1
|
Bottone S, Joliot O, Cakil ZV, El Hajji L, Rakotoarison LM, Boncompain G, Perez F, Gautier A. A fluorogenic chemically induced dimerization technology for controlling, imaging and sensing protein proximity. Nat Methods 2023; 20:1553-1562. [PMID: 37640938 DOI: 10.1038/s41592-023-01988-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.
Collapse
Affiliation(s)
- Sara Bottone
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | - Zeyneb Vildan Cakil
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Louise-Marie Rakotoarison
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | | | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
2
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
3
|
Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells. Int J Mol Sci 2017; 18:ijms18030537. [PMID: 28257089 PMCID: PMC5372553 DOI: 10.3390/ijms18030537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.
Collapse
|
4
|
Oberli A, Zurbrügg L, Rusch S, Brand F, Butler ME, Day JL, Cutts EE, Lavstsen T, Vakonakis I, Beck HP. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cell Microbiol 2016; 18:1415-28. [PMID: 26916885 PMCID: PMC5103180 DOI: 10.1111/cmi.12583] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 01/12/2023]
Abstract
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.
Collapse
Affiliation(s)
- Alexander Oberli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Laura Zurbrügg
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastian Rusch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Françoise Brand
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Jemma L Day
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Erin E Cutts
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Huang ZL, Gao M, Li QY, Tao K, Xiao Q, Cao WX, Feng WL. Induction of apoptosis by directing oncogenic Bcr-Abl into the nucleus. Oncotarget 2014; 4:2249-60. [PMID: 24158537 PMCID: PMC3926824 DOI: 10.18632/oncotarget.1339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The chimeric Bcr-Abl oncoprotein, which causes chronic myeloid leukemia, mainly localizes in the cytoplasm, and loses its ability to transform cells after moving into the nucleus. Here we report a new strategy to convert Bcr-Abl to be an apoptotic inducer by altering its subcellular localization. We show that a rapalog nuclear transport system (RNTS) containing six nuclear localization signals directs Bcr-Abl into the nucleus and that nuclear entrapped Bcr-Abl induces apoptosis and inhibits proliferation of CML cells by activating p73 and shutting down cytoplasmic oncogenic signals mediated by Bcr-Abl. Coupling cytoplasmic depletion with nuclear entrapment of Bcr-Abl synergistically enhances the inhibitory effect of nuclear Bcr-Abl on its oncogenicity in mice. These results provide evidence that direction of cytoplasmic Bcr-Abl to the nucleus offers an alternative CML therapy.
Collapse
Affiliation(s)
- Zheng-Lan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Putyrski M, Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett 2012; 586:2097-105. [DOI: 10.1016/j.febslet.2012.04.061] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 01/08/2023]
|
7
|
Xu T, Johnson CA, Gestwicki JE, Kumar A. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nat Protoc 2010; 5:1831-43. [PMID: 21030958 PMCID: PMC4976631 DOI: 10.1038/nprot.2010.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|