preliminary experiments indicate that protein retained by quality control mechanisms at the Golgi are targeted to lysosomes for degradation.
Collapse
Affiliation(s)
- Kit Briant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Johnson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eileithyia Swanton
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
PDLIM5 links kidney anion exchanger 1 (kAE1) to ILK and is required for membrane targeting of kAE1. Sci Rep 2017; 7:39701. [PMID: 28045035 PMCID: PMC5206653 DOI: 10.1038/srep39701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
Anion exchanger 1 (AE1) mediates Cl−/HCO3− exchange in erythrocytes and kidney intercalated cells where it functions to maintain normal bodily acid-base homeostasis. AE1’s C-terminal tail (AE1C) contains multiple potential membrane targeting/retention determinants, including a predicted PDZ binding motif, which are critical for its normal membrane residency. Here we identify PDLIM5 as a direct binding partner for AE1 in human kidney, via PDLIM5’s PDZ domain and the PDZ binding motif in AE1C. Kidney AE1 (kAE1), PDLIM5 and integrin-linked kinase (ILK) form a multiprotein complex in which PDLIM5 provides a bridge between ILK and AE1C. Depletion of PDLIM5 resulted in significant reduction in kAE1 at the cell membrane, whereas over-expression of kAE1 was accompanied by increased PDLIM5 levels, underscoring the functional importance of PDLIM5 for proper kAE1 membrane residency, as a crucial linker between kAE1 and actin cytoskeleton-associated proteins in polarized cells.
Collapse
|
29
|
Vichot AA, Zsengellér ZK, Shmukler BE, Adams ND, Dahl NK, Alper SL. Loss of kAE1 expression in collecting ducts of end-stage kidneys from a family with SLC4A1 G609R-associated distal renal tubular acidosis. Clin Kidney J 2016. [PMID: 28638614 PMCID: PMC5469557 DOI: 10.1093/ckj/sfw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Distal renal tubular acidosis caused by missense mutations in kidney isoform of anion exchanger 1 (kAE1/SLC4A1), the basolateral membrane Cl−/HCO3− exchanger of renal alpha-intercalated cells, has been extensively investigated in heterologous expression systems but rarely in human kidneys. The preferential apical localization of distal renal tubular acidosis (dRTA)-associated kAE1 mutants R901X, G609R and M909T in cultured epithelial monolayers has not been examined in human kidney. Here, we present kidney tissues from dRTA-affected siblings heterozygous for kAE1 G609R, characterized by predominant absence rather than mistargeting of kAE1 in intercalated cells. Thus, studies of heterologous recombinant expression of mutant proteins should be, whenever possible, interpreted in comparison to affected patient tissues.
Collapse
Affiliation(s)
- Alfred A Vichot
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Zsuzsanna K Zsengellér
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Boris E Shmukler
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nancy D Adams
- Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Neera K Dahl
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Almomani E, Lashhab R, Alexander RT, Cordat E. The carboxyl-terminally truncated kidney anion exchanger 1 R901X dRTA mutant is unstable at the plasma membrane. Am J Physiol Cell Physiol 2016; 310:C764-72. [DOI: 10.1152/ajpcell.00305.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abundance of kAE1 R901X at the surface is due to an increased endocytosis rate and a decreased recycling rate of endocytosed proteins. We propose that, in polarized renal epithelial cells, the apically mistargeted kAE1 R901X mutant is endocytosed faster than kAE1 WT and its recycling to the basolateral membrane is delayed. This resets the equilibrium, such that kAE1 R901X resides predominantly in an endomembrane compartment, thereby likely participating in development of dRTA disease.
Collapse
Affiliation(s)
- Ensaf Almomani
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Rawad Lashhab
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
32
|
Genetet S, Ripoche P, Le Van Kim C, Colin Y, Lopez C. Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells. J Biol Chem 2015; 290:6925-36. [PMID: 25616663 DOI: 10.1074/jbc.m114.610048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The renal ammonium transporter RhBG and anion exchanger 1 kAE1 colocalize in the basolateral domain of α-intercalated cells in the distal nephron. Although we have previously shown that RhBG is linked to the spectrin-based skeleton through ankyrin-G and that its NH3 transport activity is dependent on this association, there is no evidence for an interaction of kAE1 with this adaptor protein. We report here that the kAE1 cytoplasmic N terminus actually binds to ankyrin-G, both in yeast two-hybrid analysis and by coimmunoprecipitation in situ in HEK293 cells expressing recombinant kAE1. A site-directed mutagenesis study allowed the identification of three dispersed regions on kAE1 molecule linking the third and fourth repeat domains of ankyrin-G. One secondary docking site corresponds to a major interacting loop of the erythroid anion exchanger 1 (eAE1) with ankyrin-R, whereas the main binding region of kAE1 does not encompass any eAE1 determinant. Stopped flow spectrofluorometry analysis of recombinant HEK293 cells revealed that the Cl(-)/HCO3 (-) exchange activity of a kAE1 protein mutated on the ankyrin-G binding site was abolished. This disruption impaired plasma membrane expression of kAE1 leading to total retention on cytoplasmic structures in polarized epithelial Madin-Darby canine kidney cell transfectants. kAE1 also directly interacts with RhBG without affecting its surface expression and NH3 transport function. This is the first description of a structural and functional RhBG·kAE1·ankyrin-G complex at the plasma membrane of kidney epithelial cells, comparable with the well known Rh·eAE1·ankyrin-R complex in the red blood cell membrane. This renal complex could participate in the regulation of acid-base homeostasis.
Collapse
Affiliation(s)
- Sandrine Genetet
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Pierre Ripoche
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Caroline Le Van Kim
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Yves Colin
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Claude Lopez
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| |
Collapse
|
33
|
Schaeffer C, Creatore A, Rampoldi L. Protein trafficking defects in inherited kidney diseases. Nephrol Dial Transplant 2014; 29 Suppl 4:iv33-44. [PMID: 25165184 DOI: 10.1093/ndt/gfu231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nephron, the basic structural and functional unit of the kidney, is lined by different, highly differentiated polarized epithelial cells. Their concerted action modifies the composition of the glomerular ultrafiltrate through reabsorption and secretion of essential solutes to finally produce urine. The highly specialized properties of the different epithelial cell types of the nephron are remarkable and rely on the regulated delivery of specific proteins to their final subcellular localization. Hence, mutations affecting sorting of individual proteins or inactivating the epithelial trafficking machinery have severe functional consequences causing disease. The presence of mutations leading to protein trafficking defect is indeed a mechanism of pathogenesis seen in an increasing number of disorders, including about one-third of monogenic diseases affecting the kidney. In this review, we focus on representative diseases to discuss different molecular mechanisms that primarily lead to defective protein transport, such as endoplasmic reticulum retention, mistargeting, defective endocytosis or degradation, eventually resulting in epithelial cell and kidney dysfunction. For each disease, we discuss the type of reported mutations, their molecular and cellular consequences and possible strategies for therapeutic intervention. Particular emphasis is given to new and prospective therapies aimed at rescuing the trafficking defect at the basis of these conformational diseases.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Creatore
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Zhang J, Fuster DG, Cameron MA, Quiñones H, Griffith C, Xie XS, Moe OW. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am J Physiol Renal Physiol 2014; 307:F1063-71. [PMID: 25164082 DOI: 10.1152/ajprenal.00408.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital distal renal tubular acidosis (RTA) from mutations of the B1 subunit of V-ATPase is considered an autosomal recessive disease. We analyzed a distal RTA kindred with a truncation mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of V-ATPase. All heterozygous carriers in this kindred have normal plasma HCO3- concentrations and thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria were present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also had inappropriate urinary acidification with acute ammonium chloride loading and an impaired urine-blood Pco2 gradient during bicarbonaturia, indicating the presence of a H+ gradient and flux defects. In normal human renal papillae, wild-type B1 is located primarily on the plasma membrane, but papilla from one of the heterozygote who had kidney stones but not nephrocalcinosis showed B1 in both the plasma membrane as well as diffuse intracellular staining. Titration of increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+ pump activity of wild-type B1 in mammalian human embryonic kidney-293 cells and in V-ATPase-deficient Saccharomyces cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of a mutant B1 subunit that cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Collapse
Affiliation(s)
- Jianning Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel G Fuster
- Department of Nephrology and Hypertension and Institute of Biochemistry and Molecular Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Mary Ann Cameron
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Henry Quiñones
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carolyn Griffith
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiao-Song Xie
- McDermott Center of Human Development, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
35
|
Chu CY, King J, Berrini M, Rumley AC, Apaja PM, Lukacs GL, Alexander RT, Cordat E. Degradation mechanism of a Golgi-retained distal renal tubular acidosis mutant of the kidney anion exchanger 1 in renal cells. Am J Physiol Cell Physiol 2014; 307:C296-307. [DOI: 10.1152/ajpcell.00310.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Distal renal tubular acidosis (dRTA) can be caused by mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1). Both recessive and dominant mutations result in mistrafficking of proteins, preventing them from reaching the basolateral membrane of renal epithelial cells, where their function is needed. In this study, we show that two dRTA mutants are prematurely degraded. Therefore, we investigated the degradation pathway of the kidney AE1 G701D mutant that is retained in the Golgi. Little is known about degradation of nonnative membrane proteins from the Golgi compartments in mammalian cells. We show that the kidney AE1 G701D mutant is polyubiquitylated and degraded by the lysosome and the proteosome. This mutant reaches the plasma membrane, where it is endocytosed and degraded by the lysosome via a mechanism dependent on the peripheral quality control machinery. Furthermore, we show that the function of the mutant is rescued at the cell surface upon inhibition of the lysosome and incubation with a chemical chaperone. We conclude that modulating the peripheral quality control machinery may provide a novel therapeutic option for treatment of patients with dRTA due to a Golgi-retained mutant.
Collapse
Affiliation(s)
- Carmen Y. Chu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Jennifer King
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Mattia Berrini
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Alina C. Rumley
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Pirjo M. Apaja
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
36
|
Su Y, Al-Lamki RS, Blake-Palmer KG, Best A, Golder ZJ, Zhou A, Karet Frankl FE. Physical and functional links between anion exchanger-1 and sodium pump. J Am Soc Nephrol 2014; 26:400-9. [PMID: 25012180 DOI: 10.1681/asn.2013101063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Anion exchanger-1 (AE1) mediates chloride-bicarbonate exchange across the plasma membranes of erythrocytes and, via a slightly shorter transcript, kidney epithelial cells. On an omnivorous human diet, kidney AE1 is mainly active basolaterally in α-intercalated cells of the collecting duct, where it is functionally coupled with apical proton pumps to maintain normal acid-base homeostasis. The C-terminal tail of AE1 has an important role in its polarized membrane residency. We have identified the β1 subunit of Na(+),K(+)-ATPase (sodium pump) as a binding partner for AE1 in the human kidney. Kidney AE1 and β1 colocalized in renal α-intercalated cells and coimmunoprecipitated (together with the catalytic α1 subunit of the sodium pump) from human kidney membrane fractions. ELISA and fluorescence titration assays confirmed that AE1 and β1 interact directly, with a Kd value of 0.81 μM. GST-AE1 pull-down assays using human kidney membrane proteins showed that the last 11 residues of AE1 are important for β1 binding. siRNA-induced knockdown of β1 in cell culture resulted in a significant reduction in kidney AE1 levels at the cell membrane, whereas overexpression of kidney AE1 increased cell surface sodium pump levels. Notably, membrane staining of β1 was reduced throughout collecting ducts of AE1-null mouse kidney, where increased fractional excretion of sodium has been reported. These data suggest a requirement of β1 for proper kidney AE1 membrane residency, and that activities of AE1 and the sodium pump are coregulated in kidney.
Collapse
Affiliation(s)
- Ya Su
- Departments of Medical Genetics and
| | - Rafia S Al-Lamki
- Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Fiona E Karet Frankl
- Departments of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Junking M, Sawasdee N, Duangtum N, Cheunsuchon B, Limjindaporn T, Yenchitsomanus PT. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface. Traffic 2014; 15:788-802. [PMID: 24698155 DOI: 10.1111/tra.12172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/30/2014] [Accepted: 03/30/2014] [Indexed: 12/31/2022]
Abstract
Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.
Collapse
Affiliation(s)
- Mutita Junking
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Chang MH, Chen AP, Romero MF. NBCe1A dimer assemble visualized by bimolecular fluorescence complementation. Am J Physiol Renal Physiol 2014; 306:F672-80. [PMID: 24477681 DOI: 10.1152/ajprenal.00284.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the electrogenic Na(+)/HCO3(-) cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1-158, EYFP(N)) or (159-238, EYFP(C)) was fused to the NH2 or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2 terminus of NBCe1A (EYFP(N)-N-NBCe1A w/ EYFP(C)-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2 termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20% wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50% wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905.
| | | | | |
Collapse
|
40
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RAF. A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem 2013; 288:33848-33860. [PMID: 24121512 DOI: 10.1074/jbc.m113.511865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Anion exchanger 1 (AE1; Band 3; SLC4A1) is the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters that includes chloride/bicarbonate AEs and Na(+)-bicarbonate co-transporters (NBCs). These membrane proteins consist of an amino-terminal cytosolic domain involved in protein interactions and a carboxyl-terminal membrane domain that carries out the transport function. Mutation of a conserved arginine residue (R298S) in the cytosolic domain of NBCe1 (SLC4A4) is linked to proximal renal tubular acidosis and results in impaired transport function, suggesting that the cytosolic domain plays a role in substrate permeation. Introduction of single and double mutations at the equivalent arginine (Arg(283)) and at an interacting glutamate (Glu(85)) in the cytosolic domain of human AE1 (cdAE1) had no effect on the cell surface expression or the transport activity of AE1 expressed in HEK-293 cells. In addition, the membrane domain of AE1 (mdAE1) efficiently mediated anion transport. A 2.1-Å resolution crystal structure of cdΔ54AE1 (residues 55-356 of cdAE1) lacking the amino-terminal and carboxyl-terminal disordered regions, produced at physiological pH, revealed an extensive hydrogen-bonded network involving Arg(283) and Glu(85). Mutations at these residues affected the pH-dependent conformational changes and stability of cdΔ54AE1. As these structural alterations did not impair functional expression of AE1, the cytosolic and membrane domains operate independently. A substrate access tunnel within the cytosolic domain is not present in AE1 and therefore is not an essential feature of the SLC4 family of bicarbonate transporters.
Collapse
Affiliation(s)
- Volodymyr Shnitsar
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xuyao Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles Calmettes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arghya Basu
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
42
|
Frumence E, Genetet S, Ripoche P, Iolascon A, Andolfo I, Le Van Kim C, Colin Y, Mouro-Chanteloup I, Lopez C. Rapid Cl−/HCO3−exchange kinetics of AE1 in HEK293 cells and hereditary stomatocytosis red blood cells. Am J Physiol Cell Physiol 2013; 305:C654-62. [DOI: 10.1152/ajpcell.00142.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion exchanger 1 (AE1) or band 3 is a membrane protein responsible for the rapid exchange of chloride for bicarbonate across the red blood cell membrane. Nine mutations leading to single amino-acid substitutions in the transmembrane domain of AE1 are associated with dominant hereditary stomatocytosis, monovalent cation leaks, and reduced anion exchange activity. We set up a stopped-flow spectrofluorometry assay coupled with flow cytometry to investigate the anion transport and membrane expression characteristics of wild-type recombinant AE1 in HEK293 cells, using an inducible expression system. Likewise, study of three stomatocytosis-associated mutations (R730C, E758K, and G796R), allowed the validation of our method. Measurement of the rapid and specific chloride/bicarbonate exchange by surface expressed AE1 showed that E758K mutant was fully active compared with wild-type (WT) AE1, whereas R730C and G796R mutants were inactive, reinforcing previously reported data on other experimental models. Stopped-flow analysis of AE1 transport activity in red blood cell ghost preparations revealed a 50% reduction of G796R compared with WT AE1 corresponding to a loss of function of the G796R mutated protein, in accordance with the heterozygous status of the AE1 variant patients. In conclusion, stopped-flow led to measurement of rapid transport kinetics using the natural substrate for AE1 and, conjugated with flow cytometry, allowed a reliable correlation of chloride/bicarbonate exchange to surface expression of AE1, both in recombinant cells and ghosts and therefore a fine comparison of function between different stomatocytosis samples. This technical approach thus provides significant improvements in anion exchange analysis in red blood cells.
Collapse
Affiliation(s)
- Etienne Frumence
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
- Université de la Réunion, Saint-Denis, France; and
| | - Sandrine Genetet
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Pierre Ripoche
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Achille Iolascon
- Chair of Medical Genetics, Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Immacolata Andolfo
- Chair of Medical Genetics, Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Caroline Le Van Kim
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Yves Colin
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Isabelle Mouro-Chanteloup
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Claude Lopez
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| |
Collapse
|
43
|
Wright J, Wang X, Haataja L, Kellogg AP, Lee J, Liu M, Arvan P. Dominant protein interactions that influence the pathogenesis of conformational diseases. J Clin Invest 2013; 123:3124-34. [PMID: 23722904 DOI: 10.1172/jci67260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 02/06/2023] Open
Abstract
Misfolding of exportable proteins can trigger endocrinopathies. For example, misfolding of insulin can result in autosomal dominant mutant INS gene-induced diabetes of youth, and misfolding of thyroglobulin can result in autosomal recessive congenital hypothyroidism with deficient thyroglobulin. Both proinsulin and thyroglobulin normally form homodimers; the mutant versions of both proteins misfold in the ER, triggering ER stress, and, in both cases, heterozygosity creates potential for cross-dimerization between mutant and WT gene products. Here, we investigated these two ER-retained mutant secretory proteins and the selectivity of their interactions with their respective WT counterparts. In both cases and in animal models of these diseases, we found that conditions favoring an increased stoichiometry of mutant gene product dominantly inhibited export of the WT partner, while increased relative level of the WT gene product helped to rescue secretion of the mutant partner. Surprisingly, the bidirectional consequences of secretory blockade and rescue occur simultaneously in the same cells. Thus, in the context of heterozygosity, expression level and stability of WT subunits may be a critical factor influencing the effect of protein misfolding on clinical phenotype. These results offer new insight into dominant as well as recessive inheritance of conformational diseases and offer opportunities for the development of new therapies.
Collapse
Affiliation(s)
- Jordan Wright
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells. PLoS One 2013; 8:e57062. [PMID: 23460825 PMCID: PMC3584104 DOI: 10.1371/journal.pone.0057062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients.
Collapse
|
45
|
Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 2013; 27:3691-704. [PMID: 23114896 DOI: 10.1093/ndt/gfs442] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary or hereditary forms of distal renal tubular acidosis (dRTA) have received increased attention because of advances in the understanding of the molecular mechanism, whereby mutations in the main proteins involved in acid-base transport result in impaired acid excretion. Dysfunction of intercalated cells in the collecting tubules accounts for all the known genetic causes of dRTA. These cells secrete protons into the tubular lumen through H(+)-ATPases functionally coupled to the basolateral anion exchanger 1 (AE1). The substrate for both transporters is provided by the catalytic activity of the cytosolic carbonic anhydrase II (CA II), an enzyme which is also present in the proximal tubular cells and osteoclasts. Mutations in ATP6V1B1, encoding the B-subtype unit of the apical H(+) ATPase, and ATP6V0A4, encoding the a-subtype unit, lead to the loss of function of the apical H(+) ATPase and are usually responsible for patients with autosomal recessive dRTA often associated with early or late sensorineural deafness. Mutations in the gene encoding the cytosolic CA II are associated with the autosomal recessive syndrome of osteopetrosis, mixed distal and proximal RTA and cerebral calcification. Mutations in the AE1, the gene that encodes the Cl(-)/HCO(3)(-) exchanger, usually present as dominant dRTA, but a recessive pattern has been recently described. Several studies have shown trafficking defects in the mutant protein rather than the lack of function as the major mechanism underlying the pathogenesis of dRTA from AE1 mutations.
Collapse
|
46
|
Almomani EY, King JC, Netsawang J, Yenchitsomanus PT, Malasit P, Limjindaporn T, Alexander RT, Cordat E. Adaptor protein 1 complexes regulate intracellular trafficking of the kidney anion exchanger 1 in epithelial cells. Am J Physiol Cell Physiol 2012; 303:C554-66. [PMID: 22744004 DOI: 10.1152/ajpcell.00124.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Distal renal tubular acidosis (dRTA) can be caused by mutations in the gene encoding the anion exchanger 1 (AE1) and is characterized by defective urinary acidification, metabolic acidosis, and renal stones. AE1 is expressed at the basolateral membrane of type A intercalated cells in the renal cortical collecting duct (kAE1). Two dRTA mutations result in the carboxyl-terminal truncation of kAE1; in one case, the protein trafficked in a nonpolarized way in epithelial cells. A recent yeast two-hybrid assay showed that the carboxyl-terminal cytosolic domain of AE1 interacts with adaptor protein complex 1 (AP-1A) subunit μ1A (mu-1A; Sawasdee N, Junking M, Ngaojanlar P, Sukomon N, Ungsupravate D, Limjindaporn T, Akkarapatumwong V, Noisakran S, Yenchitsomanus PT. Biochem Biophys Res Commun 401: 85-91, 2010). Here, we show the interaction between kAE1 and mu-1A and B in vitro by reciprocal coimmunoprecipitation in epithelial cells and in vivo by coimmunoprecipitation from mouse kidney extract. When endogenous mu-1A (and to a lesser extent mu-1B) was reduced, kAE1 protein was unable to traffic to the plasma membrane and was rapidly degraded via a lysosomal pathway. Expression of either small interfering RNA-resistant mu-1A or mu-1B stabilized kAE1 in these cells. We also show that newly synthesized kAE1 does not traffic through recycling endosomes to the plasma membrane, suggesting that AP-1B, located in recycling endosomes, is not primarily involved in trafficking of newly synthesized kAE1 when AP-1A is present in the cells. Our data demonstrate that AP-1A regulates processing of the basolateral, polytopic membrane protein kAE1 to the cell surface and that both AP-1A and B adaptor complexes are required for normal kAE1 trafficking.
Collapse
Affiliation(s)
- Ensaf Y Almomani
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vilas GL, Loganathan SK, Quon A, Sundaresan P, Vithana EN, Casey J. Oligomerization of SLC4A11 protein and the severity of FECD and CHED2 corneal dystrophies caused by SLC4A11 mutations. Hum Mutat 2011; 33:419-28. [PMID: 22072594 DOI: 10.1002/humu.21655] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/31/2011] [Indexed: 11/06/2022]
Abstract
Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessive congenital hereditary endothelial corneal dystrophy type 2 (CHED2), corneal dystrophy and perceptive deafness (Harboyan syndrome), and dominant late-onset Fuchs endothelial corneal dystrophy (FECD). We analyzed missense SLC4A11 mutations identified in FECD and CHED2 patients and expressed in transfected HEK 293 cells. Chemical cross-linking and migration in nondenaturing gels showed that SLC4A11 exists as a dimer. Furthermore, co-immunoprecipitation of epitope-tagged proteins revealed heteromeric interactions between wild-type (WT) and mutant SLC4A11 proteins. When expressed alone, FECD- and CHED2-causing mutant SLC4A11 proteins are primarily retained intracellularly. Co-expression with WT SLC4A11 partially rescued the cell surface trafficking of CHED2 mutants, but not FECD mutants. CHED2 alleles of SLC4A11 did not affect cell surface processing of WT SLC4A11. In contrast, FECD mutants reduced WT cell surface processing efficiency, consistent with dominant inheritance of FECD. The reduction in movement of WT protein to the cell surface caused by FECD SLC4A11 helps to explain the dominant inheritance of this disorder. Similarly, the failure of CHED2 mutant SLC4A11 to affect the processing of WT protein, explains the lack of symptoms found in CHED2 carriers and the recessive inheritance of the disorder.
Collapse
Affiliation(s)
- Gonzalo L Vilas
- Membrane Protein Disease Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Wu F, Satchwell TJ, Toye AM. Anion exchanger 1 in red blood cells and kidney: Band 3's in a pod. Biochem Cell Biol 2011; 89:106-14. [PMID: 21455263 DOI: 10.1139/o10-146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bicarbonate/chloride exchanger 1 (AE1, Band 3) is abundantly expressed in the red blood cell membrane, where it is involved in gas exchange and functions as a major site of cytoskeletal attachment to the erythrocyte membrane. A truncated kidney isoform (kAE1) is highly expressed in type A intercalated cells of the distal tubules, where it is vital for urinary acidification. Recently, kAE1 has emerged as a novel physiologically significant protein in the kidney glomerulus. This minireview will discuss the known interactions of kAE1 in the podocytes and the possible mechanisms whereby this important multispanning membrane protein may contribute to the function of the glomerular filtration barrier and prevent proteinuria.
Collapse
Affiliation(s)
- Fiona Wu
- School of Clinical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
49
|
Stewart AK, Chebib FT, Akbar SW, Salas MJ, Sonik RA, Shmukler BE, Alper SL. Interactions of mouse glycophorin A with the dRTA-related mutant G719D of the mouse Cl-/HCO3- exchanger Ae1. Biochem Cell Biol 2011; 89:224-35. [PMID: 21455273 DOI: 10.1139/o10-147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AE1 mutation G701D, associated with recessive distal renal tubular acidosis (dRTA), produces only minimal erythroid phenotype, reflecting erythroid-specific expression of stimulatory AE1 subunit glycophorin A (GPA). GPA transgene expression could theoretically treat recessive dRTA in patients and in mice expressing cognate Ae1 mutation G719D. However, human (h) GPA and mouse (m) Gpa amino acid sequences are widely divergent, and mGpa function in vitro has not been investigated. We therefore studied in Xenopus oocytes the effects of coexpressed mGpa and hGPA on anion transport by erythroid (e) and kidney (k) isoforms of wild-type mAe1 (meAe1, mkAe1) and of mAe1 mutant G719D. Coexpression of hGPA or mGpa enhanced the function of meAe1 and mkAe1 and rescued the nonfunctional meAe1 and mkAe1 G719D mutants through increased surface expression. Progressive N-terminal truncation studies revealed a role for meAe1 amino acids 22-28 in GPA-responsiveness of meAe1 G719D. MouseN-cyto/humanTMD and humanN-cyto/mouseTMD kAE1 chimeras were active and GPA-responsive. In contrast, whereas chimera mkAe1N-cyto/hkAE1 G701DTMD was GPA-responsive, chimera hkAE1N-cyto/mkAe1 G719DTMD was GPA-insensitive. Moreover, whereas the isolated transmembrane domain (TMD) of hAE1 G701D was GPA-responsive, that of mAe1 G719D was GPA-insensitive. Thus, mGpa increases surface expression and activity of meAe1 and mkAe1. However, the G719D mutation renders certain mAe1 mutant constructs GPA-unresponsive and highlights a role for erythroid-specific meAe1 amino acids 22-28 in GPA-responsiveness.
Collapse
Affiliation(s)
- Andrew K Stewart
- Renal and Molecular Vascular Medicine Divisions, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Almomani EY, Chu CY, Cordat E. Mis-trafficking of bicarbonate transporters: implications to human diseasesThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:157-77. [DOI: 10.1139/o10-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bicarbonate is a waste product of mitochondrial respiration and one of the main buffers in the human body. Thus, bicarbonate transporters play an essential role in maintaining acid-base balance but also during fetal development as they ensure tight regulation of cytosolic and extracellular environments. Bicarbonate transporters belong to two gene families, SLC4A and SLC26A. Proteins from these two families are widely expressed, and thus mutations in their genes result in various diseases that affect bones, pancreas, reproduction, brain, kidneys, eyes, heart, thyroid, red blood cells, and lungs. In this minireview, we discuss the current state of knowledge regarding the effect of SLC4A and SLC26A mutants, with a special emphasis on mutants that have been studied in mammalian cell lines and how they correlate with phenotypes observed in mice models.
Collapse
Affiliation(s)
- Ensaf Y. Almomani
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carmen Y.S. Chu
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|