1
|
Winckler LI, Dissmeyer N. TEV protease cleavage in generation of artificial substrate proteins bearing neo-N-termini. Methods Enzymol 2023. [PMID: 37532397 DOI: 10.1016/bs.mie.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The tobacco etch virus (TEV) protease is widely used in in vitro and in vivo approaches for the removal of affinity tags from fusion proteins or the generation of proteins with a desired N-terminal amino acid. Processing of fusion proteins by the TEV protease can either be achieved by encoding the TEV protease and its recognition site on one construct (self-cleavage) or on two different constructs (co-expression). Here, we compare the efficiency of the self-splitting approach to the co-expression approach.
Collapse
|
2
|
Smith KA, Dang M, Baker AEG, Fuehrmann T, Fokina A, Shoichet MS. Synthesis of an Enzyme-Mediated Reversible Cross-linked Hydrogel for Cell Culture. Biomacromolecules 2021; 22:5118-5127. [PMID: 34752066 DOI: 10.1021/acs.biomac.1c01086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detachment of fragile cell types cultured on two-dimensional (2D) surfaces has been shown to be detrimental to their viability. For example, detachment of induced pluripotent stem cell (iPSC)-derived neurons grown in vitro in 2D typically results in loss of neuronal connections and/or cell death. Avoiding cell detachment altogether by changing the properties of the substrate on which the cells are grown is a compelling strategy to maintain cell viability. Here, we present the synthesis of a reversible cross-linked hydrogel that is sufficiently stable for cell culture and differentiation and is cleaved by an external stimulus, facilitating injection. Specifically, hyaluronan (HA) and methylcellulose (MC) were modified with ketone and aldehyde groups, respectively, and a TEV protease-degradable peptide was synthesized via solid-state synthesis and modified at both termini with oxyamine groups to cross-link HA-ketone and MC-aldehyde to produce oxime-cross-linked HA × MC. The HA × MC hydrogel demonstrated good stability, enzyme-sensitive degradation, and cytocompatibility with iPSC-derived neural progenitor cells, laying the framework for broad applicability.
Collapse
Affiliation(s)
- Kelti A Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Tobias Fuehrmann
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Ana Fokina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada.,Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
3
|
Wong M, Gillingham AK, Munro S. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 2017; 15:3. [PMID: 28122620 PMCID: PMC5267433 DOI: 10.1186/s12915-016-0345-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background The internal organization of cells depends on mechanisms to ensure that transport carriers, such as vesicles, fuse only with the correct destination organelle. Several types of proteins have been proposed to confer specificity to this process, and we have recently shown that a set of coiled-coil proteins on the Golgi, called golgins, are able to capture specific classes of carriers when relocated to an ectopic location. Results Mapping of six different golgins reveals that, in each case, a short 20–50 residue region is necessary and sufficient to capture specific carriers. In all six of GMAP-210, golgin-84, TMF, golgin-97, golgin-245, and GCC88, this region is located at the extreme N-terminus of the protein. The vesicle-capturing regions of GMAP-210, golgin-84, and TMF capture intra-Golgi vesicles and share some sequence features, suggesting that they act in a related, if distinct, manner. In the case of GMAP-210, this shared feature is in addition to a previously characterized “amphipathic lipid-packing sensor” motif that can capture highly curved membranes, with the two motifs being apparently involved in capturing distinct types of vesicles. Of the three GRIP domain golgins that capture endosome-to-Golgi carriers, golgin-97 and golgin-245 share a closely related capture motif, whereas that in GCC88 is distinct, suggesting that it works by a different mechanism and raising the possibility that the three golgins capture different classes of endosome-derived carriers that share many cargos but have distinct features for recognition at the Golgi. Conclusions For six different golgins, the capture of carriers is mediated by a short region at the N-terminus of the protein. There appear to be at least four different types of motif, consistent with specific golgins capturing specific classes of carrier and implying the existence of distinct receptors present on each of these different carrier classes.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Cesaratto F, Burrone OR, Petris G. Tobacco Etch Virus protease: A shortcut across biotechnologies. J Biotechnol 2016; 231:239-249. [PMID: 27312702 DOI: 10.1016/j.jbiotec.2016.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
Abstract
About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.
Collapse
Affiliation(s)
- Francesca Cesaratto
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| | | |
Collapse
|
5
|
Cesaratto F, López-Requena A, Burrone OR, Petris G. Engineered tobacco etch virus (TEV) protease active in the secretory pathway of mammalian cells. J Biotechnol 2015; 212:159-66. [PMID: 26327323 DOI: 10.1016/j.jbiotec.2015.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 01/05/2023]
Abstract
Tobacco etch virus protease (TEVp) is a unique endopeptidase with stringent substrate specificity. TEVp has been widely used as a purified protein for in vitro applications, but also as a biological tool directly expressing it in living cells. To adapt the protease to diverse applications, several TEVp mutants with different stability and enzymatic properties have been reported. Herein we describe the development of a novel engineered TEVp mutant designed to be active in the secretory pathway. While wild type TEVp targeted to the secretory pathway of mammalian cells is synthetized as an N-glycosylated and catalytically inactive enzyme, a TEVp mutant with selected mutations at two verified N-glycosylation sites and at an exposed cysteine was highly efficient. This mutant was very active in the endoplasmic reticulum (ER) of living cells and can be used as a biotechnological tool to cleave proteins within the secretory pathway. As an immediate practical application we report the expression of a complete functional monoclonal antibody expressed from a single polypeptide, which was cleaved by our TEVp mutant into the two antibody chains and secreted as an assembled and functional molecule. In addition, we show active TEVp mutants lacking auto-cleavage activity.
Collapse
Affiliation(s)
- Francesca Cesaratto
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Alejandro López-Requena
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; Immunobiology Division, Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Gianluca Petris
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
6
|
Wang T, Grabski R, Sztul E, Hay JC. p115-SNARE interactions: a dynamic cycle of p115 binding monomeric SNARE motifs and releasing assembled bundles. Traffic 2015; 16:148-71. [PMID: 25406594 DOI: 10.1111/tra.12242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.
Collapse
Affiliation(s)
- Ting Wang
- Division of Biological Sciences and Center for Structural & Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | | | | | | |
Collapse
|
7
|
Grabski R, Balklava Z, Wyrozumska P, Szul T, Brandon E, Alvarez C, Holloway ZG, Sztul E. Identification of a functional domain within the p115 tethering factor that is required for Golgi ribbon assembly and membrane trafficking. J Cell Sci 2012; 125:1896-909. [PMID: 22328511 DOI: 10.1242/jcs.090571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The tethering factor p115 (known as Uso1p in yeast) has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that depletion of p115 by using RNA interference (RNAi) in C. elegans causes accumulation of the 170 kD soluble yolk protein (YP170) in the body cavity and retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes. Structure-function analyses of p115 have identified two homology regions (H1 and H2) within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a new C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants that lack the fourth CC domain (CC4) act in a dominant-negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi of p115 and the subsequent transfection with p115 deletion mutants, we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115. p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function, and suggest that both the CC1 and the CC4 SNARE-binding motifs participate in p115-mediated membrane tethering.
Collapse
Affiliation(s)
- Robert Grabski
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Reverse genetics approaches require methods to inactivate a specific protein. One possibility is to modify the target protein with a degradation signal (degron). Degrons are short, transferable sequences that confer protein instability. They target proteins for degradation either constitutively or after activation, e.g., by phosphorylation, presence of a binding partner, or conformational rearrangements in the substrate. In this chapter, we describe a synthetic way to activate a degron. It employs the generation of an N-degron by cleavage of a substrate with the site-specific tobacco etch virus (TEV) protease. Subsequently, the substrate is targeted for degradation by the ubiquitin-proteasome system. This TEV protease-induced protein instability system provides a powerful approach to generate conditional mutants for synthetic biology or for the investigation of protein functions in a specific cellular context.
Collapse
Affiliation(s)
- Christof Taxis
- Philipps Universität Marburg, Fachbereich 17, Biologie - Genetik, Marburg, Germany
| | | |
Collapse
|
9
|
Abstract
A number of long coiled-coil proteins are present on the Golgi. Often referred to as "golgins," they are well conserved in evolution and at least five are likely to have been present in the last common ancestor of all eukaryotes. Individual golgins are found in different parts of the Golgi stack, and they are typically anchored to the membrane at their carboxyl termini by a transmembrane domain or by binding a small GTPase. They appear to have roles in membrane traffic and Golgi structure, but their precise function is in most cases unclear. Many have binding sites for Rab family GTPases along their length, and this has led to the suggestion that the golgins act collectively to form a tentacular matrix that surrounds the Golgi to capture Rab-coated membranes in the vicinity of the stack. Such a collective role might explain the lack of cell lethality seen following loss of some of the genes in human familial conditions or mouse models.
Collapse
|
10
|
Ong YS, Tang BL, Loo LS, Hong W. p125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER-Golgi transport. ACTA ACUST UNITED AC 2010; 190:331-45. [PMID: 20679433 PMCID: PMC2922642 DOI: 10.1083/jcb.201003005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
p125A is an accessory protein for COPII-mediated vesicle budding that links the Sec13/Sec31 and Sec23/24 subcomplexes. Coat protein II (COPII)–mediated export from the endoplasmic reticulum (ER) involves sequential recruitment of COPII complex components, including the Sar1 GTPase, the Sec23/Sec24 subcomplex, and the Sec13/Sec31 subcomplex. p125A was originally identified as a Sec23A-interacting protein. Here we demonstrate that p125A also interacts with the C-terminal region of Sec31A. The Sec31A-interacting domain of p125A is between residues 260–600, and is therefore a distinct domain from that required for interaction with Sec23A. Gel filtration and immunodepletion studies suggest that the majority of cytosolic p125A exists as a ternary complex with the Sec13/Sec31A subcomplex, suggesting that Sec 13, Sec31A, and p125A exist in the cytosol primarily as preassembled Sec13/Sec31A/p125A heterohexamers. Golgi morphology and protein export from the ER were affected in p125A-silenced cells. Our results suggest that p125A is part of the Sec13/Sec31A subcomplex and facilitates ER export in mammalian cells.
Collapse
Affiliation(s)
- Yan Shan Ong
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | | | |
Collapse
|
11
|
Nakamura N. Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. J Pharmacol Sci 2010; 112:255-64. [PMID: 20197635 DOI: 10.1254/jphs.09r03cr] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
GM130 is a peripheral membrane protein strongly attached to the Golgi membrane and is isolated from the detergent and salt resistant Golgi matrix. GM130 is rich in coiled-coil structures and predicted to take a rod-like shape. Together with p115, giantin, and GRASP65, GM130 facilitates vesicle fusion to the Golgi membrane as a vesicle "tethering factor". GM130 is also involved in the maintenance of the Golgi structure and plays a major role in the disassembly and reassembly of the Golgi apparatus during mitosis. Emerging evidence suggests that GM130 is involved in the control of glycosylation, cell cycle progression, and higher order cell functions such as cell polarization and directed cell migration. This creates the potential for novel Golgi-targeted drugs and treatments for various diseases including glycosylation defects, immune diseases, and cancer.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Cell Biology, Division of Life Science, Graduate School of Natural Science and Technologies, Kanazawa University, Japan.
| |
Collapse
|
12
|
Striegl H, Andrade-Navarro MA, Heinemann U. Armadillo motifs involved in vesicular transport. PLoS One 2010; 5:e8991. [PMID: 20126549 PMCID: PMC2813876 DOI: 10.1371/journal.pone.0008991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/12/2010] [Indexed: 12/23/2022] Open
Abstract
Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.
Collapse
Affiliation(s)
- Harald Striegl
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
14
|
An Y, Chen CY, Moyer B, Rotkiewicz P, Elsliger MA, Godzik A, Wilson IA, Balch WE. Structural and functional analysis of the globular head domain of p115 provides insight into membrane tethering. J Mol Biol 2009; 391:26-41. [PMID: 19414022 DOI: 10.1016/j.jmb.2009.04.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/10/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Molecular tethers have a central role in the organization of the complex membrane architecture of eukaryotic cells. p115 is a ubiquitous, essential tether involved in vesicle transport and the structural organization of the exocytic pathway. We describe two crystal structures of the N-terminal domain of p115 at 2.0 A resolution. The p115 structures show a novel alpha-solenoid architecture constructed of 12 armadillo-like, tether-repeat, alpha-helical tripod motifs. We find that the H1 TR binds the Rab1 GTPase involved in endoplasmic reticulum to Golgi transport. Mutation of the H1 motif results in the dominant negative inhibition of endoplasmic reticulum to Golgi trafficking. We propose that the H1 helical tripod contributes to the assembly of Rab-dependent complexes responsible for the tether and SNARE-dependent fusion of membranes.
Collapse
Affiliation(s)
- Yu An
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Taxis C, Stier G, Spadaccini R, Knop M. Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 2009; 5:267. [PMID: 19401679 PMCID: PMC2683728 DOI: 10.1038/msb.2009.25] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/17/2009] [Indexed: 11/20/2022] Open
Abstract
Methods that allow for the manipulation of genes or their products have been highly fruitful for biomedical research. Here, we describe a method that allows the control of protein abundance by a genetically encoded regulatory system. We developed a dormant N-degron that can be attached to the N-terminus of a protein of interest. Upon expression of a site-specific protease, the dormant N-degron becomes deprotected. The N-degron then targets itself and the attached protein for rapid proteasomal degradation through the N-end rule pathway. We use an optimized tobacco etch virus (TEV) protease variant combined with selective target binding to achieve complete and rapid deprotection of the N-degron-tagged proteins. This method, termed TEV protease induced protein inactivation (TIPI) of TIPI-degron (TDeg) modified target proteins is fast, reversible, and applicable to a broad range of proteins. TIPI of yeast proteins essential for vegetative growth causes phenotypes that are close to deletion mutants. The features of the TIPI system make it a versatile tool to study protein function in eukaryotes and to create new modules for synthetic or systems biology.
Collapse
Affiliation(s)
- Christof Taxis
- EMBL, Cell Biology and Biophysics Unit, Meyerhofstr. 1, Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Striegl H, Roske Y, Kümmel D, Heinemann U. Unusual armadillo fold in the human general vesicular transport factor p115. PLoS One 2009; 4:e4656. [PMID: 19247479 PMCID: PMC2645507 DOI: 10.1371/journal.pone.0004656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/07/2009] [Indexed: 01/21/2023] Open
Abstract
The golgin family gives identity and structure to the Golgi apparatus and is part of a complex protein network at the Golgi membrane. The golgin p115 is targeted by the GTPase Rab1a, contains a large globular head region and a long region of coiled-coil which forms an extended rod-like structure. p115 serves as vesicle tethering factor and plays an important role at different steps of vesicular transport. Here we present the 2.2 Å-resolution X-ray structure of the globular head region of p115. The structure exhibits an armadillo fold that is decorated by elongated loops and carries a C-terminal non-canonical repeat. This terminal repeat folds into the armadillo superhelical groove and allows homodimeric association with important implications for p115 mediated multiple protein interactions and tethering.
Collapse
Affiliation(s)
- Harald Striegl
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Yvette Roske
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Daniel Kümmel
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|